
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 8, No. 3, December 2017, pp. 589 ~ 596
DOI: 10.11591/ijeecs.v8.i3.pp589-596 589

Received August 15, 2017; Revised October 25, 2017; Accepted November 11, 2017

Software Aging Forecasting Using Time Series Model

I. M. Umesh*
1
, Dr. G. N. Srinivasan

2
, Matheus Torquato

3

1
Research Scholar, Bharathiar University, Coimbatore, Tamil Nadu, India.

2
Professor, R.V.College of Engineering, Bengaluru, Karnataka, India.

3
Professor, Federal Institute of Alagoas (IFAL), Campus Arapiraca - AL, Brazil

*
Corresponding author, e-mail: umesh.mphil@rvce.edu.in

Abstract
 With the emergence of virtualization and cloud computing technologies, several services are

housed on virtualization platform. Virtualization is the technology that many cloud service providers rely on
for efficient management and coordination of the resource pool. As essential services are also housed on
cloud platform, it is necessary to ensure continuous availability by implementing all necessary measures.
Windows Active Directory is one such service that Microsoft developed for Windows domain networks. It is
included in Windows Server operating systems as a set of processes and services for authentication and
authorization of users and computers in a Windows domain type network. The service is required to run
continuously without downtime. As a result, there are chances of accumulation of errors or garbage
leading to software aging which in turn may lead to system failure and associated consequences. This
results in software aging. In this work, software aging patterns of Windows active directory service is
studied. Software aging of active directory needs to be predicted properly so that rejuvenation can be
triggered to ensure continuous service delivery. In order to predict the accurate time, a model that uses
time series forecasting technique is built.

Keywords: Active Directory, Cloud computing, Virtualization, Software aging, Rejuvenation

Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
One of the main issues in cloud services is software aging, be it Software as a Service

(SaaS), Platform as a Service (PaaS) or Infrastructure as a Service (IaaS). Software aging is
the type of software fault that reduces the performance of the software system. Software aging
happens due to the accumulation of aging related bugs that consume resources leading to
resource exhaustion. Aging effects are the result of error accumulation that leads to resource
exhaustion. This status of softwares makes the system gradually shift from healthy state to
failure prone state. The system performance metrics needs to be monitored in order to find the
aging patterns while the system is running. The accurate prediction of time of aging needs to be
forecasted to initiate the necessary actions to counter the aging effects.

The software aging consequences can be avoided by using the technique called
software rejuvenation. Software rejuvenation is the proactive technique proposed to counter
software aging. Software rejuvenation mechanism involves a series of steps such as
periodically stopping the application and restarting it after cleaning the internal state. Software
rejuvenation executes the actions that include garbage clearance, flushing of buffer queues,
reinitializing of the internal kernel tables and cleaning up of the file systems. Intrinsically, it
cleans and restores the application operating environment. The rejuvenation methods vary in
the approach they employ for carrying out the rejuvenation. Some of the techniques use time-
based approach which rejuvenates the system at pre-determined time interval. The other
techniques in practice are inspection-based which involves the monitoring of aging indicator
metrics and apply rejuvenation mechanism during the forecasted period. As rejuvenation
mechanisms employ reboot type of activity, the service may be disrupted which in turn has
business impact.

Important research issue is to determine when and how often the software should be
rejuvenated and the rejuvenation techniques to be followed to avoid the software aging effects.
Usually cloud services have virtualized environment for optimized maintenance. Hence software
aging on virtualized environment needs to be addressed. There exists a need to rejuvenate the
different layers of the virtualized environment using innovative approaches to enhance the

http://apprenda.com/white-papers/saas-hub/?utm_source=library&utm_medium=post&utm_term=saaspaasiaas&utm_campaign=saas-hub
http://apprenda.com/white-papers/saas-hub/?utm_source=library&utm_medium=post&utm_term=saaspaasiaas&utm_campaign=saas-hub

 ISSN: 2502-4752

 IJEECS Vol. 8, No. 3, December 2017 : 589 – 596

590

service availability by reducing the downtime to zero. The virtualized environment consists of
different layers such as physical hardware, hypervisor (VMM), Virtual machines (VM), Operating
System and Applications running on top of operating system. The Virtual Machine Monitor
(VMM) also called as hypervisor is liable to suffer failures or hangs due to software aging [1].
The aging issues in these layers are to be monitored and necessary rejuvenation action to be
triggered in order to enhance the service availability and reduce the downtime.

Windows active directory is a necessary service that is used to authenticate the users in
the domain network. Software aging of this service may lead to hazardous consequences like
service downtime which in turn has business impact. Hence, there exists a need to analyze the
software aging patterns in the active directory service for proper estimation of rejuvenation
schedule. In this work, analysis is done on live work environment and results are discussed.

The remaining sections, Section 2 presents related work, Section 3 details the software

aging study followed by Section 4 that discusses about the results and analysis. The conclusion

is covered in Section 5.

2. Related Work

Researchers have employed different techniques for aging detection and rejuvenation.

Previous studies have used measurement-based and model-based rejuvenation approaches.

Measurement based approaches directly monitor system variables which are aging indicators

and predict software aging patterns by analyzing the collected runtime data statistically. Model-

based studies can be distinguished by the type of stochastic process used to model the

phenomenon such as Markov Chains and Petri Nets.

Alonso et al., [2] evaluated machine learning algorithms such as decision trees,

K-nearest neighbor, and Random forest using the R statistical language for aging prediction.

The researchers used different sets of values when the ML algorithm had parameters to create

different configurations of the same algorithm. The results indicated Random Forest performs

better than the rest of the models. Toshiaki Hayashi et al., [3] estimated the performance

degradation by passively measuring the traffic exchanged by virtual machines. The authors

have justified the selection of traffic characteristics as a performance information source by

citing several advantages. This data along with the recorded traffic metrics was tested with the

C4.5 machine learning classifier that constructed a decision tree to identify performance. This is

a non-intrusive method of metrics collection as the traffic measurement is done on separate

machine that is not a part of virtual environment. This facilitates the metrics extraction even

under extreme performance degradation.

Jing Liu et al., [4] proposed an adaptive failure detection method. The parameters

chosen for aging detection are CPU and memory usage; the delay in transmission of packet

between service components and aging failure detection module. The collected metrics are

encapsulated into a packet and sent to the aging detector module. The procedure used

achieves two tasks, packet arrival time and the information it carries. Some failure probability is

expected if the message does not arrive on time. The CPU usage and free memory available is

used to detect the aging severity. The aging severity is divided into four levels i.e., from L1 to

L4. Aging Degree Evaluator module inserts it into centralized failure event queue. Based on

aging degree number, this queue is ordered and the top events will be rejuvenated inevitably.

The research work of Yongquan Yan [5] indicates the significance of choosing the

proper data set. The researcher proved that choosing the proper data set is more important than

the method used to analyze the collected metrics. The work compares the resource utilization of

a webserver that is not subjected to artificial load, but a true load which has aging patterns using

linear and nonlinear methods. Lei Cui et al. [6] concentrated their work on finding the impact of

software aging defect on virtual machine and physical machines. The aging rate in both the

forms was calculated and compared. The outcome of this study indicate aging effects are more

in virtual machines than physical machines which was caused due to aging effects in code of

hypervisor or depletion due additional calls in VMM layer.

IJEECS ISSN: 2502-4752

Software Aging Forecasting Using Time Series Model (I. M. Umesh)

591

The outcome of the study of the existing techniques is that there is a scope for research

in finding non-intrusive, platform independent and more accurate aging prediction techniques.

3. The proposed model for software aging forecasting

3.1 Data Collection
In order to find whether the aging patterns exist in long running applications, the study is

conducted on long running service Windows Active Directory. For this study, an institute with an
approximate user’s strength of six thousand is chosen. It is necessary to monitor multiple
metrics that reflect broader utilization of the resources. Two metrics are considered for this
study i.e., CPU usage and memory availability which are aging indicators. The metrics are
collected for a period of six months and analysis is done. The metrics and justification for
choosing these aging indicators is given in Table 1.

Table 1. Aging Indicators
Aging indicator Description

CPU usage System-wide aging indicator that updates CPU load in percentage
Memory availability System-wide aging indicator that updates available memory in percentage

To capture the data, a Network Monitoring tool called PRTG (Paessler Router Traffic
Grapher) is used. Figure 1 & 2 depict the workload graphs during the data collection.

Figure 1. CPU workload graph during the metrics collection

Figure 2. Memory Availability graph during the metrics collection

It is necessary to collect performance metrics without affecting the performance of
server at run time. The collected metrics indicate the resource consumption of performance
related parameters and hence non-intrusive approach has been used as the measurement
program does not affect the hardware or software functionality and load. The PRTG tool

 ISSN: 2502-4752

 IJEECS Vol. 8, No. 3, December 2017 : 589 – 596

592

sensors use the programming interfaces of each device wherever possible. This means the
administrator does not have to install additional client applications or agents on each device,
thus simplifying and accelerating the setup and keeping the devices free of additional
performance overhead. To test the overhead of running PRTG, resource consumption was
observed from zero workload machine. The graph indicates the negligible overhead of metrics
collector on performance of the application.

Figure 3. Performance overhead of metrics collector

3.2 Statistical analysis of collected data

Statistical analysis of software aging helps in collecting and scrutinizing collected

metrics and finding software aging indicators. The presented analysis considers a period of six

months. The monitoring interval was of two hours. Figure 4 has the results of CPU usage

percentage of virtual machine that runs active directory. The Figure 5 depicts the results of

Memory consumption. The plots also contain an approximated linear function of CPU usage

behavior.

Software aging data analysis generally uses Mann-Kendall test to evaluate trend in the

data [7-9]. The Mann-Kendall test [10] checks the null hypothesis, H0, which shows that there is

no trend in the data during the time, against the alternative hypothesis, H1, which indicates an

upward or a downward monotonic trend in the data. As software aging is a cumulative process,

the Mann-Kendall test can be used to reveal trends of software internal state degradation.

Among Mann-Kendall tests results we have the Z-value which is used to accept or reject the null

hypothesis. Z-value close to zero suggests no trend in the data; a high absolute value indicates

the existence of a trend. Figure 4 and Figure 5 indicate the CPU usage trend and memory

usage trend respectively.

Figure 4. CPU usage trend

IJEECS ISSN: 2502-4752

Software Aging Forecasting Using Time Series Model (I. M. Umesh)

593

Figure 5. Memory Consumption trend

The Table 2 presents the results of statistical analysis made in the data. The results

show Mann-Kendall Z-value is high than zero. Therefore, it is possible to reject the null

hypothesis (no trend in the data). The positive value indicates an upward monotonic trend in the

data. To calculate the slope of the monotonic trend, we used the Sen Method [11]. The Table 2

also presents the estimated slope and the 95% confidence interval for this slope.

Table 2. Statistical Analysis
Parameter Memory Consumption CPU Usage

Mann-Kendall Z-value 70.4 46.2
Estimated slope 550.9424 KB/2h 0.0009 %CPU/2h

95% confidence interval
(550.8521 KB/2h,
551.0322 KB/2h)

(0.0009 %CPU/2h,
0.001 %CPU/2h)

3.3 Prediction using time series forecasting

This section discusses the proposed software aging forecasting model. To prevent the
system crash, it is necessary to predict resource exhaustion time. The CPU usage metrics has
been tabulated in the Table 3. The data from different time slots of a day that were captured are
entered in a table. This is because number of users (load) varies at different time slots. Average
values of the CPU consumption percentage are tabulated. Based on this, moving average of
four slots is calculated. Moving average (MA) is a calculation to analyze data points by creating
series of averages of different subsets of the full data set. In this scenario, MA is calculated on
average value of CPU usage metric.

Table 3. Predictions using time series

Time Day
Time
Slot

CPU
Usage

(%)

Moving
Average

Center
Moving
Average

St, It St
Deseas-
onalized

data
Tt

Predic
tions

1 Day 1 1 12

0.30 40.39 45.25 13.44
2

2 70

1.44 48.58 46.38 66.84

3

3 63 48.25 48.625 1.30 1.22 51.76 47.52 57.83
4

4 48 49 50 0.96 1.03 46.77 48.65 49.93

5 Day 2 1 15 51 51.25 0.29 0.30 50.49 49.78 14.79
6

2 78 51.5 52 1.50 1.44 54.13 50.92 73.37

7

3 65 52.5 52.625 1.24 1.22 53.40 52.05 63.35
8

4 52 52.75 53 0.98 1.03 50.67 53.18 54.58

9 Day 3 1 16 53.25 53.5 0.30 0.30 53.85 54.32 16.14
10

2 80 53.75 54.75 1.46 1.44 55.52 55.45 79.90

11

3 67 55.75 55.875 1.20 1.22 55.05 56.58 68.87
12

4 60 56 56 1.07 1.03 58.46 57.72 59.23

13 Day 4 1 17 56 56.75 0.30 0.30 57.22 58.85 17.48
14

2 80 57.5 58.75 1.36 1.44 55.52 59.98 86.43

15

3 73 60

1.22 59.98 61.12 74.39
16

4 70

1.03 68.21 62.25 63.89

17 Day 5 1

0.30

63.38 18.83
18

2

1.44

64.52 92.97

19

3

1.22

65.65 79.91
20

4

1.03

66.78 68.54

 ISSN: 2502-4752

 IJEECS Vol. 8, No. 3, December 2017 : 589 – 596

594

The moving average is taken from an equal number of data on either side of a central
value. This ensures that variations in the mean are aligned with the variations in the data rather
than being shifted in time. Once the values are smoothed using moving average method, it can
be further smoothed by center moving average method, a special procedure applied when the
number of seasons is even. The relevant graph is shown in figure 6.

Figure 6. Graph indicating CPU usage and center moving average

The seasonal component St and irregular component It are obtained by dividing actual
data by Centre Moving Average. By doing this we obtained the seasonality and irregularity of
the data. The value 1.30 means, in the day 1, third time slot, seasonality and irregularity
component is 30% above the base line data. The value 0.29 mentioned in fourth time slot of day
1 indicate that the seasonality and irregularity component is 71% below the baseline data. The
next step is to get rid of irregularity component, It. This is done by averaging time slots of each
day. The values generated are 0.30, 1.44, 1.22 and 1.03 for our data. This means during third
time slot of day 1, the seasonal data is 22% higher than the baseline data. The irregularity has
been removed by using this method.

The next step is to deseasonalize the data. This can be achieved by dividing the time
series data with seasonal component. So far, we have removed the irregularities and
deseasonalized the data. The next step is to find the trend component. In order to get trend
component, Simple Linear Regression is to be performed using deseasonlized data as Y
variable and time as X variable. The Simple Linear Regression and Co-efficients, Y Intercept
and Slope obtained are 44.11 and 1.33 respectively. Now, the trend component can be
obtained by using the formula,

Tt = Y variable + X variable * time component (1)

The final values, predictions can be obtained by multiplying seasonal component with trend
component. The summary data is presented in the Table 4.

Table 4. Summary Data
Regression Statistics

Multiple R 0.876714
R Square 0.768627

Adjusted R Square 0.7521
Standard Error 3.064644
Observations 16

4. Results and Discussions

In order to evaluate the accuracy of the proposed technique, forecasting of the values is
done for already collected metrics. The results indicate that the predicted values are accurate.
The Figure 7 indicate graph that depicts the comparison of actual values and predicted values.

U
sa

g
e

P
er

ce
n

t
--

 >

Time --- >

IJEECS ISSN: 2502-4752

Software Aging Forecasting Using Time Series Model (I. M. Umesh)

595

Figure 7. Comparison of actual values with predicted values

The predictions done here are for one day. The same technique can be used for
forecasting the values of aging indicators for upcoming week or a month. The aging indicators
taken here are CPU usage percentage and memory availability percentage. The other
significant parameter to be used here is the threshold value of aging indicator. i,e, maximum
load tolerable by the system. The threshold value can be obtained by studying the history of the
service like when the system was crashed, the reason for failure and what were the value of
parameters. Once the threshold values are identified, the weights are assigned to these
parameters depending on whether the system is processor intensive application or memory
intensive application. By varying the weights and the threshold, we can get different models of
decision-making. The inputs to the model are x1 and x2 that indicate CPU usage and memory
availability which are aging indicators. The weights w1 and w2 are assigned depending on the
type of application. Depending on whether the weighted sum ∑jwjxj is less than or greater than
some predetermined value, rejuvenation can be triggered.

5. Conclusion

The proposed forecasting technique can be a potential candidate for software aging
prediction. As more and more educational institutes are using private cloud services as a part of
their IT infrastructure, ensuring the continuous service delivery is important. This work helps in
having better rejuvenation schedules thus avoiding downtime.

References
[1] Melo Matheus, Paulo Maciel, Jean Araujo, Rubens Matos, and Carlos Araujo. Availability study on

cloud computing environments: Live migration as a rejuvenation mechanism. Proc. 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. 2013; 1-6.

[2] Alonso, J. Belanche, L. Avresky, R. Predicting Software Anomalies Using Machine Learning
Techniques. Proc 10th IEEE International Symposium on Network Computing and Applications

(NCA). 2011; 163-170.
[3] T. Hayashi and S. Ohta. Performance Degradation of Virtual Machines via Passive Measurement

and Machine Learning. International Journal of Adaptive, Resilient and automates systems. 2014;
40-56.

[4] Jing Liu, Jiantao Zhou, Rajkumar Buyya. Software Rejuvenation based Fault Tolerance Scheme for
Cloud Applications. Proc IEEE 8

th
 International Conference on Cloud Computing. 2015; 1115-1118.

[5] Yongquan Yan. A Practice Guide of Predicting Resource Consumption in a Web Server. Review of
Computer Engineering Studies. 2015; 1-8.

[6] Lei Cui, Bo Li, Jianxin Li, James Hardy, and Lu Liu. Software Aging in Virtualized Environments:
Detection and Prediction. Proc. International Conference on Parallel and Distributed Systems, IEEE.
2012; 718-719.

[7] Grottke, M., Li, L., Vaidyanathan, K., & Trivedi, K. S. Analysis of software aging in a web server.
IEEE Transactions on reliability. 2006; 55(3): 411-420.

U
sa

g
e

P
er

ce
n

t
--

 >

Time --- >

 ISSN: 2502-4752

 IJEECS Vol. 8, No. 3, December 2017 : 589 – 596

596

[8] Garg, S., Van Moorsel, A., Vaidyanathan, K., & Trivedi, K. S. A methodology for detection and
estimation of software aging. Proc. Ninth International Symposium on Software Reliability
Engineering. IEEE. 1998: 283-292.

[9] Machida, F., Andrzejak, A., Matias, R., & Vicente, E. On the effectiveness of Mann-Kendall test for
detection of software aging. Proc. IEEE International Symposium on Software Reliability Engineering
Workshops. 2013: 269-274.

[10] Mann, H. B. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society.

1945: 245-259.
[11] Sen, P. K. Estimates of the regression coefficient based on Kendall's tau. Journal of the American

Statistical Association. 1968; 63(324):1379-1389.
[12] Xiaozhi Du, Huimin Lu, Gang Liu. Software Aging Prediction based on Extreme Learning Machine,

TELKOMNIKA. 2013; 11(11): 6547-6555.
[13] Ferdy Nirwansyah, Suharjito. Hybrid Disk Drive Configuration on Database Server Virtualization.

Indonesian Journal of Electrical Engineering and Computer Science. 2016; 2(3): 720 – 728.

