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Abstract 
 Multisets are very powerful and yet simple control mechanisms in regulated rewriting systems. In 

this paper, we review back the main results on the generative power of multiset controlled grammars 
introduced in recent research. It was proven that multiset controlled grammars are at least as powerful as 
additive valence grammars and at most as powerful as matrix grammars. In this paper, we mainly 
investigate the closure properties of multiset controlled grammars. We show that the family of languages 
generated by multiset controlled grammars is closed under operations union, concatenation, kleene-star, 
homomorphism and mirror image. 
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1. Introduction 
A regulated grammar is depicted as a grammar with an additional (control) mechanism 

that able to restrict the use of the productions (a.k.a. rules) during derivation process in order to 
avoid certain derivations as well as to obtain a subset of the language generated in usual way. 
The primary motivation for introducing regulated grammars came from the fact that a plenty of 
languages of interest are seen to be non-context free such as the languages with reduplication, 
multiple agreement or crossed agreement properties. Therefore, the main aim of regulated 
grammars is to achieve a higher computational power and yet at the same time does not 
increase the complexity of the model [1, 2]. 

It is believed that the first regulated grammar, which is a matrix grammar, was 
introduced by Abraham in 1965 with the idea such in a derivation step, a sequence of 
productions are applied together [3]. Since then, a plenty of regulated grammars have been 
introduced and investigated in several papers such as [1-13], where each has a different control 
mechanism, and provides useful structures to handle a variety of issues in formal languages, 
programming languages, DNA computing, security, bioinformatics and many other areas.  

In this paper, we continue our research on multiset controlled grammars (see [4]); we 
investigate the closure properties of the family of languages generated by multiset controlled 
grammars. The study of closure properties is one of a crucial investigation in formal language 
theory since it provides a meaningful merit in both theory and practice of grammars. This paper 
is structured as follows. First, we give some basic notations and knowledge concerning to the 
theory of formal languages in which include grammars with regulated rewriting and set-theoretic 
operations on languages that will be used throughout the study. Then, we recall the definitions 
of multiset controlled grammars defined in [4] together with results on their generative power. 
Then, we demonstrate that for multiset controlled grammars one can construct equivalent 
normal forms, which will be used in study of the closure properties. In the last section, we put in 
a nutshell all materials studied previously with some possible future research topics on those 
grammars. 
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2. Preliminaries 
In this section, we present some basic notations, terminologies and concepts 

concerning to the formal languages theories, multiset and regulated rewriting grammars that will 
be used in the following sections. For details, the reader is referred to [1, 2, 14-16]. Throughout 
the paper, we use the following basic notations. Symbols ∈ and ∉ represent the set membership 
and negation of set membership of an element to a set. Symbol ⊆ signifies the set inclusion and 
⊂ marks the strict inclusion. Then, for a two sets 𝐴 and 𝐵, 𝐴 ⊊ 𝐵 if 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵. Further, 
notation |𝐴| is used to portray the cardinality of a set 𝐴 in which is the number of elements in the 
set 𝐴 as well as notation 2𝐴 is used to depict the power set of a set 𝐴. Symbol ∅ denotes the 
empty set. The sets of integer, natural, real and rational numbers are denoted by ℤ,ℕ,ℝ and ℚ, 
respectively. 
  An alphabet is a finite and nonempty set of symbols or letters, which is denoted by Σ 
and a string (sometimes referred as word) over the alphabet Σ is a finite sequence of symbols 
(concatenation of symbols) from Σ. The string without symbols is called null or empty string and 
denoted by 𝜆. The set of all strings (including 𝜆) over the alphabet, Σ is denoted by Σ∗ and 
Σ+ = Σ∗ − {𝜆}. A string 𝑤 is a substring of a string 𝜈 if and only if there exist 𝑢1,𝑢2 such that 
𝜈 = 𝑢1𝑤𝑢2 where  𝑢1,𝑢2,𝑤, 𝜈 ∈ Σ∗. String 𝑤 is a proper substring of 𝜈 if 𝑤 ≠ 𝜆 and 𝑤 ≠ 𝜈. The 
length of string 𝑤, denoted by |𝑤|, is the number of symbols in the string. Obviously, |𝜆| = 0 and 
|𝑤𝜈| = |𝑤| + |𝑣|, 𝑤, 𝜈 ∈ Σ∗ . A language 𝐿 is a subset of Σ∗. A language 𝐿 is 𝜆 -free if 𝜆 ∉ 𝐿. For a 
set 𝐴, a multiset is a mapping 𝜇: 𝐴 → ℕ. The set of all multisets over 𝐴 is denoted by 𝐴⊕. Then, 
the set 𝐴 is a called the basic set of 𝐴⊕. For a multiset 𝜇 ∈ 𝐴⊕ and element 𝑎 ∈ 𝐴, 𝜇(𝑎) 
represents the number of occurrences of 𝑎 in 𝜇. 

A Chomsky grammar is a quadruple 𝐺 = (𝑁,𝑇, 𝑆,𝑃) where 𝑁 is an alphabet of 
nonterminals, 𝑇 is an alphabet of terminals and 𝑁 ∩ 𝑇 = ∅, 𝑆 ∈ 𝑁 is the start symbol and 𝑃 is a 
finite set of productions such that 𝑃 ⊆ (𝑁 ∪ 𝑇)∗𝑁(𝑁 ∪ 𝑇)∗ × (𝑁 ∪ 𝑇)∗. We simply use notation 
𝐴 → 𝑤 for a production (𝐴,𝑤) ∈ 𝑃. A direct derivation relation over (𝑁 ∪ 𝑇)∗, denoted by ⇒, is 
defined as 𝑢 ⇒ 𝑣 provided if and only if there is a rule 𝐴 → 𝑤 ∈ 𝑃 such that 𝑢 = 𝑥1𝐴𝑥2 and 
𝑣 = 𝑥1𝑤𝑥2 for some 𝑥1, 𝑥2 ∈ (𝑁 ∪ 𝑇)∗. Since ⇒ is a relation, then its 𝑛th, 𝑛 ≥ 0, power is denoted 
by ⇒𝑛, its transitive closure by  ⇒+, and its reflexive and transitive closure by ⇒∗. A string 
𝑤 ∈ (𝑁 ∪ 𝑇)∗ is a sentential form if 𝑆 ⇒∗ 𝑤. If 𝑤 ∈ 𝑇∗, then 𝑤 is called a sentence or a terminal 
string and 𝑆 ⇒∗ 𝑤 is said to be a successful derivation. We also use the notations 

𝑚
⇒ or 

𝑟0𝑟1….𝑟𝑛������ to 
denote the derivation that uses the sequence of rules 𝑚 = 𝑟0𝑟1 … 𝑟𝑛 , 𝑟𝑖 ∈ 𝑃, 1 ≤ 𝑖 ≤ 𝑛. The 
language generated by 𝐺, denoted by 𝐿(𝐺), is defined as 𝐿(𝐺) = {𝑤 ∈ 𝑇∗ | 𝑆 ⇒∗ 𝑤}. Two 
grammars 𝐺1 and 𝐺2 are called to be equivalent if and only if they generate the same language, 
i.e., 𝐿(𝐺1) = 𝐿(𝐺2). There are five main types of grammars depending on their productions forms 
𝑢 → 𝑣:  

a) a regular if 𝑣 ∈ 𝑇∗ ∪ 𝑁𝑇∗ and 𝑢 ∈ 𝑁, 
b) a linear if 𝑣 ∈ 𝑇∗ ∪ 𝑇∗𝑁𝑇∗ and 𝑢 ∈ 𝑁, 
c) a context-free if 𝑣 ∈ (𝑁 ∪ 𝑇)∗ and 𝑢 ∈ 𝑁,  
d) a context-sensitive if 𝑢 ∈ (𝑁 ∪ 𝑇)∗ 𝑁+ (𝑁 ∪ 𝑇)∗ and 𝑣 ∈ (𝑁 ∪ 𝑇)+ where |𝑢| ≤ |𝑣| and  
e) a recursively enumerable or unrestricted if 𝑢 ∈ (𝑁 ∪ 𝑇)+ and 𝑣 ∈ (𝑁 ∪ 𝑇)∗ where 𝑢 

contains at least one nonterminal symbol.  
The families of languages generated by arbitrary, context sensitive, context free, regular, 

linear and finite grammars are denoted by 𝐑𝐑,𝐂𝐂,𝐂𝐂,𝐑𝐑𝐑,𝐋𝐋𝐋, and 𝐂𝐋𝐋, respectively. For these 
language families, Chomsky hierarchy holds: 

 
𝐂𝐋𝐋 ⊂ 𝐑𝐑𝐑 ⊂ 𝐋𝐋𝐋 ⊂ 𝐂𝐂 ⊂ 𝐂𝐂 ⊂ 𝐑𝐑. 
 
Before moving to the operations on languages, we recall some definition of regulated 

grammars mentioned in this study. A matrix grammar is a quadruple 𝐺 = (𝑁,𝑇, 𝑆,𝑀) where 𝑁,𝑇 
and 𝑆 are defined as for context-free grammar and 𝑀 is a set of matrices, that are finite 
sequences of context-free rules from 𝑁 × (𝑁 ∪ 𝑇)∗. Its language is defined by 𝐿(𝐺) = {𝑤 ∈ 𝑇∗| 𝑆
𝜋
⇒ 𝑤 and 𝜋 ∈ 𝑀∗}. 

An additive valence grammar is a 5-tuples 𝐺 = (𝑁,𝑇, 𝑆,𝑃, 𝑣) where 𝑁,𝑇, 𝑆,𝑃 are defined 
as for a context-free grammar and 𝑣 is a mapping from 𝑃 into set ℤ (set ℚ). The language 
generated by the grammar consists of all string 𝑤 ∈ 𝑇∗ such that there is a derivation 𝑆
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 𝑟1𝑟2…𝑟𝑛  
������� 𝑤 where ∑ 𝑣(𝑟𝑘) = 0𝑛

𝑘=1  . The families of languages generated by matrix and additive 
valence grammars (with erasing rues) are denoted by 𝐌𝐌𝐌, 𝑎𝐕𝐌𝐋, (𝐌𝐌𝐌𝜆 , 𝑎𝐕𝐌𝐋𝜆), respectively. 
Now, we recall some set-theoretic operations that will be used to investigate the closure 
properties of a grammar. Let 𝐿1 and 𝐿2 be two languages. Then, the union (∪), intersection (∩), 
difference (−) and concatenation (⋅) of 𝐿1 and 𝐿2 are defined as: 

 
𝐿1 ∪ 𝐿2 = {𝑤 ∶ 𝑤 ∈ 𝐿1 𝑜𝑟 𝑤 ∈ 𝐿2} 
𝐿1 ∩ 𝐿2 = {𝑤 ∶ 𝑤 ∈ 𝐿1 𝑎𝑛𝑎 𝑤 ∈ 𝐿2} 
𝐿1 − 𝐿2 = {𝑤 ∶ 𝑤 ∈ 𝐿1 𝑎𝑛𝑎 𝑤 ∉ 𝐿2} 
𝐿1 ⋅ 𝐿2 = {𝑤1𝑤2 ∶  𝑤1 ∈ 𝐿1 𝑎𝑛𝑎 𝑤2 ∈ 𝐿2} 

 
The complement of 𝐿 ⊆ Σ∗ with respect to Σ∗ is defined as  𝐿� = Σ∗ − 𝐿. For a language 𝐿, the 
iterations of 𝐿 is defined as: 

  
𝐿0 = {𝜆},   
𝐿1 = 𝐿,    
𝐿2 = 𝐿𝐿, 
    ⋯ 
𝐿∗ = ⋃ 𝐿𝑖𝑖≥0  (iteration closure: Kleene star). 
𝐿+ = ⋃ 𝐿𝑖𝑖≥1  (positive iteration closure: Kleene plus). 
 
Given two alphabets Σ1, Σ2, a mapping ℎ: Σ1∗ → Σ2∗ is called a morphism or 

synonymously a homomorphism if and only if: 
(i) for every 𝑤 ∈ Σ1∗, there exists 𝜈 ∈ Σ2∗ such that 𝜈 = ℎ(𝑤) and 𝜈 is distinct, 
(ii) for every 𝑤, 𝜈 ∈ Σ1∗ ∶ ℎ(𝑤𝜈) = ℎ(𝑤)ℎ(𝜈) . 

A morphism is 𝜆-free if for every 𝑤 ∈ Σ1∗, ℎ(𝑤) ≠ 𝜆. Then, a morphism is known as an 
isomorphism when for every 𝑤, 𝜈 ∈ Σ1∗, if ℎ(𝑤) = ℎ(𝜈) then 𝑤 = 𝜈. 

For a word 𝑤 = 𝑤1𝑤2 …𝑤𝑛,   𝑤𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 𝑛, the mirror image of 𝑤 (a.k.a. reversal) is 
obtaining by writing the word 𝑤 in the reverse order such  𝑤𝑛 …𝑤1𝑤2 and it is denoted by 𝑤𝑅. 
Therefore, for a language 𝐿 ⊆ Σ∗, we defined its mirror image as 𝐿𝑅 = {𝑤: 𝑤𝑅 ∈ 𝐿}. 
 
 
3. Multiset Controlled Grammars: Definitions and Generative Power 

Informally, a multiset controlled grammar is a context-free grammar 𝐺 = (𝑁,𝑇, 𝑆,𝑃) 
equipped with an arithmetic expression over multisets on terminals. For each production 
𝑟: 𝐴 → 𝑤 ∈ 𝑃, the multiset 𝜔[𝑟] ∈ 𝑇⨁ , called “counter”, is defined representing the terminal 
occurrences in 𝑤. For example, if 𝑇 = {𝑎, 𝑏} and 𝑟: 𝐴 → 𝑎𝑎𝐴𝑏 ∈ 𝑃 is a production, then 𝜔[𝑟] =
(2, 1). A derivation in the grammar is successful if only if the value of the expression of multisets 
resulted from the derivation in a true relation with a certain threshold 𝛼 [4]. The formal definition 
of multiset controlled grammars is portrayed in the following definition. 

Definition 1 [4] A multiset controlled grammar is a 6-tuples 𝐺 = (𝑁,𝑇, 𝑆,𝑃,⊕,𝐹) where 
𝑁,𝑇 and 𝑆 are defined as for a context-free grammar, 𝑃 is a finite subset of 𝑁 × (𝑁 ∪ 𝑇)∗ × 𝑇⨁ 
and 𝐹:𝑇⨁ → ℤ is a linear or nonlinear function. A triple (𝐴,𝑤,𝜔) ∈ 𝑃 is written as 𝐴 → 𝑤[𝜔]. If 
𝐹(𝑎1, 𝑎2, … , 𝑎𝑛), 𝑎𝑖 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑛 is a linear, then it is in the form of 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) =
∑ 𝑐𝑖𝜇(𝑎𝑖) +𝑛
𝑖=1 𝑐0 where 𝑐𝑖 ∈ ℤ, 0 ≤ 𝑖 ≤ 𝑛. Then, as a nonlinear function 𝐹, we can consider 

logarithms, polynomials, rational, exponential, power and so on. Thus, the language generated 
by multiset controlled grammar is defined by 𝐿(𝐺,𝛼,∗) = {𝑤 ∣  𝑤[𝜔] ∈ 𝐿(𝐺), 𝐹(𝜔)  ∗ 𝛼 } where 
the relation ∗ ∈ {=, <, >,≤,≥}, 𝛼 ∈ 𝑊,𝑊 ⊆ ℤ is a cut point set and 𝐿(𝐺) = {𝑤[𝜔] ∈ 𝑇∗ ×  𝑇⨁ ∣ 𝑆
𝜋
⇒ 𝑤𝑛[𝜔𝑛] where 𝜋 = 𝑟1𝑟2 ⋯ 𝑟𝑛}.   

Definition 2 A multiset controlled grammar 𝐺 = (𝑁,𝑇, 𝑆,𝑃,⊕,𝐹) is called 
a) regular if each production in the grammar has the form such 𝐴 → 𝑤𝐵[𝜔] or 𝐴 → 𝑤[𝜔]   

where 𝑤 ∈ 𝑇∗ and 𝐴,𝐵 ∈ 𝑁. 
b) linear if each production in the grammar has the form such 𝐴 → 𝑤1𝐵𝑤2[𝜔] or 𝐴 → 𝑤[𝜔] 

where 𝑤,𝑤1,𝑤2 ∈ 𝑇∗and 𝐴,𝐵 ∈ 𝑁. 
c) context-free if each production in the grammar has the form such 𝐴 → 𝑥[𝜔] where 𝑥 ∈

(𝑁 ∪ 𝑇)∗ and 𝐴 ∈ 𝑁. 
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The families of languages generated by multiset controlled regular, linear and context-
free grammars with and without erasing rules are denoted by 
𝑚𝐑𝐑𝐑,𝑚𝐋𝐋𝐋,𝑚𝐂𝐂 (𝑚𝐑𝐑𝐑𝜆 ,𝑚𝐋𝐋𝐋𝜆 ,𝑚𝐂𝐂𝜆) respectively. We also use bracket notation 𝑚𝐗[𝜆],𝐗 ∈
 {𝐑𝐑𝐑,𝐋𝐋𝐋,𝐂𝐂} to show that a statement holds both cases of with and without erasing rules.The 
following theorem shows the computational powers possessed by multiset controlled grammars. 
Combining the results above, we form the following relations as in Figure 1. 

Theorem 1 [4]  
 𝐑𝐑𝐑 ⊂ 𝑚𝐑𝐑𝐑.    𝐋𝐋𝐋 ⊂ 𝑚𝐋𝐋𝐋.   𝑚𝐂𝐂 − 𝑎𝐕𝐌𝐋 ≠ ∅. 
 𝐂𝐂 ⊂ 𝑚𝐂𝐂.  𝑚𝐑𝐑𝐑 − 𝐂𝐂 ≠ ∅.  𝑚𝐂𝐂[𝜆] ⊆ 𝐌𝐌𝐌[𝜆]. 

 
 

 
Figure 1. The hierarchy of families of language generated by multiset controlled grammar. 

 
 
4. A Multiset Chomsky Normal Form 

A normal form is introduced with the intent to transform a grammar into a standard form 
by imposing it with restrictions. In formal language theory, a variety of normal forms were first 
investigated and developed to solve the rudimentary problems involving context-free languages 
such for making it easy to analyze and to construct proofs regarding particular properties of the 
grammars, i.e., for testing emptiness and deciding membership matters with more easily. One of 
the most useful, well-constructed and popular normal forms to deal with context-free grammar is 
Chomsky normal form (CNF) due to its simple structure (binary tree). The use of CNF allows 
easily to determine whether a string is generated by the context-free grammar or not using 
polynomial time algorithms (for instance, CYK algorithm). 

A context-free grammar is said to be in CNF if and only if all its productions are in form 
of 𝐴 → 𝑋𝑋 and 𝐴 → 𝑥 where 𝐴,𝑋,𝑋 are variables and 𝑥 is exactly a terminal. Here, we prove that 
our multiset controlled context-free grammars can also be transformed in to equivalent CNFs. 

Theorem 1 For any multiset controlled context-free grammar 𝐺𝑚, there exists an 
equivalent multiset controlled context-free grammar 𝐺𝑚′ in multiset Chomsky normal form 
(mCNF). 

Proof: Let 𝐺𝑚 be a multiset controlled context-free grammar. Then, any such grammar 
can be converted into an equivalent grammar 𝐺𝑚′ where all its productions are in form of 
𝐴

𝟎
→ 𝑋𝑋 or/and 𝐴

𝜔
→ 𝑥 with 𝜔 > 0, where 𝟎 is the zero vector, 𝐴,𝑋,𝑋 are variables and 𝑥 is a 

terminal. It is done in three phases.  
Phase 1. We construct a grammar 𝐺1 that is equivalent to grammar 𝐺𝑚 and does not 

have any production in the form of 𝐴 → 𝑋 where 𝐴,𝑋 ∈ 𝑁. Suppose that we have productions 
𝐴 ⟶ 𝑋 in 𝐺𝑚 that lead to a series of form of derivation such 
 

𝐴
𝜔1�� 𝑋1

𝜔2��𝑋2
𝜔3��⋯

𝜔𝑛��𝑋𝑛
𝜔𝑛+1�⎯⎯�𝑋

𝜔𝑛+2�⎯⎯�𝑝 with 𝑝 ∉ 𝑁. 
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Accordingly, we substitute all such “sequence” productions 𝐴
𝜔1�� 𝑋1,𝑋1

𝜔2�� 𝑋2, … ,𝑋𝑛
𝜔𝑛+1�⎯⎯� 𝑋 in 𝐺𝑚 

by a single production 𝐴
𝜔
→ 𝑝, where 𝜔 = 𝜔1 + 𝜔2 + ⋯+ 𝜔𝑛+1. Thus, the grammar 𝐺1 is 

equivalent to the grammar 𝐺𝑚. 
Phase 2. We construct a grammar 𝐺2 that is equivalent to grammar 𝐺1 with condition 

such all productions in 𝐺2 are not in the form of  
 

𝐴
𝜔
→ 𝑥1𝑥2 ⋯  𝑥𝑛,𝜔 > 0,𝑛 > 2 

 
where 𝑥𝑖s are terminals. For every rule of the form above, we introduce a new rule 𝐴
𝟎
→ 𝑋1𝑋2 ⋯  𝑋𝑛 where all where 𝑥𝑖 terminals are replaced with new variables 𝑋𝑖s, and rules of the 
form 𝑋𝑖

𝟏𝒊→ 𝑥𝑖 for each 𝑥𝑖 where 𝟏𝒊 is the vector containing a signle one which is at position 𝑖.  
Therefore, we get 𝐺2 with all its productions are only in the forms 𝐴

𝜔
→ 𝑥, 𝑥 ∈ 𝑇 or/and 𝐴

𝟎
→ 𝑋1 ⋯𝑋𝑛, 𝑛 ≥ 2,  𝑋1,𝑋2, … ,𝑋𝑛 ∈ 𝑁. Here, it is obvious that grammar 𝐺2 is equivalent to 
grammar 𝐺1. 

Phase 3. We construct a grammar 𝐺′𝑚 that is equivalent to grammar 𝐺2 where all its 
productions are only in the form of 𝐴

𝜔
→ 𝑥 or 𝐴

𝟎
→ 𝑋𝑋 with 𝜔 > 0, 𝐴,𝑋,𝑋 ∈ 𝑁 and 𝑥 ∈ 𝑇. Consider 

a production in form of 𝐴
0
→ 𝑋1 ⋯𝑋𝑛 with 𝑛 > 2 in 𝐺2. Then, we substitute this production with the 

productions 
 

𝐴
0
→ 𝑋1 𝑋1 

𝑋1
0
→ 𝑋2 𝑋2 

     ⋮ 
𝑋𝑛−2

0
→ 𝑋𝑛−1 𝑋𝑛 

 
where 𝑋’𝑠 are new nonterminals. Thus, the obtained grammar 𝐺′𝑚 is equivalent to grammar 𝐺𝑚, 
which is multiset Chomsky normal form. 

Example 1 Let 𝐺1 = ({𝐴,𝐵, 𝑆}, {𝑎, 𝑏, 𝑐}, 𝑆,𝑃,⊕,𝐹) be a multiset context-free grammar 
where 𝑃 consists of the following productions: 
 

𝑟0 ∶ 𝑆 → 𝐴𝐵[(0,0,0)], 
𝑟1 ∶ 𝐴 → 𝑎𝐴𝑏[(1,1,0)], 
𝑟2 ∶ 𝐵 → 𝑐𝐵[(0,0,1)], 
𝑟3 ∶ 𝐴 → 𝑎𝑏[(1,1,0)], 
𝑟4 ∶ 𝐵 → 𝑐[(0,0,1)], 

and 𝐹(𝑎, 𝑏, 𝑐) = 𝜇(𝑎) + 𝜇(𝑏) + (−1)𝜇(𝑏) + (−1)𝜇(𝑐). 
 
Then, to convert the grammar 𝐺1 into Chomsky normal form, we proceed as below: 
First, replace 𝐴 → 𝑎𝐴𝑏[(1,1,0)] with 𝐴 → 𝑇𝑎𝐴𝑇𝑏[(0,0,0)], 𝑇𝑎 → 𝑎[(1,0,0)], 𝑇𝑏 → 𝑏[(0,1,0)]. Then, 
𝐵 → 𝑐𝐵[(0,0,1)] by 𝐵 → 𝑇𝑐𝐵[(0,0,0)], 𝑇𝑐 → 𝑐[(0,0,1)]. Next, 𝐴 → 𝑎𝑏[(1,1,0)] by 𝐴 → 𝑇𝑎𝑇𝑏[(0,1,0)]. 
Last, replace 𝐴 → 𝑇𝑎𝐴𝑇𝑏[(0,0,0)] by 𝐴 → 𝑇𝑎𝐶[(0,0,0)] and 𝐶 → 𝐴𝑇𝑏[(0,0,0)]. 

Hence, we can have a multiset controlled context free grammar in Chomsky normal 
form with productions such:  
 

𝑟0 ∶ 𝑆 → 𝐴𝐵[(0,0,0)], 
𝑟1 ∶ 𝐴 → 𝑇𝑎𝐶[(0,0,0)], 
𝑟2 ∶ 𝐶 → 𝐴𝑇𝑏[(0,0,0)], 
𝑟3 ∶ 𝐵 → 𝑇𝑐𝐵[(0,0,0)], 
𝑟4 ∶ 𝐴 → 𝑇𝑎𝑇𝑏[(0,0,0)], 
𝑟5 ∶ 𝐵 → 𝑐[(0,0,1)], 
𝑟6 ∶ 𝑇𝑎 → 𝑎[(1,0,0)], 
𝑟7 ∶ 𝑇𝑏 → 𝑏[(0,1,0)], 
𝑟8 ∶ 𝑇𝑐 → 𝑐[(0,0,1)], 
and 𝐹(𝑎, 𝑏, 𝑐) = 𝜇(𝑎) + 𝜇(𝑏) + (−1)𝜇(𝑏) + (−1)𝜇(𝑐). 
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5. Closure Properties 
Closure properties are often handy in proving theoretical properties of grammars and 

languages as well as in constructing new and complex languages from existing languages. 
Therefore, here by using the standard proof, we investigate the closure properties that can be 
owned by multiset controlled grammars.  

The families of languages generated by multiset controlled regular, linear and context-
free grammars with linear counter (𝐹) functions are denoted by 𝑚𝐑𝐑𝐑𝑙 ,𝑚𝐋𝐋𝐋𝑙 ,𝑚𝐂𝐂𝑙 .  

Lemma 1 (union) The families 𝑚𝐑𝐑𝐑𝑙, 𝑚𝐋𝐋𝐋𝑙 and 𝑚𝐂𝐂𝑙 are closed under union 
operation. 

Proof: Let 𝐿1 and 𝐿2 be two languages in 𝐗 with 𝐗 ∈ {𝑚𝐑𝐑𝐑,𝑚𝐿𝐼𝑁,𝑚𝐶𝐹} generated by 
multiset controlled grammars 𝐺1 = (𝑁1,𝑇, 𝑆1,𝑃1,⊕1,𝐹1) and 𝐺2 = (𝑁2,𝑇, 𝑆2,𝑃2,⊕2,𝐹2), 
respectively, where 𝐹1 and 𝐹2 are linear functions. Without loss of generality, we assume that 
𝑁1 ∩ 𝑁2 = ∅, and set 𝑁 = 𝑁1 ∪ 𝑁2 ∪ {𝑆} where 𝑆 is a new nonterminal symbol. Then, we define 
the grammars 𝐺 = (𝑁,𝑇, 𝑆,𝑃,⊕,𝐹) where 𝑃 = 𝑃1 ∪ 𝑃2 ∪ {𝑆 → 𝑆1, 𝑆 → 𝑆2} and 𝐹 = 𝐹1 + 𝐹2. Thus, it 
is not difficult to notice that∶ 

 
𝐿(𝐺,𝛼,∗) = 𝐿(𝐺1,𝛼,∗) ∪ 𝐿(𝐺2,𝛼,∗). 

 
Lemma 2 (Kleene-star) The family of 𝑚𝐑𝐑𝐑 and 𝑚𝐂𝐂 are closed under Kleene-star 

operation. 
Proof (𝑚𝐑𝐑𝐑): For a given multiset controlled regular language 𝐿, let 𝐺 = (𝑁,𝑇,𝑃, 𝑆,⊕

,𝐹) be a multiset controlled regular grammar with 𝐿 = 𝐿(𝐺). Then, it is not difficult to notice that 
the language 𝐿∗ is generated by multiset controlled regular grammar 
  

𝐺′ = {𝑁 ∪ {𝑆′},𝑇,𝑃 ∪ {𝑆′ → 𝜆, 𝑆′ → 𝑆} ∪ {𝐴 → 𝑤𝑆: 𝐴 → 𝑤 ∈ 𝑃,𝑤 ∈ 𝑇∗}, 𝑆′,⊕,𝐹} 
 
where 𝑆′ is a new nonterminal symbol. 
Proof (𝑚𝐂𝐂): Let a language 𝐿 is generated by multiset controlled context-free grammar 
𝐺 = (𝑁,𝑇,𝑃, 𝑆,⊕,𝐹). Then, it is easy to see that the language 𝐿∗ is generated by 𝑚𝐶𝐹 grammar 
such 𝐺′ =  {𝑁 ∪ {𝑆′},𝑇,𝑃 ∪ {𝑆′ → 𝑆𝑆′| 𝜆}, 𝑆′,⊕,𝐹} where 𝑆′ is a new nonterminal symbol. 

Lemma 3 (homomorphism) The families 𝑚𝐑𝐑𝐑, 𝑚𝐋𝐋𝐋 and 𝑚𝐂𝐂 are closed under 
homomorphism. 

Proof: Let 𝐿 ∈ 𝐗, 𝐗 ∈ {𝑚𝐑𝐑𝐑,𝑚𝐋𝐋𝐋,𝑚𝐂𝐂} be a language generated by a multiset 
controlled grammar 𝐺 = (𝑁,𝑇,𝑃, 𝑆,⊕,𝐹) and let ℎ:𝑇∗ → 𝑇1∗ be a homomorphism. Then, there is 
a multiset controlled grammar 𝐺′ = (𝑁,𝑇1,𝑃1, 𝑆1,⊕,𝐹′) such that 𝐿(𝐺′) = ℎ(𝐿).  

1. regular: for every production in the form of 𝑟: 𝐴 → 𝑤𝑋[𝜔] in 𝑃, we construct the 
production ℎ(𝑟): 𝐴 → ℎ(𝑤)𝑋[𝜔′] in 𝑃1 where 𝑤 ∈ 𝑇∗, 𝑋 ∈ 𝑁 ∪ {𝜆} and 𝜔 ∈ 𝑇⨁,𝜔′ ∈ 𝑇1

⨁; 
2. linear: for every production in the form of 𝑟: 𝐴 → 𝑤1𝑋𝑤2[𝜔] in 𝑃, we construct the 

production ℎ(𝑟): 𝐴 → ℎ(𝑤1)𝑋ℎ(𝑤2)[𝜔′], where 𝑤1,𝑤2 ∈ 𝑇∗, 𝑋 ∈ 𝑁 ∪ {𝜆} and 𝜔 ∈ 𝑇⨁,𝜔′ ∈
𝑇1
⨁; 

3. context-free: for every production in the form of 𝑟: 𝐴 → 𝑤1𝑋1𝑤2𝑋2 … 𝑤𝑘𝑋𝑘𝑤𝑘+1[𝜔], 
𝑘 ≥ 0, we construct the production ℎ(𝑟): 𝐴 → ℎ(𝑤1)𝑋1ℎ(𝑤2)𝑋2 …  ℎ(𝑤𝑘)𝑋𝑘ℎ(𝑤𝑘+1)[𝜔], 
𝑘 ≥ 0 where 𝑤𝑖 ,∈ 𝑇∗, 1 ≤ 𝑖 ≤ 𝑘 + 1, 𝑋𝑖 ∈ 𝑁 ∪ {𝜆}, 1 ≤ 𝑖 ≤ 𝑘 and 𝜔 ∈ 𝑇⨁,𝜔′ ∈ 𝑇1

⨁. 
We define 𝜔′ in the above productions as 𝜔′ = 0 if |ℎ(𝑤)| = 0, 𝜔′ = 𝜔 if |ℎ(𝑤)| = 1, and 

𝜔′ = 𝜔/|ℎ(𝑤)| if |ℎ(𝑤)| > 1. Then 𝐹′ has the same cooficient for each symbol 𝑎′ = ℎ(𝑎) ∈ 𝑇1 as 
𝑎 ∈ 𝑇. In every successful derivation in 𝐺 generating the string 𝑤 ∈ 𝑇∗, we replace 𝑟 ∈ 𝑃 with 
ℎ(𝑟) ∈ 𝑃1 in the corresponding derivation and obtain ℎ(𝑤) ∈ 𝑇1∗. Thus ℎ(𝐿) = 𝐿(𝐺′). 

Lemma 4 (mirror image) The families 𝑚𝐑𝐑𝐑, 𝑚𝐋𝐋𝐋 and 𝑚𝐂𝐂 are closed under mirror 
image operation. 
Proof: Let 𝐿 be a language generated by a multiset controlled regular grammar (linear grammar, 
context-free in Chomsky normal form grammar) 𝐺 = (𝑁,𝑇,𝑃, 𝑆,⊕,𝐹), i.e., 𝐿 = 𝐿(𝐺). Then, we 
define a multiset controlled regular grammar (linear grammar, context-free in Chomsky normal 
form grammar) 𝐺′ = (𝑁,𝑇, 𝑆,𝑃′,⊕,𝐹) such that 𝐿(𝐺′) = 𝐿(𝐺)𝑅 by performing reverse operation 
on production rules of the grammar 𝐺. It is clear that:  

1. 𝐿 ∈ 𝑚𝐑𝐑𝐑: for each production rule of the form 𝐴 → 𝑤𝑋[𝜔] in 𝑃, we define the 
production 𝐴 → 𝑋𝑤𝑅[𝜔] where 𝑤 ∈ 𝑇∗, 𝑋 ∈ 𝑁 ∪ {𝜆} and 𝜔 ∈ 𝑇⨁; 
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2. 𝐿 ∈ 𝑚𝐋𝐋𝐋: for each production rule of the form 𝐴 → 𝑤1𝑋𝑤2[𝜔]  in 𝑃, we define the 
production 𝐴 → 𝑤2𝑅𝑋𝑤1𝑅[𝜔] where 𝑤1,𝑤2 ∈ 𝑇∗, 𝑋 ∈ 𝑁 ∪ {𝜆} and 𝜔 ∈ 𝑇⨁; 

3. 𝐿 ∈ 𝑚𝐂𝐂: for every production rule of the forms 𝐴 → 𝑋𝑋[𝜔] and 𝐴 → 𝑎[𝜔]  with 𝑋,𝑋 ∈
𝑁, 𝑎 ∈ 𝑇 and 𝜔 ∈ 𝑇⊕, we define the productions 𝐴 → 𝑋𝑋[𝜔] and 𝐴 → 𝑎[𝜔]. 

 
Then, it is not difficult to see that 𝐿(𝐺′) = 𝐿𝑅. 

Theorem 2 𝑚𝐑𝐑𝐑 and 𝑚𝐂𝐂 are closed under union, Kleene-star, homomorphism and 
mirror image operations. 

Theorem 3 𝑚𝐋𝐋𝐋 is closed under union, homomorphism and mirror image operations. 
 
 
6. Conclusion 

In a nutshell, we have reviewed back the definition and computational powers of 
multiset controlled grammars defined in [4] where in addition we have investigated the closure 
properties of multiset controlled grammars. However, there are still vast questions about other 
closure properties, decidability problems and etc to be answered. 
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