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 A Progressive multiple sequence alignment ClustalW is a widely used 

heuristic method for computing multiple sequence alignment (MSA). It has 

three stages: distance matrix computation using pairwise alignment, guide 

tree reconstruction using neighbor-joining and progressive alignment. To 

accelerate computing for large data, the progressive MSA algorithm needs to 

be parallelized. This research aims to identify, decompose and implement the 

pairwise alignment and neighbor-joining in progressive MSA ClustalW using 

message passing, shared memory and hybrid programming model in the 

computer cluster. The experimental results obtained shared memory 

programming model as the best scenario implementation with speed up up to 

12 times. 
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1. INTRODUCTION 

Multiple Sequence Alignment (MSA) is a basic problem in Bioinformatics that aims to align more 

than two biological sequences to find similarity regions. MSA is used for phylogenetic analysis, 

identification of conserved motifs in a family of proteins and 3D homology modeling [1]. 

The most optimal pairwise alignment algorithm is dynamic programming, but when done on the 

MSA the complexity is  O(LN) where L is the length of the sequence and N is the number of sequence that is 

the NP-Complete problem [1]. To overcome this problem, heuristic method is used, one of which is 

progressive MSA ClustalW [2] using guide tree as a guide in combining all pairwise alignment. 

In addition to the complexity issue, the big data of sequence makes a challenge in applying MSA. 

On June 2017, it is known that there are 234 billion bases and 201 million sequences recorded in GenBank 

NCBI. This challenge makes the MSA algorithm needs to be parallelized to improve their performance. 

Some studies related to parallelization of MSA include ClustalW-MPI [3] which parallelize the first and third 

stages of ClustalW on 16 processors using MPI obtained speed up 4.3 times on progressive alignment. 

DIALIGN-TX [1] gained 3.13 times speed up using MPI and OpenMP hybrid systems on 28 cores 

heterogeneous multicore clusters [4] gets speed up three times using Star algorithm on MPI system with five 

computer units. 

Implementation of parallel algorithms can be done partially to reduce overall computation time. This 

is done by [3] in parallelizing the first and third stages of ClustalW using MPI [5]-[6] only parallelize the 

neighbor-joining which is the second stage of ClustalW using the GPU [7] parallelize the pairwise alignment 

which is ClustalW's first stage using OpenMP. 

This research aims to parallelize in the first and second stages of the progressive MSA ClustalW 

algorithm using the massage passing, shared memory, and hybrid programming model. The selection of the 
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first and second stages is based on complexity analysis and test results of ClustalW algorithm [5]. From the 

data presented by the research [5], it is known that the complexity and the computation time of the first stage 

(pairwise alignment) and the second stage (neighbor-joining) is greater than the complexity and the third 

stage computing time (progressive alignment). 

The benefits of this research are expected to improve the performance of progressive MSA 

ClustalW algorithm, especially pairwise alignment and neighbor-joining so that it can support Bioinformatics 

research that requires MSA results. 

 

 

2. RESEARCH METHOD 

Explaining The method in this research adopted the steps in the decomposition of  the  program  for   

parallelization [8].  The method is divided into four stages that can be seen in Figure 1. 

 

 

 
 

Figure 1.  Research method 

 

 

2.1. Identification 

At this stage we identify the calculation components that can be run in parallel for the first and 

second stages of the progressive MSA ClustalW algorithm [8]. Identification is done by examining the 

pseudo code of both stages of the algorithm. The first stage of progressive MSA ClustalW is computing the 

distance matrix using pairwise alignment. In this research, the dynamic programming algorithm Needleman-

Wunsch [9] is used as the optimal global alignment of the two sequences [10]. The algorithm has three 

stages: initialization, scoring matrix calculation, and traceback. The scoring matrix value is obtained by 

finding the maximum value of the cell on the left, the top and the diagonal of the intended cell. The distance 

value between these sequences is calculated using Equation 1. The distance values between the sequences are 

stored in the distance matrix. 

 

 

 (1) 

 

 

The second stage is making a guide tree using neighbor-joining algorithm [8]. This algorithm uses 

distance matrix D from pairwise alignment as the input value, where D(i,j) is the distance between 

sequences/nodes i and j. Basically, this algorithm selects nodes i and j  and merges them into new nodes in 

each iteration until leaving a single node [12]. Pairs i and j are selected by minimizing Q(i,j) as in Equation 2. 

While the value of u(l) is obtained according to Equation 3. 

 

 (2) 

 

 

 (3) 
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Notation r is the number of remaining nodes. The matrix will be updated by deleting the i-th row 

and the j-th column when the minimum Q(i,j) is found. New rows and columns are added to the matrix. The 

distance between the new node a and the remaining node k is described in Equation 4. 

 

 (4) 

 

 

2.2. Decomposition 

At this stage, the identification results are decomposed and designed for implementation scenarios. 

Decomposition of parallel components is done by analyzing the potential of parallel whether it can be 

directly paralleled or require special techniques. Decomposition results are used to select the programming 

model for designing the implementation scenario. 

Parallel programming model used is message passing, shared memory and hybrid. In message 

passing a computation consists of one or more processes that communicate with each other by sending and 

receiving messages [8]. Implementation of message passing is done on distributed memory system using 

Message Passing Interface (MPI). In the shared memory model, all processes share the same memory 

because it is done on one computer. Implementation of shared memory is done using Open Multi-Processing 

(OpenMP). The hybrid model combines the programming and implementation models of message passing 

and shared memory. 

 

2.3. Implementation 

The result of sequential pairwise alignment algorithm is verified using EMBOSS Needle from EBI 

UK and Global Alignment-BLAST from NCBI US. Both of them use Needleman-Wunsch algorithm. 

Verification is done twice using DNA sequences. The first verification uses Ancylostoma duodenale 

mitochondrion (NC_003415.1) and Necator americanus mitochondrion (NC_003416.2). The second 

verification uses Human Papillomavirus type 132 (NC_014955.1) and Human papillomavirus type 134 

(NC_014956.1). The metric used to compare this algorithm is a similarity. The similarity is the percentage of 

the number of matching characters compared to the length of the alignment formed. 

 The result of the neighbor-joining algorithm is verified using NJ software from UQAM Canada and 

the guide tree of ClustalW software from DDBJ Japan. ClustalW is visualized using DrawTree from 

Phylogeny.fr France. Both of them use neighbor-joining algorithm. This Verification uses the same of data 

sequences in pairwise alignment verification. Verification is done using visualization data from neighbor-

joining software output. 

At this stage, the scenario is implemented in the computer cluster testing environment. In each 

scenario, both algorithms are run using a variation of 4 processors, 8 processors and 20 processors. As the 

input data are used randomly generated DNA sequences with an average sequence length of 600 bp. Each 

scenario runs on a variety of sequences of 20, 60, 180 and 540 pieces of DNA sequences. Testing is done as 

much as 10 repetitions for each scenario, variations of multiple cores are used, and variations in many 

sequences. 

 

2.4. Performance Evaluation  

The last stage is to compare the performance of parallel programs for each scenario. Performance 

comparison is done using speed up. speed up is the ratio of execution time to solve the problem in sequential 

to execution time to solve the same problem in parallel. A performance comparison is used to select the best 

parallel scenario. The pairwise alignment, neighbor-joining and combined algorithm are retested with three 

variations of sequence length and the number of sequences named LongSmall, AvgMedium, and ShortLarge 

as shown in Table 1. 

 

 

Table 1. The Variation of Sequence Length and Number of Sequences 

 

 

 

 

 

 

 

 

 

Attribute LongSmall AvgMedium ShortLarge 

Sequence Length 1400 350 90 

Number of 

Sequences 
100 300 700 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Parallelization of Pairwise Alignment and Neighbor-Joining Algorithm… (Agung Widyo Utomo) 

237 

2.5. Testing Environment  

This research used a computer cluster consisting of one unit 8 cores, two units 4 cores and two units 

of 20 cores. The node that uses 8 cores is the head node. Each node uses an Intel® Xeon® CPU E5-2680 

(2.70 GHz) processor with 32 GB RAM running on the  Linux Ubuntu 14.04 LTS operating system. The 

speed of data transfer between nodes up to 10 Gb/s. The software used is OpenMPI 1.8.3 and GCC 4.8.2 

compiler which supports OpenMP 3.1. 

 

 

3. RESULTS AND ANALYSIS 

3.1.   Identification 

3.1.1 Pairwise Alignment 

Pseudocode of pairwise alignment ClustalW can be seen in Figure 2. 

 

 

 
 

Figure 2. Pseudocode of pairwise alignment algorithm 

 

 

The clustalW-pairwiseAlignment() function is an independent function used to set sequence 

combinations in pairwiseAlignment() function. The pairwiseAlignment() function returns the value of the 

distance between sequences such as Equation 1 that will be stored in the distance matrix. This function has 

data dependencies in scoring matrix computation (line number 7 to 12 in Figure 2) required cell data on the 

left, top and diagonal so when paralleled need the special technique to avoid a race condition. A race 

condition is a condition where two or more processes access shared memory at the same time, so the final 

result depends on the last executing process. This makes algorithms that have data dependencies more likely 

to be risky to parallelize. 

 

3.1.2 Neighbor-Joining  

Pseudocode of neighbor-joining can be seen in Figure 3. The neighbor-joining algorithm uses the 

distance matrix of pairwise alignment as the input value. The identification result of the pseudocode is known 

that the neighbor-joining algorithm has many loop constructs that have data dependencies. In Figure 3 line 

number 3 to 8 (representing Equation 3), the sum variable adds one cell line in the distance matrix and 

divides it by the remaining node to get the value of u on the i-th row. The processors will be simultaneously 

summing in parallel, so that the result is the last one summing up (being race condition). 

Race conditions will also occur if the line number 9 to 15 and line number 17 to 22  are parallelized. 

This is because the processors search the minimum value in parallel so that resulting local minimum. Only 

the line number 25 and 26 (representing Equation 4) is the only independent parts of this algorithm. 

However, because the loop construction uses only one dimension, then the effect is not significant if 

compared to the previous parts. 
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Figure 3. Pseudocode of neighbor-joining algorithm 

 

 

3.2.    Decomposition 

3.2.1.  Pairwise Alignment 

The result of identification indicates that clustalW-pairwiseAlignment() function can be parallelized 

without any problem because it has no data dependencies. Then in pairwiseAlignment() function needs a 

special technique to parallelize because it has data dependencies. Based on these two things will be made five 

implementation scenarios. The five scenarios are named pureMPI, pureOpenMP, ompInner, mpiOmpInner, 

and mpiOmpOuter. 

The pureMPI scenario divides the outer loop task in the clustalW-pairwiseAlignment() function 

using MPI. Each task will be sent to a different processor by MPI, so the pairwiseAlignment() function for 

each pair combination can run in parallel. Data partitioning is done by dividing the number of sequences by 

the number of processors. The data have been divided is processed by each processor within each node, so 

that required inter-node communication. 

The pureOpenMP scenario divides the outer loop task in the clustalW-pairwiseAlignment() function 

using OpenMP so that each pairwiseAlignment() function for each pair combination is executed parallel by 

the threads within a node. Partition data is done by dividing the number of sequences by the number of 

threads used. 

The ompInner scenario parallels directly on the pairwiseAlignment() function using the shared 

memory programming model. The risk of data dependency is addressed by synchronizing [7]. The 

synchronization is done in the form of checking the cells required in the calculation. If the required cell value 

is available, then the thread can continue its work. But if the required cell is not available, then the thread will 

wait until that value is available. This data dependency causes this scenario to be slower than the previous 

independent scenario. The data partition used in this study uses a row-wise scheme which is one of the best 

schemes in implementing pairwise-Alignment() using OpenMP. 

The mpiOmpInner hybrid scenario combines the pureMPI scenario with the ompInner scenario. The 

outer loop task in the clustalW-pairwiseAlignment() function is divided into the processor using MPI, then 

each processor performs the pairwiseAlignment() function that has been paralleled using OpenMP as the 

ompInner scenario. 

The last scenario is mpiOmpOuter. It is a hybrid scenario that focuses on the outer loop of the 

clustalW-pairwiseAlignment() function. This scenario divides the number of sequences by the number of 

processors and distributes them to the compute node using MPI. The resulting partition data is further 
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subdivided by OpenMP into multiple threads. The end result is sent back into one to the head node using 

MPI. 

 

3.2.2.  Neighbor-Joining  
The identification result obtained two parts algorithm which has a race condition problem and one 

independent part. Both parts can be handled with a parallel reduction that divides parallel processing into 

several steps resulting in a global solution. Implementation of parallel reduction can be done using OpenMP 

on the shared memory system. The selection of OpenMP as a neighbor-joining algorithm implementation is 

based on two things. First, the parallel reduction is more suitable for shared memory systems, and OpenMP 

has a parallel reduction feature that is easy to implement compared to MPI. Second, the structure of the 

neighbor-joining algorithm consists of many loop constructs which are the computational load of an 

algorithm. OpenMP is designed to parallelize loop construction without thinking about communication issues 

as MPI. 

 

3.3. Implementation 

3.3.1 Pairwise Alignment 

Comparison of similarity values on the sequential pairwise alignment with both verification 

software can be seen in Table 2. Similarity of pairwise alignment obtained from both verification is not much 

different from EMBOSS Needle [14] and Global Alignment BLAST [15]. It shows the sequential pairwise 

alignment algorithm in this study has successfully verified with other software. 

 

 

Table 2. Comparison of Similarity Values 

Verification 

number 

Pairwise 

Alignment 

EMBOSS 

Needle 

Global 

Alignment 
BLAST 

1 83.7% 83.1% 82.7% 

2 62.9% 56.8% 59.8% 

 

 

Implementation of the five scenarios is done on 4, 8 and 20 processors. Each scenario has different 

configurations to use these three variations. The pureMPI scenario using 2 nodes × 2 processors, 2 nodes × 4 

processors and 2 nodes × 10 processors for configuration. The pureOpenMP and ompInner scenarios use 4 

threads on 4 cores node and eight threads on 8 cores node, 20 threads on 20 cores node. The mpiOmpInner 

and mpiOmpOuter scenarios use 2 nodes × 1 processor × 2 threads, 2 nodes × 2 processors × 2  threads and 2 

nodes × 5 processors × 2 threads for configuration. 

 

3.3.2. Neighbor-Joining  

In this verification of neighbor-joining, Ancylostoma duodenale mitochondrion (NC_003415.1) is 

symbolized as seq1, Necator americanus mitochondrion (NC_003416.2) is symbolized as seq2, Human 

papillomavirus type 132 (NC_014955.1) is symbolized as seq3 and Human papillomavirus type 134 

(NC_014956.1) is symbolized as seq4. Visualization tree from the calculation of neighbor-joining algorithm 

in this study can be seen in Figure 4. Visualization treefrom NJ software from UQAM Canada can be seen in 

Figure 5. Visualization tree from ClustalW from DDBJ Japan using DrawTree from Pyhlogeny.fr France can 

be seen in Figure 6. 

 

 

 
 

Figure 4. Visualization tree from neighbor-joining in this study 
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Figure 5. Visualization tree from NJ Software 

 

 

 
 

Figure 6. Visualization tree from ClustalW using DrawTree 

 

 

From the three images can be seen that the visualization of the tree in different programs has the 

same shape. In addition to the tree shape, the position of seq1 with seq2 and seq3 with seq4 are in the same 

location. In Figure 4 and 5, it is known that node number five represents the new node from the merging of 

node seq1 and node seq2. These three points show the sequential neighbor-joining algorithm in this study has 

successfully verified with other software. Implementation of neighbor-joining is only done using OpenMP on 

the shared memory system. Implementation is done using 4 threads on 4 cores computer node and 8 threads 

on eight cores computer node and 20 threads on 20 cores computer nodes. 

 

3.4. Performance Evaluation 

3.4.1 Pairwise Alignment 

At this stage, the five pairwise alignment implementation scenarios will be compared using the 

parallel program performance metrics to find the best scenarios. The implementation of parallel pairwise 

alignment algorithms has three dimensions of implementation variation:  scenarios, number of sequences and 

number of processors. For ease of comparison, one variable will be chosen one variation so that the 

comparison becomes two dimensions. 

In the use of 20 processor data as shown in Figure 7, it can be seen that the ompInner and mpiOmpInner 

scenarios can not complete the work when using 540 sequences. This is because both scenarios parallelize a 

part that has data dependency and it requires a lot of synchronization that overloads the operating system.  

In Figure 7 is also known that the pureOpenMP scenario has a much better speed up improvement than the 

other four scenarios. Based on that consideration, the pureOpenMP scenario is chosen as the best scenario. 

 

 

 
 

Figure 7. Comparison of speed up in parallel pairwise alignment using 20 cores computer 
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3.4.2. Neighbor-Joining  

The result of the parallel neighbor-joining algorithm implementation can be seen in Figure 8. 

Improvement of speed up occurs when using 180 sequences. This happens because the load on each thread is 

too small in the number of sequences 20 and 60. The computation time becomes longer than the sequential 

implementation due to the cost of synchronization between threads in parallel reduction. 

 

3.4.3. The Combined Algorithm 

The pairwise alignment, neighbor-joining, and the combined algorithm of both tested using varying 

data to determine the characteristics and robustness of the algorithm. Figure 9 shows the comparison of speed 

up on three algorithms using LongSmall, AvgMedium and ShortLarge data. The graph shows that the 

combined algorithm is strongly influenced by the algorithm pairwise alignment with the speed up reaching 

12 times. This is because the pairwise alignment algorithm has a larger portion of computation time 

compared to neighbor-joining. This does not mean that parallel neighbor-joining algorithm do not contribute 

to the combined algorithm. If the combined algorithm uses sequential neighbor-joining, then the speed up on 

the variation of ShortLarge will decrease to 4.7 times. Improvement of speed up in the neighbor-joining 

algorithm is achieved when the number of sequences is large. This contributes to keep robustness of the 

combined algorithm on a large number of sequences. 

 

 

 
 

Figure 8.  Comparison of speed up in parallel neighbor-joining 

 

 

 
 

Figure 9. Comparison of speed up in pairwise alignment, neighbor-joining, and combined algorithm using 

variation of data 

 

 

4. CONCLUSIONS 

In this research, the best scenario is using a shared memory programming model with OpenMP 

implementation to parallelize the pairwise alignment and neighbor-joining algorithms. The combined 

algorithm using this scenario obtained speed-up up to 12 times on 20 computer cores. The combined 

algorithm proved robust in the variation of DNA sequences. 
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