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Abstract 
Blade Pitch Controller (BPC) that can cope system uncertainties is one of the most interesting 

topics in wind energy engineering. Therefore, this paper presents a step towards the design of robust non-
fragile BPC for wind energy conversion system. The proposed approach presents all boundaries of stability 
region that can guarantee robust stability (RS) over a wide range of operating conditions. The proposed 
technique results from the complementarity of both Root-Locus and Routh-Hurwitz (RL/RH) approach. 
Continuous variation in the operating conditions is tackled through a new hybrid control technique based 
on the referential integrity of both RL/RH and Kharitonov (Kh) theorem. Simulation results confirm the 
effectiveness of the proposed designing approach in computing the most resilient and robust controller. 
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1. Introduction 
Wind energy, as an alternative to fossil fuels, is one of the most prominent renewable 

energy resources. Wind power capacity has expanded rapidly to 435 GW in February 2016 with 
a global growth rate of 17.2 % which was higher than in 2015 (16.4%). Wind energy production 
was around 5% of total worldwide electricity usage, and growing rapidly [1].  

Figure 1 shows the basics of Wind Energy Conversion Systems (WECS) operation. The 
moving air (wind) drives Wind Turbine (WT) to convert the kinetic energy of wind into 
mechanical energy and then into electrical energy as illustrated in Figure 1. WECS is not just be 
used for generating electricity from the wind, but also about using this energy efficiently. WECS 
is often equipped with Blade Pitch Controller (BPC) for high-quality power generation. BPC is 
applied in many areas including medical, transportation, robotics, aerospace, military, and 
energy harvesting [2]. There are many industrial applications that the core principles of BPC are 
successfully applied such as control of Unmanned Aerial Vehicle (UAV), quad rotor helicopters 
and missile launchers which are aerodynamically unstable by their nature. The WT is often 
equipped with BPC for regulating turbine speed, stabilizing power extraction from wind energy 
and decreasing mechanical fatigue. Modeling and control of BPC system are the prerequisites 
of WECS for regulating maximum power and enhancing aerodynamic performance [3-4]. The 
complete dynamical model of WECS is very complex because it is an under-actuated, highly 
coupled and nonlinear system [5]. Such dynamical system is usually decomposed into 
generator and WT systems through controller design [6]. The complete BPC system of the real 
WECS is too complex. Researchers usually design BPC with simplified blade pitch model which 
is derived out by neglecting blade torsional dynamics [7]. In this case, the simplified blade pitch 
model has a relatively significant difference between the actual model. By taking the pitch servo 
motor, actuator, blade torsional dynamics into consideration then, the new simplified blade pitch 
model is more reasonable [6]. For the purpose of regulating maximum energy harvesting and 
minimizing mechanical stress on WECS, researchers proposed many kinds of control strategies 
for BPC system. Various control techniques are widely applied in BPC design, such as sliding 
mode control [8], robust control [9-11], fuzzy control [12], neural network control [13], PID 
control [14-15], and so on. Although sliding mode control achieves good performance, but it is 
too complex to use on a real WECS. Also, adaptive and predictive controllers need tough tuning 
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effort before applying in the actual system. Thanks to essential functionality and simple 
structure, PID is widely used in the industry up to small applications. 

 
 

 
 

Figure 1. WECS with plant uncertainties and perturbed BPC parameters 
       
 
WECS typically uses BPC to fulfill two basic functions are assigned to the BPC, which 

are; first, it monitors and adjusts the inclination angle of the rotor blades, thereby controlling the 
speed of the turbine rotor to regulate the turbine's energy production. Second, it turns the blade 
out of the wind in cases of high wind speeds or emergency command to avoid any damages on 
the WT and ensure safe operation. The standard BPC commonly used in practice is a dynamic 
output feedback, a lead type, with a single stage and uses the electrical power deviation ΔPe as 
a feedback signal [6]. Conventional fixed-parameter BPC may fail to maintain system stability 
over a wide range of operating conditions or at least leads to a degraded performance once the 
deviation from the nominal point becomes significant. Conventional fixed-parameter BPC is not 
enough anymore, but it has to work reliably in any environment because the ambient conditions 
can differ greatly in terms of temperature, humidity, and vibration. Moreover, BPC has to 
effectively cope with mechanical and electrical systems uncertainties imposed by continuous 
variation in operating points. Thus, the robustness and resiliency are crucial for the performance 
and operation of BPC system.  Synthesis of robust BPCs has been one of the hottest topics in 
wind energy control system [9-11]. Over the past five decades, several methods have been 
developed that enable BPC to cope with parametric uncertainties in the plant dynamics [11]. 
Although these methods cope with uncertainty in the plant dynamics, they all assume that the 
derived parameters of the BPC are precise and exactly implemented. This raises an important 
issue that is a robust BPC can be very sensitive, or fragile, with respect to errors or 
perturbations in the controller coefficients and thus system instability may occur. In turn, that 
brings about a fundamental problem in robust control design, which has recently termed the 
fragility problem, and hence the design of non-fragile controller opens up as an important 
research topic that deserves further investigations. Up to the best of our knowledge, fragility 
problem of a robust BPC in wind energy systems’ literature is a new topic. 

The major contribution of this paper is the BPC design based on the complementarity of 
both Root-Locus and Routh-Hurwitz (RL/RH) approach together with Kharitonov (Kh) theorem. 
The proposed control technique holds the advantages of hybridized complementary approaches 
while overcoming their well-known practical performance limitations. The proposed controller 
deals with treating the misestimation problems caused by neglecting either the model/controller 
or the parametric uncertainties existed in WECS systems. To effectively design the resilient 
BPC that copes with the WECS, the modeling/parameter uncertainties are considered upon the 
controller design. Definitely, the proposed hybrid RL/RH - Kh technique can be ideally 
considered for: (i) constructing semi-graphical control approach to determine the conservative 
stability region that guarantee robustness, non-fragility, and resiliency of the proposed BPC;  
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(ii) providing better dynamic performance and stability through selecting the BPC gains inside 
the defined stability region; and (iii) initializing any optimization technique to overcome the 
undesired local optimum solutions and reduce the convergence time of simulation. Therefore, 
such novel technique can generally be adopted for further engineering applications.     

The rest of the paper is organized as follows: Section 2 formulates the problem of the 
uncertainties of a simple wind energy conversion system. In Section 3, an overview of the 
robust and non-fragile control is presented. Necessary and sufficient constraints for 
characterizing all robust stabilizing BPCs are derived in Section 4. Additionally, the selection 
criteria of the most resilient BPC is reported. Simulation results are considered in Section 5. 
Finally, the conclusions and the perspectives are drawn in Section 6. 
 
 
2. Wind Energy Conversion System 

The WECS system considered in the paper comprises of a single WT and a grid-
connected synchronous generator. The mathematical model which represents the system 
dynamics is given below. The system mathematical model is derived in terms of (k1,…,k6) which 
are load-dependent at any operating condition in terms of active and reactive powers P and Q. 
 
2.1. Wind Turbine Aerodynamics 

The most important parts of the aerodynamic system are the WT blades, pitch servo, 
and the actuator. Thus, the dynamics related to these parts are considered in this paper. For the 
elegant form of the final state space system, the system dynamics derivation starts from the WT 
dynamics with notation x7.  
 
2.1.1. Blade Torsional Dynamics 
 

                       (1) 
 

       
             

               (2) 
                    
Where x7 is the actuating signal for the WT blades mechanism, x6 is the mechanical 

rotational power on the WT shaft, x5 is arbitrary state determined by x6, the aerodynamic system 
natural frequency, and damping coefficient are ωn and ζ respectively.  
 
2.1.2. Pitch Servo and Actuator 
 

     
 

  
   

 

  
            (3) 

 
Where τp is the pitch servo and actuator mechanism time constant, u is the control. 
 

2.2. Synchronous Generator 
The mathematical model that describes the dynamic behavior of the synchronous 

generator in the rotor (dq) reference frame are given by: 
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            (5) 

 
Where eq, Vf are the equivalent generator terminal voltage and the field voltage 

respectively in the dq reference frame, δ is the rotor angle of the generator, k2, k4, k6 are power 
dependent constants, ke, τe are exciter constants, τ

’
do is the sub-transient time constant for the 

synchronous generator. 
The mechanical dynamics are described by:  
 

   
  

  
                  (6) 
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                  (7) 
 
Where ω is the generator-angular speed, h is the WECS inertia; Pm is the mechanical 

power applied to the generator shaft that readily follows from (1) as: 
 
                                      

 
Where Kgt is the gear train transformation ratio, Prot is the output mechanical power of 

the WT 
The electrical power is given by: 
 
                     (8) 

 
Where k1, k2 are generator constants 

 
2.3. Overall Dynamic Model 

The overall dynamics of the system are described by (1) – (8). With the intent of writing 
these dynamics in a compact form, we define the state vector. 

 

                                                             (9) 

 
Define the constants: 
 

    
  

  
     

  

    
     

 

      
     

 

    
     

    

  
     

    

  
     

 

  
        

  

             
 

  
   

 
Using this notation, the system state equations may be written as: 
 
                                                                            

                                            

                                                    
                                                    
                                                                            
                                                    
                                                              

                  (10) 

 
Where the wind speed is seen as an external signal, and u is the control signal 
 
 

3. Control Problem formulation 
The main control target is to operate the WECS at its optimal power and minimizing the 

mechanical stresses on the aerodynamic system. To translate this objective into a standard, 
mathematically tractable problem, the system dynamics are represented by seven non-linear 
differential equations given in (10) and the system data in the Appendix A. The system model is 
shown in Figure 1. The system open-loop Transfer Function (TF) is determined via block 
diagram reduction approach for the system of equations given in (10). The model parameters 
(k1,…,k6) are load-dependent and have to be computed at each operating point defined by the 
active and reactive powers (P and Q) respectively. Therefore, the TF is load-dependent. Hence, 
it is more convenient to accomplish the design of BPC.  

At any operating point, such TF has a general form of: 
 

      
   

  
 

           

                                    
                                  (11) 

 
The coefficients a0, a1, a2, a3, a4, a5, b0, b1, and b2 vary according to a vector ρ which 

consists of two independent quantities P and Q (i.e., ρϵ[P Q]). The coefficients a6 and a7 are 
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always constant and independent of generator loading. Any change in P, Q leads to 
corresponding changes in a0, a1, a2, a3, a4, a5, b0, b1, and b2. If P and Q vary over their 
prescribed intervals, i.e. Pϵ[P

-
 P

+
] and Qϵ[Q

-
 Q

+
], a family of plants rather than a nominal plant 

are described through Equation 11. Since a0, a1, a2, a3, a4, a5, b0, b1, and b2 depend 
simultaneously on ρ, the plant model can be approximated by the following interval plant: 
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The robust stability of the interval plant is usually tackled via the celebrated Kharitonov 

theorem. However, some conservation is introduced because such interval plant is a 
hypothetical one. The power systems are time variant, and their minimums are not 
simultaneously guaranteed to be reached [16] . This paper aims at treating this problem through 
the proposed hybrid RL/RH - Kh approach. 
 
4. Robustness versus non-fragility: an overview 

Since WECS has many uncertainties as mentioned in literature, therefore the robust 
design is crucial for the system performance. WECS needs a controller K which internally 
stabilizes plant Gp with additive uncertainties ΔGp (Gp±ΔGp) as indicated in Figure 1 and 
satisfies a given performance measure [17-19]. Various design techniques for robust control 
design are presented in [19-21]. Most of the research work is devoted to the structured 
uncertainties whose exact values are known. These algorithms do not incorporate the problems 
associated with the implementation of uncertain controllers. 

The effect of controller uncertainties in the application of robust controllers in linear 
dynamical systems was addressed as fragility problem. It is, therefore, crucial for various 
practical purposes to restrict attention to structured uncertainties in the controller’s design. 
Therefore, a more realistic robustness problem would be the one incorporating both plant 
uncertainties and BPC uncertainties as illustrated in Figure 1. Recent synthesis methods are 
developed to overcome the fragility problem and to guarantee good compromise between 
optimality and fragility [18]. The proposed hybrid RL/RH – Kh approach can be led to reach 
adequate parameterization of the BPC. 

 
4.1. Robust BPC Design 
4.1.1. Necessary and Sufficient Stability Constraints 

Consider the feedback control system shown in Figure 1; it has a characteristic 
polynomial given by: 

 

     2 0d p isD s k s k s k N s   
                                             (14) 

Where: 
 

  7 6 5 4 3 2

7 6 5 4 3 2 1 0D s d s d s d s d s d s d s d s d       
 

  2

2 1 0N s n s n s n  
 

 
Supposing: 
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8 7c d
, 7 6c d

, 6 5c d
,  5 4c d

, 4 3 2 dc d n k 
, 

3 2 2 1 30 31 32p d p dc d n k n k c c k c k     
, 

2 1 2 1 0 20 21 22 23i p d i p dc d n k n k n k c c k c k c k       
,   

1 0 1 0 10 11 12i p i pc d n k n k c c k c k     
,    

 
Equation (14) can be rewritten as: 
 

8 7 6 5 4 3 2

8 7 6 5 4 3 2 1 0 0c s c s c s c s c s c s c s c s c        
 

 
The PID based BPC is a three-term output-feedback controller. The characterization of 

the robust PID controllers necessitates the determination of the values of kp, ki, and kd for which 
Equation (14) is Hurwitz [16] . To select appropriate values for these three-term output-feedback 
controller gains, the stable operating region where the system is stable should be determined. 
The stable operating region can be determined by reaching Kp and Ki as a function of Kd. The 
RL technique is used for identifying the stability boundaries of Kd through only sixteen 
polynomials according to Kharitonov theorem. Figure 2 shows the stability limits of Kd. Here, the 
stability region shrinks as Kd increases. A low value of Kd is therefore desired. 

 
 

 
 

Figure 2. Stability boundaries for kd (kd = [0.00113 0.158]) 
 
 

The Routh-Hurwitz criterion is considered for deducing the necessary set of polynomial 
inequalities that result in sufficient stability constraints, such as: 
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Where: 
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61 7 6 8 5R c c c c 
, 62 7 4 8 3R c c c c 

, 63 7 2 8 1R c c c c 
, 64 7 0R c c

 

51 5 61 7 62R c R c R 
, 52 3 61 7 63R c R c R 

, 53 1 61 7 64R c R c R 
 

41 51 62 52 61R R R R R 
, 42 51 63 53 61R R R R R 

, 43 51 64R R R
 

31 41 52 42 51R R R R R 
, 32 41 53 43 51R R R R R 

 

21 31 42 32 41R R R R R 
, 22 31 43R R R

 

11 21 32 22 31R R R R R 
 

01 11 22R R R
 

 
 

 
 

Figure 3. Routh-Hurwitz stability boundaries for P=0.8pu and Q=0.4pu 
 
 
The stability boundaries are simply expressed as: Ri1=0, for i=0,1,…,6 where stability 

boundaries are zero-equalities. The positivity of R51 is ensured iff kd>{c7(c7c40-c3c30-c3c32kp)-
c5R61}/c7(c3c31-c7c41) which in turn makes R01>0 feasible. A test point at P=0.8pu, Q=0.4pu is 
considered to illustrate the stability boundaries shown in Figure 3. From Figure 3, the instability 
and stability regions ("Unstable" and "Stable") can be easily identified. Clearly, the stability 
region is completely bounded by the constraint R01=0 (dotted- line) which is a subset of that 
bounded by R11=0 (solid-line). The system within the ranges of P and Q have a steadily load 
flow solution (i.e., iterative load flow per condition). As a result, these ranges are mapped into 
controller parameters-plane of Kp - Ki. Two approaches are proposed to study the effect of 
variations P and Q on the reached stability region: The image-set polynomials and Kharitonov 
polynomials approaches. The number of polynomials in the former approach mainly depends on 
the step size selected to scan the intervals of P and Q. The latter approach utilizes only sixteen 
polynomials according to Kharitonov theorem. 

 
4.1.2. Image-set polynomials 

Appropriate step size should be considered for plotting the stability regions of different 
plants in the operating range of P and Q. The choice of the step is arbitrary chosen to produce 
clear defined stability boundaries. For the ranges P= [0.4 1.0] and Q= [0.0 0.5], a step size of 
0.05 is considered for P and Q. The step size is chosen to ensure the highest accuracy in this 
case study which would be proven through simulation results. The stability regions of these 
ranges are illustrated in Figure 4. All stabilizing controllers that guarantee robust stability over 
these ranges result from the intersection of these regions. 

Remark: a certain stability region in the controller parameter plane can be attained 
using image-set polynomials. However, it requires plotting the stability boundaries of 143 plants 
that cover the full ranges of P and Q with the specified step size. Therefore, the relatively high 
and time consumption are the main drawbacks of this approach. 
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Figure 4. Stability regions for P=[0.4 1.0] and Q=[0.0 0.5] 
 
 

3.1.3. Kharitonov polynomials 
Only sixteen vertex plants have to be considered to guarantee the controller robustness 

under load uncertainties. Necessary and sufficient conditions for robust stability of according to 
Kharitonov theorem are discussed in [22 - 24]. 

Definition 1. The interval polynomial is a set of real polynomial f nth degree of the form 
of P(s)= a0+a1s+a2s

2
+…+ans

n
, where the coefficients vary over independent intervals i.e. 

0 0 0  a a a    , 1 1 1  a a a    , 2 2 2  a a a    ,...,
  n n na a a    . 

Theorem 1. Each polynomial in the interval family f is Hurwitz-stable iff the following 
Kharitonov polynomials are Hurwitz-stable (proof in [22 - 24]): 

 

 1 2 3 4 5 6
2 3 60 1 4 5 ...K s a a s a s a s a s a s a s       

 
 2 2 3 4 5 6

0 1 4 52 3 6 ...K s a a s a s a s a s a s a s       

 
 2 2 3 4 5 6

0 3 41 2 5 6 ...K s a a s a s a s a s a s a s       

 
 2 2 3 4 5 6

1 2 5 60 3 4 ...K s a a s a s a s a s a s a s       
 

 
Applying this theorem to the WECS, whose parameters defined by 12 and 13, the 

controller has to stabilize the following vertex plants simultaneously: 
 

     2 0d p isD s k s k s k N s   
, 1,2,3,4i  , 1,2,3,4j   

 
Sixteen vertex polynomials are termed as Δi =1,2,3,…,16 and given in the appendix.  
The boundaries of each coefficient are computed for the predefined ranges of P and Q 

as:  
 

7 [1    1],d 
 6 [47.171    47.171],d 

 5 [10791    10818],d 
 4 [437755    438790],d 

 3 [6.205 6    6.4902e+6],d e 
 

2 [3.3709 7   4.5144e+7],d e 
 1 [8.9366 7 2.2286e+8],d e 

 0 [3.1132 8    6.1206e+8],d e 
  

2 [3.4897 7    9.7385e+7],en  
 1 [8.4076 8    2.2124e+9],en  

 0 [3.6923 9    7.2591 9],n e e  
.  

 

 
Figure 5. Stability region for Kharitonov plants 
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Accordingly, the stability regions of the sixteen polynomials are shown in Figure 5. 
 

4.2. Non-fragility analysis 
To enhance non-fragility of a robust blade pitch controller shown in Figure 1, robust 

stability basin is searched for the point (kp(0), ki(0), kd(0)) that allows for maximum perturbations 
in the controller parameters (Δkp, Δki, Δkd). Characterization of all robust controllers is firstly 
developed where the convex polygon is shown in figure. 6 characterizes all robust stabilizing 
BPCs. 

In this paper, the most non-fragile BPC has selected at the center of the maximum area 
inscribed rectangle that permits for maximum dependent variations in the parameters of the 
controller. It is evident from figure. 6 that the stability region by Kharitonov polynomials is a 
subset of that obtained by image-set polynomials, and therefore the maximum area inscribed 
rectangle of the latter is larger than that of the first. Hereafter, the maximum allowable ranges 
for Kp and Ki while Kd≈[0.00113 0.158] are given by Kp≈[0.1 0.625], Ki≈[0.0 3.0] for image-set 
polynomials and given by Kp≈[0.1 0.4], Ki≈[0.0 2.45] for Kharitonov polynomials. The most 
resilient controller is considered at the center of the box of controller parameters as follows: 

Image-set polynomials:  Kp(0) =0.3625, Ki(0) =1.500, Kd(0) =0.079565   
Kharitonov polynomials: Kp(0) =0.2500, Ki(0) =1.125, Kd(0) =0.079565   
These values can permit for maximum allowable controller perturbations. 
 
 

5. Stability Regions Classification and Verification  
To properly verify the theoretical findings of the proposed hybrid RL/RH - Kh approach, 

different local (typically gradient-based) or global (typically non-gradient based or evolutionary) 
optimization techniques are considered to check the stability region. For this purpose, four 
various performance indices are used such as Integral Absolute Error (IAE), Integral Square 
Error (ISE), Integral Time Absolute Error (ITAE) and Integral Time Square Error (ITSE) [25 – 
35]. In this study, the commonly used optimization techniques in engineering optimization 
applications are considered such as Zeigler Nicolas (ZN), Simplex Algorithm (SA) and Genetic 
Algorithm (GA) [25 – 29].  

These different most-used metaheuristic optimization techniques are considered for 
reaching the optimal PID-BPC gains. Reaching optimal gain values inside the pre-specified 
stability zone defined by the hybrid RL/RH - Kh approach explains the technique’s capability 
towards providing an optimal stability area. In such area, the BPC will be robust, non-fragile and 
resilient. As depicted in Figure 6, there is a slight difference among robustness, non-fragility, 
and resiliency. From Figure 6, it is clear that the resiliency region is a subset of the non-fragility 
region. Both latter located inside the robust stability region. Therefore, the robustness stability 
property of the resilient one is better than that of the non-fragile one. Hereafter, the most 
resilient BPC parameters are the most robust non-fragile ones.   

For validating the effectiveness of the proposed hybrid RL/RH - Kh approach as a 
control design tool, the different metaheuristic optimization techniques are suggested for the 
optimal BPC gains determination.   

The efficiency of the hybrid RL/RH - Kh approach is confirmed through the 
comprehensive comparative study using both conventional and metaheuristic based control 
design techniques considering the commonly used performance indices. From Figure 6, it is 
clear that all optimal BPC gains are located inside the predefined stability region. Both SA and 
ZN provide robust BPC gains inside the conservative stability region (B).  

From Figure 6, the use of GA technique allows reaching robust and non-fragile BPC 
gains inside the maximum area inscribed within the stability region (B). However, the GA fails to 
provide the best resilient BPC. The GA technique is better than other proposed techniques in 
attaining the most robust, non-fragile BPC. Therefore, the GA is the nearest AI based 
metaheuristic optimization techniques capable of reaching the resiliency zone. 

From Figure 6, all BPC parameters obtained by both classical and AI based 
metaheuristic optimization techniques always located within the pre-specified stability region 
presented by RL/RH - Kh.  

Table 1, presents a comparative assessment and analysis of two representative 
optimization methods for BPC-PID determination. The optimal gains for BPC system using 
standard ZN are Kp =0.083, Ki =0.341, Kd =0.08. From Table 1, the ITSE index has better tuning 

http://www.nature.com/articles/srep02619
http://www.nature.com/articles/srep02619
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performance due to its minimum objective function and less computation time. The SA and ZN 
techniques failed in finding either resilient or non-fragile BPC. Clearly, the robust and/or non-
fragile BPC is not necessarily considered as a resilient one as illustrated in Table 2. 

 
 

 
 

Figure 6. Maximum-area inscribed rectangular with Kd = [0.00113     0.158] 
 
 

Table 1. A comparative assessment and analysis of different optimization methods for BPC-PID 
 SA GA 

IAE ISE ITAE ITSE IAE ISE ITAE ITSE 

Kp 0.109 0.087 0.074 0.108 0.320 0.388 0.361 0.361 

Ki 1.612 2.755 1.005 1.802 0.718 0.541 0.528 0.528 

Kd 0.054 0.096 0.034 0.060 0.078 0.091 0.039 0.039 

Obj. fun. 0.094 0.043 0.014 0.002 0.067 0.067 0.067 0.067 
Time 0.457 0.456 0.455 0.450 0.866 0.738 0.773 0.703 

 
 

Table 2. A comparative assessment and analysis for all proposed BPC-PID controllers 
 Robust Non-fragile Resilient 

BPCResilient(A) √ √ √√√ 
BPCResilient(B) √ √ √√√√ 
BPCSA √ × × 
BPCZN √ × × 
BPCGA √ √ √ 
BPCABC √ √ √√ 

 
 

6. Simulation Results 
6.1. Robust Stability of Exact Controller {Kp(0) , Ki(0), Kd(0)}.  

The most resilient controller is selected as Kp(0) =0.3625, Ki(0) =1.5, Kd(0) =0.079565. 
The effectiveness of such controller, to guarantee robust stability over the entire range of P and 
Q is depicted in Figure. 7.  

 
6.2. Robust Stability of ±30% Perturbed Controller 

The gains of the exact controller are reduced by 30%, i.e. Kp =0.7Kp(0), Ki =0.7Ki(0), Kd 
=0.7Kd(0). The effectiveness of the perturbed controller, to guarantee robust stability over the 
entire range of P and Q is depicted in Figure 7.  

For the modeling and control of the system’s stability, the resilient BPC is simulated at 
an operating point given by P=0.9pu and Q=0.4pu. In this paper, mechanical power disturbance 
and wind speed variation are considered. 

 
5.3. Small-Signal Disturbance and Resiliency Assessment 

The system response for 0.1pu step increment in the reference mechanical power at 
t=0.5s with full recovery after 100 ms is depicted in Figure. 7. Remarkably, the proposed BPC 
can enhance the system damping. In Figure. 7, explicitly, the resiliency of the proposed BPC is 
examined by considering the rotor angle response for the same disturbance with exact and 
perturbed controllers. 

 

http://www.nature.com/articles/srep02619
http://www.nature.com/articles/srep02619
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Figure 7.  Rotor angle response for 0.1pu increment in torque with exact and perturbed BPCs 

 
 
5.4. Large Signal Disturbance Performance Assessment  
5.4.1. Robustness Assessment 

To assess the effectiveness of the proposed BPC and to verify its robustness, the 
system dynamic behavior in the presence of significant disturbances should be verified. This 
consideration is as equally important as studying the system performance under small 
disturbance. Therefore, two wind profiles are tested; a step change and stochastic wind 
patterns. The wind profiles are chosen to represent large, as well as small wind guests.  In 
Figure 8, the system is subjected to a step change wind profile. Noticeably, the proposed BPC 
is robust under step wind disturbance. 

 
 

 
Figure 8. Rotor angle response for step change wind speed profile with exact and perturbed 

BPCs 
 
 
5.4.2. Non-Fragility Assessment 

To investigate the non-fragility property of the proposed design, the system is subjected 
to a stochastic wind profile. In Figure 9, it is evident that the design is non-fragile under this 
realistic wind profile. 
 
 

 
 

Figure 9.  Rotor angle response for realistic wind speed profile with exact and perturbed BPCs 
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6. Conclusion 
In this paper, a real wind energy conversion system had been modeled in 

MATLAB/SIMULINK environment. Although the network model used was simplified to some 
extent, the effects of the main elements of the network were considered. These elements 
included the wind turbine, gearbox, bus bars, transformers, and cables. The transient stability 
during the wind variation has been analyzed. An elegant control design approach has been 
presented in this paper for optimal design of the PID-BPC.  

According to this research work, the single analysis using either Routh-Hurwitz criterion 
or Root-Locus approach was insufficient to identify the most robust and resilient controller. 
Referential Integrity for the results of the two analyses RH and RL (as proposed by the new 
approach RI-RH/RL) showed accuracy in defining the stability polygon. Based on the precious 
analysis attained by RI-RH/RL approach, a new hybrid Kharitonov based RI-RH/RL approach 
was proposed for the optimal selection of the controller parameters. Simulations results based 
on WECS model are carried out to reveal the effectiveness of the proposed approach. Thus, the 
approach used succeeded in proving its capability to select the most resilient controller.  

In the forthcoming work, the author will focus on building a MATLAB toolbox for the 
hybrid Kharitonov based RI-RH/RL approach from which the most robust resilient region can be 
identified. Such region can be conveniently considered as bounded constraints area rather than 
a stability condition for any proposed optimization techniques used for optimal gain scheduling. 
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Appendix 
 

 
Table 1. Operating conditions 

Infinite bus voltage V∞=1 Gear ratio N=37.5 
Active power P=0.8 Reactive power Q=0.4 
Torque factor Kth=11.86   
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Table 2. System data 
Transmission line resistance Rtl=0 Transient d-axis reactance Xd'=0.165 

Transmission line reactance Xtl =0.4 Sub-transient d-axis reactance Xd''=0.128 

Turbine speed r.p.m Nr=40 Sub-transient q-axis reactance Xq''=0.193 

Blade radius rb=62.5 D-axis transient field time constant τdo'=1.94212 

Wind speed m/sec VW =10 Q-axis sub-transient field time constant τdo''=0.01096 
No. of poles PP=4 Q-axis sub-transient field time constant τqo''=0.0623 

Inertia constant h=10 Angular speed of the generator (base value) [rad/sec] ωo=100π 
Zeta ζ=0.02 ωn ωn=100 
Generator armature resistance Ra=0.0 Wind turbine filter time constant τp=1/(2*2.7*π

) 
D-axis reactance Xd=1.6 Exciter time constant τe=0.05 
Q-axis reactance Xq=1.55 Exciter gain Ke=50 

 
 

Kharitonov polynomials for the proposed system:  

    8 7 6 5 4 3 2 2 2
05 4 1 0 2 17 6 3 21 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
07 6 3 2 2 15 4 1 02 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
07 4 3 0 2 16 5 2 13 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
06 5 2 1 2 17 4 3 04 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
2 15 4 1 0 07 6 3 25 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
2 17 6 3 2 05 4 1 06 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
2 17 4 3 0 06 5 2 17 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
2 16 5 2 1 07 4 3 08 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
25 4 1 0 1 07 6 3 29 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
27 6 3 2 1 05 4 1 010 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
27 4 3 0 1 06 5 2 111 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
26 5 2 1 1 07 4 3 012 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
1 05 4 1 0 27 6 3 213 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 

    8 7 6 5 4 3 2 2 2
1 07 6 3 2 25 4 1 014 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 
    8 7 6 5 4 3 2 2 2

1 07 4 3 0 26 5 2 115 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             
 

    8 7 6 5 4 3 2 2 2
1 06 5 2 1 27 4 3 016 d p id s d s d s d s d s d s d s d s k s k s k n s n s n             

 
 


