
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 7, No. 2, August 2017, pp. 551 ~ 566
DOI: 10.11591/ijeecs.v7.i2.pp551-566 551

Received May 22, 2017; Revised July 5, 2017; Accepted July 23, 2017

XMapDB-Sim: Performance Evalaution on Model-Based
XML to Relational Database Mapping Choices

Haw Su-Cheng
Faculty of Computing and Informatics, Multimedia University, Malaysia

Corresponding author, e-mail: sucheng@mmu.edu.my, schaw@mmu.edu.my

Abstract
XML has emerged as the standard for information representation over the Internet. However,

most enterprises today have long secured the use of relational databases. Thus, it is crucial to map XML
data into relational data to provide seamless integration between these database infrastructures. Many

mapping techniques have been proposed, yet, none has provides a unified view on these techniques.
Ultimately, understanding how these techniques work is important especially if one needs to decide which
technique to adopt in their organization. This paper (i) reviews on some existing model -based mapping
schemes focusing on how the mapping technique works, the advantages and the disadvantages, (ii)
present the simulation engine to evaluate the performance of selected mapping schemes, (iii) highlight the
future direction of the related area.

Keywords: XML-to-relational database, Data integration, Mapping scheme, Relational database

Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

XML is the abbreviation for eXtensible Markup Language, a formal recommendation

from the World Wide Web Consortium (W3C), which act as the standard for data presentation
and exchange over the World Wide Web (WWW). It is extensible in nature, with great support
for dynamic updates on the Create, Retrieve, Update and Delete (CRUD) operations of

database [1-3]. Nevertheless, most organizations are still using relational database (RDB) as
the storage. Yet, RDB is unable to cope with the high and fast pace demands of electronic
business due to its independent data processing. As such, it is important to have effective

mapping method to store and retrieve XML via RDB. Ultimately, the most challenging issue on
this is to resolve the conflict between hierarchical structure of XML and the flat structure of RDB.

There exist various mapping approaches to efficiently map XML into RDB, which can be

broadly classified into structural-based mapping (schema-based mapping) and model-based
mapping (schema-less mapping). In structural-based mapping [4, 5], the XML is shredded into
RDB based on the schema defined in either Document Type Definition (DTD) or XML schema

(XSD). Intrinsically, this will result in additional complexity especially when managing different
types of XML documents [6, 7]. On the other hand, the model mapping approaches are mapped
to some fixed relational schemas based on the XML document itself. In this case, usually a fixed

RDB scheme is employed.
The focus of this paper is on the model-based mapping approach since it supports the

wider range of web applications, as most applications does not usually comes together with any

DTD nor XML schema. Generally, the model-based mapping scheme can be further classified
into path-based and node-based approaches. The mapping based on path expression is
composed based on the idea to store the path for every node visited in one or more tables. In

contrast, a node-based approach is constructed based on some annotation on the nodes to
identify the position of the nodes relatively to the root of the tree.

The rest of the paper is organized as follows. Section 2 provides detailed review on

three selected state-of-art model-based mapping approaches, focusing especially on how the
approach works based on a running example. Section 3 proposes the architecture of simulation
engine named XMapDB-Sim to measure the performance of the selected approaches. Section 4

presents the experimental results and analysis on the findings. Lastly, Section 5 summarizes
the paper and points out the future direction on possible research in this area.

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 2, August 2017 : 551 – 566

552

2. Literature Review

Many mapping schemes have been proposed to resolve the conflict issues on
transforming XML into RDB technologies [8-12]. Nevertheless, there is an absence of review to
provide a unified view on these approaches to enable practitioner or organization to choose

which approaches that suited them most. In view of this, this paper reviews some selected
recent mapping schemes based on a running example. Figure 1 shows the illustration sample of
XML which will be used throughout the paper. We will elaborate in detail how each scheme

works based on the same example.

Figure 1. XML illustrative example

2.1. SMX/R Approach

SMX/R uses path-based labeling technique to track node to node [13]. The document is

parsed using both Simple API for XML (SAX) and Document Object Model (DOM) parser. The
SAX Parser is used to track start (symbol „<‟) and end (symbol „>‟) elements to assign the label
based on sequence of appearance as illustrated in Figure 2, while DOM parser is used to track

the path of the node and element value.

Figure 2. Partial XML document labelled with start and end element

SMX/R store data into two tables, which are path table and path index table. Table 1

depicts the Path_Index_Table, which consists of Document id (DocId), Path id (PID), Start

Position (StartPos), End Position (EndPos), Node level (NodeLVL), Node type (NodeType) and
Node value (NodeValue).

IJEECS ISSN: 2502-4752

XMapDB-Sim: Performance Evalaution on Model-Based XML to RDB… (Haw Su-Cheng)

553

Table 1. Partial view of Path_Index_Table
DocId PID StartPos EndPos NodeLVL NodeType NodeValue

1 1 1 26 1 Element

1 2 2 18 2 Element
1 3 2 18 3 Attribute 1140
1 4 4 5 3 Element Amirah
1 5 6 17 3 Element

On the other hand, Table 2 depicts the Path_Table, which consists of PID (id of the

path), Path (path value from root to the current element) and node name (the name of current

node). The content of the tables were generated based on Algorithm 1.

Table 2. Partial view of Path_Table
PID Path Node Name

1 University university
2 University.student Student
3 University.student.@id=1140 @id=1140
4 University.student.name Name

5 University.student.enrollment enrollment
6 University.student.enrollment.intake Intake

SMX/R approach begins by reading the XML document, and assign a unique ID in line
3 (see Algorithm 1). The path of a node is first being identified if it exists in Path_Index_Table
(line 4). If the path exists in the Path_Index_Table, the path is identify in line 6 via PID and

associate with the particular node. If the does not exist yet, new PID will be created and new
entry will be inserted into Path_Index_Table. The process recursively repeated until it reaches
the end of the document.

The authors have also conducted a comparison study between SMX/R with XRel [14].

XRel require more JOINs to retrieve the two set of test queries, while no join is required in

SMX/R approach. This is due to the reason that the SMX/R has less number of tables and
tuples in the tables compare to XRel.

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 2, August 2017 : 551 – 566

554

2.2. XRecursive Approach

Fakharaldien et al. [15] proposed XRecursive, a model-based approach that store XML
documents into RDB. XRecursive accept both fixed schema and non-fixed schema document.
This approach identifies each path recursively by its parent id; hence, it does not need to store

the path value or path structure.
Table 3 represents the Tag_structure, which consists of TagName (the name of the

node), Id of the respective node (which is also the primary key), and pId (the parent id of the

node). Since the root node does not have any parent id, the id of the root node and parent id of
the root node are the same.

Table 3. Partial view of Tag_structure

TagName Id pId

university 1 1
student 2 1

Id 3 2
name 4 2
enrolment 5 2

Table 4 depicts the partial view of Tag_value, where by TagId is the foreign key which
match the value Id in Table 3, value column represents the value of respective node, type
column consists of two possible values, that is either „Attribute‟ or „Element‟.

Table 4. Partial view of Tag_value
TagId Value Type

3 1140 Attribute
4 Amirah Element

6 October 2016 Element
8 FCI Element
9 Computer Science Element

XRecursive decompose tree structure into nodes and all information of nodes are

stored in RDB according to the node types in recursive manner as depicted in Algorithm 2. In

order to allow addition of multiple XML file in the storage, XRecursive add document name in
association with the id. Each and every element will have a unique id to represent it and there
will also have a parent node associated with it. Yet, XRecursive does not store the path value

because it will be determined by the parent id. In line 3 and 4, empty set tag_structure and
tag_value are built to represent list of node and value. To begin the insertion of node into list, in
line 10, it reads the element type. In line 11 to 16, the name, id and Pid are added into the list

with condition if the element type is either element or attribute. Next, the id will be increased by
1. From line 17 to 22, if the element type of node is value, the id will be incremented by 1 and
thus, the name, value and id are added into tag_value. Each list is stored into database in line

23 to 24.
The authors did experimental evaluation on comparing the storing method via SAX

parser and DOM parser. From the result, SAX parser parsed XML document faster and uses

less memory than DOM.

IJEECS ISSN: 2502-4752

XMapDB-Sim: Performance Evalaution on Model-Based XML to RDB… (Haw Su-Cheng)

555

2.3. Approach Proposed by Suri and Sharma (SS Approach)

Suri and Sharma proposed a path-based approach, hereinafter abbreviated as SS

approach [16], by firstly decompose the XML document into tree, and subsequently, map each
node in the tree to RDB. Unlike the previous mapping scheme such as SMX/R [13], XRel [14]
and XPEV [17] which store data based on path concept, this proposed mapping choice maintain

parent and child relationship between elements, thus, avoids the needs to store the path
information.

The two tables that needed to store XML document are Node table (Node id, Node

name) and Data table (Doc id, Node id, Parent id, Node value, Node type, Node pos). Node
table (see Table 5) stores all node id‟s with their respective names, whereby NodeID is the
unique id assigned to each node of the XML document, while NodeName represents the name

of the node.

Table 5. Partial content of Node table
NodeId NodeName

1 university
2 student
3 Id
4 name

5 enrolment
6 intake

Data table stores values of each node. The DocId represent the id of the particular XML
document, NodeID is the unique id assigned to each node of the XML document, Parent id is
the id of parent node of a node, NodeValue represents the value of the node, NodeType is used

to indicate type of each node (which is either element, attribute, or text), and NodePos is the
position of the node among its siblings in the XML data tree.

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 2, August 2017 : 551 – 566

556

Table 6. Partial content of Data table
DocId NodeId ParentId NodeValue NodeType NodePos

10 1 Null Null Element 1

10 2 1 Null Element 1,1
10 3 2 1140 Attribute 1,1,1
10 4 2 Amirah Element 1,1,2
10 5 2 Null Element 1,1,3

10 6 5 October 2016 Element 1,1,3,1
10 7 6 Null Element 1,1,3,2
10 8 7 FCI Element 1,1,3,2,1

The content of both tables are generated through Algorithm 3. This approach firstly
assigns a unique identifier to each node, identifies the root element of the document and then
stores the corresponding node values along with each node id in relational table. The tree is

traversed based on depth first traversal manner. There are three main cases to be take note as
follows:
1. If node is an element (Line 12)

2. If the node is an attribute (Line 13)
3. The element node has a text value (Line 14)

For case 1 in line 12, if the node is an element, the node type will be store as “element”.

Meanwhile for case 2, if the node is an attribute, the node type will appear as “attribute” in line
13. For case 3, in line 14, if the element node has a text value, the node type will appear as
“text”. Each node, regardless of the type, node id and node name are stored into the Node

table.
They have conducted the performance evaluation of their proposed approach as

compared to XRel [14] and XPEV [17]. In the evaluation test, the proposed algorithm uses the

least database size among the three mapping schemes.

2.4. Other More Recent Approaches

Ying et al. [18] proposed a hybrid approach combining path-based approach with node-
based to transform the XML documents to a RDB scheme. In their approach, the Path table is
utilized to store each distinct path expression of the leaf node, while the InnerNode (internal

node) is annotated with labeling scheme to maintain only the unique absolute path expression.
This further decreases the storage space, and ultimately faster retrieval is possible based on the
basis of the relationship maintained by the labels of inner nodes.

Bousalem & Cherti [7] proposed XMap to store and retrieve XML in relational database.
In their approach, the XML is shredded into three tables, namely Data Table (stores value of the
node), Vertex Table (stores node information) and Path Table (stores path information). In the

Data Table, OrdPath [19] is employed as the labeling scheme to avoid re-generating the content
whenever dynamic updates happen, and thus, achieves lower storage consumption. Though no
experimental evaluation has been carried out, they proved by complexity analysis that their

proposed algorithm is linear.
XAncestor [6] is a path-based labeling technique to create mapping on only distinct

ancestor paths (ignoring the inner nodes to reduce the storage space), for all leaf nodes of the

XML tree into its RDB. It consists of two main algorithms namely (i) XtoDB and (ii) XtoSQL.
XtoDB maps XML documents to a fixed RDB using a DOM parser to decompose the XML
document into a predefined RDB scheme: the Ancestor_Path (Ances_PathID, Ances_PathExp)

table and a Leaf_Node (Node_Name, Ancest_PathID, Ances_Pos, Node_Value) table. XtoSQL
translates XPath queries into corresponding SQL queries based on the Ancestor_Path and
Leaf_Node tables, in order to achieve a shorter response time. XAncestor is evaluated with five

other related approaches in terms of the RDB storage space and query response time. From
their evaluation, XAncestor outperformed XRel [14], SMX/R [13], XRecursive [15], s -XML [20],
and approach proposed by Ying et al. [18], in terms of RDB storage space, and query response

time for various types of queries.
In a more recent work, Zhu et al. [21] proposed mini-XML, a path-based model mapping

approach to identify the path among the non-leaf nodes. As the result, two tables namely

PathTable and LeafTable are created to store the nodes. In constructing the tables, the position
information annotated with their proposed labeling scheme of (Level, [P-pathID, S-order]),
where Level is the depth of the current leaf node in the tree, P-pathId is the path of the direct

IJEECS ISSN: 2502-4752

XMapDB-Sim: Performance Evalaution on Model-Based XML to RDB… (Haw Su-Cheng)

557

parent node, and S-order is the position number of the current leaf node in direct node. This

serves as the crucial identification on the complex node relationship. They have experimentally
demonstrated that their approach is better than s-XML [20] in terms of storage space and
storage time. Nevertheless, there is no evaluation being carried out on the query retrieval yet.

Table 7 shows the comparison of the three selected mapping schemes reviewed earlier.

All these approaches use only two tables in RDB to store data. SS and XRecursive approaches

use node labeling technique while SMX/R approach uses path-node labeling. Nevertheless, the
efficiency on these approaches is determined based on how the translation of XPath query into
SQL statement based on their respective relational scheme [6]. In doing so, some factors such

as number of join operations required, number of columns accessed, number of tuples involved,
and the ease to determine the structural relationships (such as Parent -Child (P-C), Ancestor-
Descendant (A-D), Level, and Sibling relationships) among nodes, will have effect on the

performance.

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 2, August 2017 : 551 – 566

558

Table 7. Comparison of three chosen mapping choices
Approach SMX/R XRecursive SS

Number of tables tw o tables tw o tables tw o tables

Mapping technique Path-based labeling Node-based labeling Node-based labeling
Labeling method Depth f irst traversal Depth f irst traversal Depth f irst traversal w ith

node position information
Advantages Accurate retrieval of

element.

Fast extraction time.

Less join operation.

Less storage space.
Disadvantages Take times to store and

retrieve data as it uses 2
parser- SAX and DOM.

Nested query is needed for all
retrieval, w hich may slow dow n
the performance.

High query processing time
for large document.

From the review, most researchers only compared their approach with other

approaches that are based on their own selection. In the absent of this, we propose XMapDB-

Sim to perform the evaluation to test the performance of the selected mapping approaches on
various sizes of datasets, especially large size.

3. XMAPDB-SIM: The Mapping Performance Evaluation Engine

Figure 3 depicts the flow of XMapDB-Sim, which consists of two main components, the

(i) Data Mapping, and (ii) Query Execution. Firstly, the XML document will be loaded and read
by document builder factory, and subsequently parsed into tree data model by the parser. Next,
the XML trees will be converted into RDB using one of the three selected mapping algorithms.

The storing time is then recorded. Successively, the query can be retrieve and the response
time will be record and display in simulation engine. Figure 4 depicts the interface of XMapDB-
Sim main screen.

Figure 3. The flow of XMapDB-Sim evaluation

Data Mapping Component

Query Execution Component

IJEECS ISSN: 2502-4752

XMapDB-Sim: Performance Evalaution on Model-Based XML to RDB… (Haw Su-Cheng)

559

Figure 4. Main screen for the dataset and query selection

4. Performance Evaluation: Results and Discussion
Figure 3 depicts the flow of XMapDB-Sim, which consists of two main components, the

(i) Data Mapping, and (ii) Query Execution. Firstly, the XML document will be loaded and read

by document builder factory, and subsequently parsed into tree data model by the parser. Next,
the XML trees will be converted into RDB using one of the three selected mapping algorithms.
The storing time is then recorded. Successively, the query can be retrieve and the response

time will be record and display in simulation engine. Figure 4 depicts the interface of XMapDB-
Sim main screen.

4.1. Experimental Setup
XMapDB-Sim has been built to calculate response time of storing and retrieving of data

by two different sizes of XML document: yahoo (small - 25KB), and protein (large - 0.7GB),

which were obtained from University of Washington repository [22]. The characteristic of the
dataset is depicted in Table 8. The evaluation test are perform on Intel i7-3630QM processor
with 16 GB RAM running on Windows 8 64 bits machine.

Table 8. Selected Dataset for Experimental Evaluation
Dataset File (MB) Characteristic Description

Yahoo 0.024 Max. tree level: 5, structured

Protein 700 Max. tree level: 5, unstructured and recursive data

4.2. Experimental Results and Discussion

Table 9 shows storing time for the three approaches on the two datasets. The storing

time is captured by taking the average of three consecutive running times. From the result, we
observed that among the approaches, XRecursive stores data the fastest while SMX/R
approach is the least efficient in data storing. All of these approaches apply DOM parser in

parsing XML document; as such, the heap size needs to be increase to load PSD7003. For
more consistent and accurate results, unused programs and connection have been shut off

Selections of XML file

that need to be store.

Information of

storing time

Query Selection

Return information of

query processing

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 2, August 2017 : 551 – 566

560

during this process. All three approaches takes a large amount of time on PSD7003; this can

conclude the statement that DOM parser works best on small size dataset but not suitable for
large size dataset.

Table 9. Data Storing Time

Approach Yahoo PSD7003

XRecursive 313 ms 2 hr 21 min
SS 344 ms 3 hr 41 min

SMX/R 422 ms 6 hr 20 min

In evaluating the retrieval, six queries are prepared in the function buttons (see Figure

4) in the evaluation screen. Through clicking on the respective query button, the simulation

engine process-es the query from the relational database. The time taken for retrieval is
recorded and repeated for three times. Then, the average time based on the three consecutive
runs is calculated; usually the first run result is discarded to ensure that the cache memory does

not contain any unnecessary data that can affect the response time. In addition, the total
number of rows returned from each query is recorded to check for the correctness.
The performance evaluations for Yahoo dataset to test on six queries are not resulting into

much different values since the dataset size and the returned result are small.

4.2.1. Retrieval Evaluation on Yahoo Dataset

Table 10 depicts the six queries description and the corresponding query node. Q1 to
Q3 are path queries (simple queries with P-C, A-D and mixed) while Q4 to Q6 are twig queries
(complex or branching queries with P-C, A-D and mixed).

Table 10. Query Description on Yahoo Dataset
Query

No.

Query Pattern Query Description XPath Expression

Q1 Path query w ith P-C
relationship

List the highest_bid_amount for
bid_history under listing.

root/listing/bid_history/highest_bid
_amount

Q2 Path query w ith A-D
relationship

List listing w ith any memory node root/listing//memory

Q3 Path query w ith both
P-C and A-D
relationship

List out all the high_bidder w ith its
respective immediate node
bidder_rating

root//high_bidder/bidder_rating

Q4 Tw ig query w ith P-C

relationship

List bid_history and item_info w ith

their respective immediate node
highest_bid_amount and item_info
w ith memory

root/listing[/bid_history/highest_bid

_amount]/item_info/memory

Q5 Tw ig query w ith A-D
relationship

List highest_bid_amount and
current_bid.

root[//highest_bid_amount]//curren
t_bid

Q6 Tw ig query w ith both
P-C and A-D

relationship

List out high_bidder and
seller_name w here high_bidder

contains immediate node
bidder_rating and bidder_name.

root/listing[//high_bidder[/bidder_ra
ting]/bidder_name]//seller_name

After the mapping process, the XML data were shredded and stored into relational

table. As such, query retrieval will be performed using SQL command. Table 11 illustrates the
SQL commands on various approaches. Even though these queries were retrieved from two
tables (since these three approaches store the shredded data into at most two tables), yet, the

attributes in each table are different. Henceforth, the time to retrieve these queries varies.

IJEECS ISSN: 2502-4752

XMapDB-Sim: Performance Evalaution on Model-Based XML to RDB… (Haw Su-Cheng)

561

Table 11. Comparison on various approaches for query retrieval on Yahoo dataset
Query SMX/R XRecursive SS Returned

Result

Q1 SELECT a.value FROM
[fyp].[dbo].[pathIndexTable_ya
hoo] a,
[fyp].[dbo].[pathTable_yahoo]

b WHERE b.nodeName =
'highest_bid_amount' and a.id
= b.id

SELECT b.value FROM
[fyp].[dbo].[tag_structure_ya
hoo] a,
[fyp].[dbo].[tag_value_yahoo

] b WHERE a.tagName=
'highest_bid_amount' and
a.id = b.id

SELECT a.value FROM
[fyp].[dbo].[data_yahoo] a,
[fyp].[dbo].[node_yahoo] b
WHERE a.pid = 'bid_history'

and a.id = b.id and b.name =
'highest_bid_amount‟

11

Q2 SELECT a.value FROM

[fyp].[dbo].[pathIndexTable_ya
hoo] a,
[fyp].[dbo].[pathTable_yahoo]

b WHERE b.path LIKE
'%item_info%' and
b.nodeName = 'memory' and
a.id=b.id

SELECT b.value FROM

[fyp].[dbo].[tag_structure_ya
hoo] a,
[fyp].[dbo].[tag_value_yahoo

] b WHERE a.tagName=
'memory' and a.id = b.id and
a.pid='item_info'

SELECT a.value FROM

[fyp].[dbo].[data_yahoo] a,
[fyp].[dbo].[node_yahoo] b
WHERE a.pos LIKE

'%item_info%' and b.name =
'memory' and a.id=b.id

11

Q3 SELECT a.value FROM
[fyp].[dbo].[pathIndexTable_ya
hoo] a,
[fyp].[dbo].[pathTable_yahoo]

b WHERE b.path LIKE
'%high_bidder%'and a.id=b.id
and b.nodeName =
'bidder_rating'

SELECT b.value FROM
[fyp].[dbo].[tag_structure_ya
hoo] a,
[fyp].[dbo].[tag_value_yahoo

] b WHERE a.tagName=
'bidder_rating' and a.id = b.id
and a.pid= 'high_bidder'

SELECT a.value FROM
[fyp].[dbo].[data_yahoo] a,
[fyp].[dbo].[node_yahoo] b
WHERE a.pos LIKE

'%high_bidder%' and a.pid =
'high_bidder' and a.id=b.id and
b.name = 'bidder_rating'

11

Q4 SELECT a.value FROM
[fyp].[dbo].[pathIndexTable_ya
hoo] a,

[fyp].[dbo].[pathTable_yahoo]
b WHERE b.nodeName =
'memory' and a.id = b.id
UNION all SELECT a.value

FROM
[fyp].[dbo].[pathIndexTable_ya
hoo] a,
[fyp].[dbo].[pathTable_yahoo]

b WHERE b.path LIKE
'%bid_history%' and
b.nodeName =
'highest_bid_amount' and

a.id=b.id

SELECT b.value FROM
[fyp].[dbo].[tag_structure_ya
hoo] a,

[fyp].[dbo].[tag_value_yahoo
] b WHERE a.tagName=
'highest_bid_amount' and
a.id = b.id UNION all

SELECT b.value FROM
[fyp].[dbo].[tag_structure_ya
hoo] a,
[fyp].[dbo].[tag_value_yahoo

] b WHERE a.tagName=
'memory' and a.id = b.id

SELECT a.value FROM
[fyp].[dbo].[data_yahoo] a,
[fyp].[dbo].[node_yahoo] b

WHERE a.pos LIKE
'%listing%' and b.name =
'highest_bid_amount' and
a.id=b.id UNION all SELECT

a.value FROM
[fyp].[dbo].[data_yahoo] a,
[fyp].[dbo].[node_yahoo] b
WHERE a.pid = 'item_info' and

a.id = b.id and b.name =
'memory'

22

Q5 SELECT a.value FROM
[fyp].[dbo].[pathIndexTable_ya
hoo] a,

[fyp].[dbo].[pathTable_yahoo]
b WHERE b.path LIKE
'%bid_history%' and

b.nodeName =
'highest_bid_amount' and
a.id=b.id UNION all SELECT
a.value FROM

[fyp].[dbo].[pathIndexTable_ya
hoo] a,
[fyp].[dbo].[pathTable_yahoo]
b WHERE b.nodeName =

'current_bid' and b.path LIKE
'%auction_info%' and a.id =
b.id

SELECT b.value FROM
[fyp].[dbo].[tag_structure_ya
hoo] a,

[fyp].[dbo].[tag_value_yahoo
] b WHERE a.tagName=
'highest_bid_amount' and

a.id = b.id UNION all
SELECT b.value FROM
[fyp].[dbo].[tag_structure_ya
hoo] a,

[fyp].[dbo].[tag_value_yahoo
] b WHERE a.tagName=
'current_bid' and a.id = b.id

SELECT a.value FROM
[fyp].[dbo].[data_yahoo] a,
[fyp].[dbo].[node_yahoo] b

WHERE a.pid = 'bid_history'
and b.name =
'highest_bid_amount' and a.id

= b.id UNION ALL SELECT
a.value FROM
[fyp].[dbo].[data_yahoo] a,
[fyp].[dbo].[node_yahoo] b

WHERE a.pos LIKE
'%listing%' and b.name =
'current_bid' and a.id=b.id and
a.pid ='auction_info'

22

Q6 SELECT a.value FROM

[fyp].[dbo].[pathIndexTable_ya
hoo] a,
[fyp].[dbo].[pathTable_yahoo]

b WHERE b.path LIKE
'%listing%' and b.nodeName =
'seller_name' and a.id=b.id
UNION all SELECT a.value

FROM
[fyp].[dbo].[pathIndexTable_ya
hoo] a,
[fyp].[dbo].[pathTable_yahoo]

b WHERE b.nodeName =

SELECT b.value FROM

[fyp].[dbo].[tag_structure_ya
hoo] a,
[fyp].[dbo].[tag_value_yahoo

] b WHERE a.tagName=
'bidder_rating' and a.id = b.id
UNION all SELECT b.value
FROM

[fyp].[dbo].[tag_structure_ya
hoo] a,
[fyp].[dbo].[tag_value_yahoo
] b WHERE a.tagName=

'bidder_name' and a.id = b.id

SELECT a.value FROM

[fyp].[dbo].[data_yahoo] a,
[fyp].[dbo].[node_yahoo] b
WHERE a.pid = 'high_bidder'

and b.name = 'bidder_name'
and a.id = b.id UNION ALL
SELECT a.value FROM
[fyp].[dbo].[data_yahoo] a,

[fyp].[dbo].[node_yahoo] b
WHERE a.pos LIKE
'%listing%' and b.name =
'seller_name' and a.id=b.id

UNION ALL SELECT a.value

33

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 2, August 2017 : 551 – 566

562

Query SMX/R XRecursive SS Returned
Result

'bidder_name' and b.path LIKE

'%high_bidder%' and a.id =
b.id UNION all SELECT
a.value FROM
[fyp].[dbo].[pathIndexTable_ya

hoo] a,
[fyp].[dbo].[pathTable_yahoo]
b WHERE b.nodeName =
'bidder_rating' and b.path LIKE

'%high_bidder%' and a.id =
b.id

UNION all SELECT b.value

FROM
[fyp].[dbo].[tag_structure_ya
hoo] a,
[fyp].[dbo].[tag_value_yahoo

] b WHERE a.tagName=
'seller_name' and a.id = b.id

FROM [fyp].[dbo].[data_yahoo]

a, [fyp].[dbo].[node_yahoo] b
WHERE a.pid = 'high_bidder'
and b.name = 'bidder_rating'
and a.id = b.id

Figure 5 depicts the query retrieval results. Based on the figure, SS has better
performance, while XRecursive and SMX/R are comparable. To ensure correctness of
implementation, we checked and observed that all the approaches returned the same number

of retrieval results.

Figure 5. Query Evaluation on Yahoo dataset

From the result obtained, we notice the following:
1. For cases involving simple queries (Q1 to Q3), the SMX/R approach perform less

good compared to the others.

o This is due to the fact that it requires more time to handle join as it needs to
retrieve the Path ID (PID) in the Path_Index_Table table to match the Path
ID (PID) in the Path_Table. Similarly, the same join is required in

XRecursive approach, yet, the performance is better due to the use of the
attribute ParentID recursively to form nested query.

2. For cases involving complex queries (Q4 to Q6), the SS approach has the best

performance.
o The SS approach has the best performance due to the fact the labeling

scheme on node position is effective to provide quick determination on the

relationship among the nodes.
o The XRecursive approach perform less good compared to SS approach

because it uses the ParentID column recursively to form a nested query,

which resulted into the highest storage space for RDB scheme. This
increases the search space that is required to answer the necessary query.
Subsequently, this will produce unnecessary intermediate results, which

does not participate in the final solution.
3. All approaches has rather similar mapping scheme, i.e., uses two tables for

storage, thus for smaller dataset, result shown would not be significant.

0

10

20

30

40

50

60

70

80

Q1 Q2 Q3 Q4 Q5 Q6

R
e

sp
o

n
se

 T
im

e
 (m

s)

SMX/R

XRecursive

SS

IJEECS ISSN: 2502-4752

XMapDB-Sim: Performance Evalaution on Model-Based XML to RDB… (Haw Su-Cheng)

563

4.2.2. Retrieval Evaluation on Protein Dataset

Table 12 depicts the six queries description and the corresponding query node. Q1 to
Q3 are path queries (simple queries) while Q4 to Q6 are twig queries (complex or branching
queries).

Table 12. Query Description on Protein Dataset
Query

No.

Query Pattern Query Description XPath Expression

Q1 Path query w ith P-C
relationship

List all organism for proteinEntry. ProteinDatabase/ProteinEntry/org
anism

Q2 Path query w ith A-D
relationship

List out all refinfo under
ProteinDatabase

ProteinDatabase//reinfo

Q3 Path query w ith both
P-C and A-D
relationship

List the ProteinEntry w hich consists
of immediate reference node w ith
any citation.

//ProteinEntry/reference//citation

Q4 Tw ig query w ith P-C
relationship

List the ProteinEntry w ith its
respective immediate node header
and reference which consists of

refinfo with its respective immediate
citation node.

//ProteinEntry[/header]/reference/r
efinfo/citation

Q5 Tw ig query w ith A-D
relationship

List out all the information that
consists of accinfo and refinfo with

their respective immediate
accession and volume node.

ProteinDatabase[//accinfo/accessi
on]//refinfo/volume

Q6 Tw ig query w ith both
P-C and A-D

relationship

List out all the information that
consists of accinfo and refinfo with

their respective immediate xrefs and
authors nodes by w hich xrefs has
immediate xref node w ith its
immediate uid and db nodes w hile

authors has immediate author node.

ProteinDatabase[//accinfo/xrefs[/xr
ef/uid]/db]//refinfo/authors/author

Table 13 illustrates the query retrieval using SQL command on various approaches

while Figure 6 depicts the query retrieval results. Based on the figure, XRecursive has the best
performance in all cases. To ensure the correctness of the implemented algorithm, we counted
on the number of returned result. It can be observed that all the approaches returned the same

number of retrieval result.

Table 13. Comparison on various approaches for query retrieval on Protein dataset
Query SMX/R XRecursive SS Returned

Result

Q1 SELECT b.value FROM
[psd].[dbo].[pathTable] a
LEFT JOIN

[psd].[dbo].[pathIndexTable]
b on a.id = b.id w here
a.nodeName = 'organism'
and a.path LIKE

'%ProteinEntry%'

SELECT b.value FROM
[psd].[dbo].[tag_structure] a
LEFT JOIN

[psd].[dbo].[tag_value] b on
a.id = b.id w here a.pid =
'ProteinEntry' and
a.tagName = 'organism'

SELECT b.value FROM
[psd].[dbo].[node] a LEFT
JOIN [psd].[dbo].[data] b on

a.id = b.id w here b.pid =
'ProteinEntry' and a.name =
'organism'

262525

Q2 SELECT b.value FROM
[psd].[dbo].[pathTable] a

LEFT JOIN
[psd].[dbo].[pathIndexTable]
b on a.id = b.id w here

a.nodeName = 'refinfo' and
a.path LIKE '%reference%'

SELECT b.value FROM
[psd].[dbo].[tag_structure] a

LEFT JOIN
[psd].[dbo].[tag_value] b on
a.id = b.id w here a.pid =

'reference' and a.tagName =
'refinfo'

SELECT b.value FROM
[psd].[dbo].[node] a LEFT

JOIN [psd].[dbo].[data] b on
a.id = b.id w here b.pid =
'reference' and a.name =

'refinfo'

314763

Q3 SELECT b.value FROM
[psd].[dbo].[pathTable] a
LEFT JOIN

[psd].[dbo].[pathIndexTable]
b on a.id = b.id w here
a.nodeName = 'citation' and

SELECT b.value FROM
[psd].[dbo].[tag_structure] a
LEFT JOIN

[psd].[dbo].[tag_value] b on
a.id = b.id w here a.pid =
'refinfo' and a.tagName =

SELECT b.value FROM
[psd].[dbo].[node] a LEFT
JOIN [psd].[dbo].[data] b on

a.id = b.id w here b.pid =
'refinfo' and a.name = 'citation'

314763

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 2, August 2017 : 551 – 566

564

Query SMX/R XRecursive SS Returned
Result

a.path LIKE '%refinfo%' 'citation'

Q4 SELECT b.value FROM
[psd].[dbo].[pathTable] a
LEFT JOIN
[psd].[dbo].[pathIndexTable]

b on a.id = b.id w here
a.nodeName = 'citation' and
a.path LIKE '%refinfo%'
UNION ALL SELECT

b.value FROM
[psd].[dbo].[pathTable] a
LEFT JOIN
[psd].[dbo].[pathIndexTable]

b on a.id = b.id w here
a.nodeName = 'header' and
a.path LIKE

'%ProteinEntry%'

SELECT b.value FROM
[psd].[dbo].[tag_structure] a
LEFT JOIN
[psd].[dbo].[tag_value] b on

a.id = b.id w here a.pid =
'refinfo' and a.tagName =
'citation' UNION ALL
SELECT b.value FROM

[psd].[dbo].[tag_structure] a
LEFT JOIN
[psd].[dbo].[tag_value] b on
a.id = b.id w here a.pid =

'ProteinEntry' and
a.tagName = 'header'

SELECT b.value FROM
[psd].[dbo].[node] a LEFT
JOIN [psd].[dbo].[data] b on
a.id = b.id w here b.pid =

'refinfo' and a.name = 'citation'
UNION ALL SELECT b.value
FROM [psd].[dbo].[node] a
LEFT JOIN [psd].[dbo].[data] b

on a.id = b.id w here b.pid =
'ProteinEntry' and a.name =
'header'

577288

Q5 SELECT b.value FROM
[psd].[dbo].[pathTable] a
LEFT JOIN

[psd].[dbo].[pathIndexTable]
b on a.id = b.id w here
a.nodeName = 'accession'
and a.path LIKE '%accinfo%'

UNION ALL SELECT
b.value FROM
[psd].[dbo].[pathTable] a
LEFT JOIN

[psd].[dbo].[pathIndexTable]
b on a.id = b.id w here
a.nodeName = 'volume' and
a.path LIKE '%refinfo%'

SELECT b.value FROM
[psd].[dbo].[tag_structure] a
LEFT JOIN

[psd].[dbo].[tag_value] b on
a.id = b.id w here a.pid =
'accinfo' and a.tagName =
'accession' UNION ALL

SELECT b.value FROM
[psd].[dbo].[tag_structure] a
LEFT JOIN
[psd].[dbo].[tag_value] b on

a.id = b.id w here a.pid =
'refinfo' and a.tagName =
'volume'

SELECT b.value FROM
[psd].[dbo].[node] a LEFT
JOIN [psd].[dbo].[data] b on

a.id = b.id w here b.pid =
'accinfo' and a.name =
'accession' UNION ALL
SELECT b.value FROM

[psd].[dbo].[node] a LEFT
JOIN [psd].[dbo].[data] b on
a.id = b.id w here b.pid =
'refinfo' and a.name = 'volume'

550383

Q6 SELECT a.value FROM
[fyp].[dbo].[pathIndexTable_
yahoo] a,

[fyp].[dbo].[pathTable_yahoo
] b WHERE b.path LIKE
'%listing%' and b.nodeName
= 'seller_name' and a.id=b.id

UNION all SELECT a.value
FROM
[fyp].[dbo].[pathIndexTable_
yahoo] a,

[fyp].[dbo].[pathTable_yahoo
] b WHERE b.nodeName =
'bidder_name' and b.path
LIKE '%high_bidder%' and

a.id = b.id UNION all
SELECT a.value FROM
[fyp].[dbo].[pathIndexTable_

yahoo] a,
[fyp].[dbo].[pathTable_yahoo
] b WHERE b.nodeName =
'bidder_rating' and b.path

LIKE '%high_bidder%' and
a.id = b.id

SELECT b.value FROM
[psd].[dbo].[tag_structure] a
LEFT JOIN

[psd].[dbo].[tag_value] b on
a.id = b.id w here a.pid =
'xref ' and a.tagName = 'uid'
UNION ALL SELECT

b.value FROM
[psd].[dbo].[tag_structure] a
LEFT JOIN
[psd].[dbo].[tag_value] b on

a.id = b.id w here a.pid =
'xref ' and a.tagName = 'db'
UNION ALL SELECT
b.value FROM

[psd].[dbo].[tag_structure] a
LEFT JOIN
[psd].[dbo].[tag_value] b on

a.id = b.id w here a.pid =
'authors' and a.tagName =
'author'

SELECT b.value FROM
[psd].[dbo].[node] a LEFT
JOIN [psd].[dbo].[data] b on

a.id = b.id w here b.pid = 'xref '
and a.name = 'db' UNION ALL
SELECT b.value FROM
[psd].[dbo].[node] a LEFT

JOIN [psd].[dbo].[data] b on
a.id = b.id w here b.pid = 'xref '
and a.name = 'uid' UNION ALL
SELECT b.value FROM

[psd].[dbo].[node] a LEFT
JOIN [psd].[dbo].[data] b on
a.id = b.id w here b.pid =
'authors' and a.name = 'author'

8655551

IJEECS ISSN: 2502-4752

XMapDB-Sim: Performance Evalaution on Model-Based XML to RDB… (Haw Su-Cheng)

565

Figure 6. Query Evaluation on Protein dataset

From the result obtained, in the Protein dataset, we notice the fol lowing:

a. Protein dataset is huge, unstructured and contains recursive nodes. The table structure
of XRecursive facilitates the retrieval for recursive query. It also uses ParentID
recursively to form nested queries in order to maintain the P-C and A-D relationships

inside these queries.
b. The SS approach performance degraded especially on the huge and unstructured

dataset because they store more information (six columns in Data table) in their RDB

scheme. This definitely increases the search space.
The SMX/R approach consumed more storage space than XRecursive and SS, as it

stores distinct path information for every node (root-to any node) of the document and all the

information about elements, attributes and texts in Path and Path_index table.
Although the XRecursive approach used the least storage space due to its simplicity

scheme that contains only two tables, it still stores all the information about inner nodes and the

Type column. On the other hand, SS is good for smaller dataset, but is not scalable for larger
dataset with recursive or nested nodes.

5. Conclusion and Future Works

Using the correct mapping scheme is essential to ensure that the best performance

based on various datasets under various environments. From the paper, one may decide which
approach to adopt depends on the nature of business, i.e., frequent updating, real-time and ad-
hoc retrieval, unstructured data, streaming data and so on. To facilitate XML for full -fledged

support as data exchange over the Web, it is crucial that the mapping scheme is robust enough
to support dynamic updates.

Our future work is to implement more recent approaches such as XAncestor, XMap and

mini-XML into XMapDB-Sim. In addition, we will perform the complexity analysis on these
approaches.

References
[1] JC Chemiavsky and CH Smith. "A Binary String Approach for Updates in Dynamic Ordered XML

Data". IEEE Transactions on Knowledge and Data Engineering . 2010; 22: 602-607.
[2] J Liu and XX Zhang. "Dynamic labeling scheme for XML updates", Knowledge-Based System

Journal. 2016; 106: 135-149. doi: 10.1016/j.knosys.2016.05.039.
[3] GZ Qadah. "Indexing techniques for processing generalized XML documents". Computer Standards

& Interfaces. 2017; 49: 34-43.
[4] A Chebotko, M Atay, S Lu and F Fotouhi. "XML subtree reconstruction from relational storage of XML

documents". Data & Knowledge Engineering. 2007; 62: 199-218.
[5] I Dweib, A Awadi and J Lu. "MAXDOR: Mapping XML Document into Relational Database". The

Open Information Systems Journal. 2009; 3: 108-122.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Q1 Q2 Q3 Q4 Q5 Q6

R
e

sp
o

n
se

 T
im

e
 (m

s)

SMX/R

XRecursive

SS

 ISSN: 2502-4752

 IJEECS Vol. 7, No. 2, August 2017 : 551 – 566

566

[6] A Qtaish and K Ahmad. "XAncestor: An efficient mapping approach for storing and querying XML
documents in relational database using path-based technique". Knowledge-Based Systems. 2016;
114: 167-192.

[7] Z Bousalem and I Cherti. "XMap: a novel approach to store and retrieve xml document in relational
databases". Journal of Software. 2015; 10(12): 1389-1401.

[8] I Tatarinov, SD Viglas, K Beyer, J Shanmugasundaram, E Shekita and C Zhang. "Storing and

querying ordered XML using a relational database system ". in Proceedings of the 2002 ACM
SIGMOD International conference on Management of data. 2002: 204-215.

[9] S Prakas, SS Bhowmick and S Madria. "SUCXENTdatabase mapping techniques". Advances in
Computer Science and Information Technology. 2015; 2(2): 162–166.

[10] SC Haw and CS Lee. "Data storage practices and query processing in XML databases: A survey".
Knowledge-Based System . 2011; 24(8): 1317-1340.

[11] M Mourya and P Saxena. "Survey of XML to relational database mapping techniques". Advances in
Computer Science and Information Technology. 2015; 2(2): 162–166.

[12] X Yuan, X Hu, D Wu, H Zhang and X Lian. "XML data storage and query optimization in relational
database by XPath processing model". Journal of Software. 2015; 8(4): 809-816.

[13] F Abduljwad, N Wang and D Xu. "SMX/R: Efficient way of storing and managing XML documents

using RDBMSs based on paths". in Proceedings of International Conference on Computer
Engineering and Technology. 2010; 1: 143-147.

[14] M Yoshikawa, T Amagasa, S Shimura and S Uemura. "XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases". ACM Transactions on Internet
Technology. 2001; 1(1): 110-114.

[15] MAI Fakharaldien, JM Zain and N Sulaiman. "XRecursive: An efficient method tostore and query XML
documents". Australian Journal of Basic and Applied Sciences. 2011; 5(12): 2910-2916.

[16] P Suri and D Sharma. "A Model Mapping Approach for storing XML documents in Relational
databases". International Journal of Computer Science Issues. 2012; 9(3): 495-498.

[17] J Qin, SM Zhao, SQ Yang and WH Dou. "XPEV: A Storage Model for Well-Formed XML
Documents". Lecture Notes in Computer Science. 2005; 3613.

[18] J Ying, S Cao and Y Long. "An efficient mapping approach to store and query XML documents in
rela-tional database". in Proceedings of International Conference on Computer Science and Network
Technology. 2012: 2140–2144.

[19] P O'Neil, E O'Neil, S Pal, I Cseri, G Schaller and N Westbury. "ORDPATHs: Insert-friendly XML node
labels". in Proceedings of ACM SIGMOD International Conference on Management of Data . 2004:
903-908.

[20] S Subramaniam, SC Haw and KH Poo. "s-XML: an efficient mapping scheme to bridge XML and
relational database". Knowledge-Based Systems. 2012; 27: 369–380.

[21] H Zhu, H Yu, G Fan and H Sun. "Mini-XML: An efficient mapping approach between XML and
relational database". in Proceedings of International Conference on Computer and Information
Science. 2017: 839-843.

[22] UW (University of Washington XML Repository). 2017. Retrieved from
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html

