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Abstract 
Loss issue is significant in power system since it affects the operation of power system, which 

ultimately can be translated to monetary effect. Incremental demand that explicitly adding the reactive load 
causes extra heating losses in the transmission circuit. Without appropriate remedial control, the 
temperature increase on transmission line cable would end with insulation failure. This phenomenon can 
be alleviated with a proper compensation scheme that provides optima l solution along with avoidance of 
under-compensation or over-compensation. Evolutionary Programming (EP) has been recognised as one 
of the powerful optimisation technique, applied in solving power system problems. Nevertheless, EP is an 
old technique that sometimes could reach to a settlement that is not fully satisfied. Thus, the need fora new 
approach to improve the setback is urgent. This paper presents immunized-evolutionary algorithm based 
technique for loss control in transmission system with multi -load increment. The classical EP was 
integrated with immune algorithm so as to reduce the computational burden experienced by the classical 
EP.The algorithm has been tested on an IEEE 12-Bus System and IEEE 14-Bus System.Comparative 
study was conducted between EP and IEP in terms of optimisation performance. The optimal size and 
location of PV determined by IEP was able to control the loss in transmission system when the load 
increases. Results obtained from the studies revealed the merit of the proposed IEP; indicating its 
feasib ility for future implementation in practical system. 
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1. Introduction 

Electricity demand is reported to be increasingin many parts of the world. To ensure 

smooth and continuous supply, more energy need to be produced. Adding new conventional 
fuel power plant would be a direct method, but the high economic cost and the gas emission 
effect that comes together deter the installation without proper planning.Renewable energy (RE) 

offers a sustainable green energy alternative to the carbon-emission fossil fuel. Many countries 
have decided to utilise large-scale RE, such as solar power, wind power and hydro power. An 
extensive review and discussion on integrating large-scale photovoltaic (LSPV) power 

generation in China are reported in [1]. A high penetration PV power plant connected to the 
distribution network feeder wasstudied by [2]. Technical challenges and solutions to overcome 
power system stability challenges due to LSPV integration worldwide were presented by [3]. 

Although some researchers foresee that currently available RE resource is sufficeto serve 
current demand, extensive planning to optimise the size and location of RE with constraints is 
needed. Reference [4] presents how they determine the lowest-cost mix of RE resources, 

demand response and energy storage to replace conventional fuels in Ontario, Canada. Without 
optimisation, the location and size of RE may cause more loss and cost.  

Many optimisation techniques have been employed and improvised in finding the best 

solution. Particle swarm optimization (PSO) was used in [5–11] to determine the best solution of 
their objective function with constraints. Subsequently, ant -colony optimisation (ACO) and 
symbiotic organism search (SOS) are other optimisation technique used in [12–20]. These 

swarm intelligence (SI) are mostly developed to address stationary optimisation problems, thus 
not the best method for dynamic problems [15]. 
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EP was used by many researchers to optimize the performance of a system [21–23]. 

EP has its advantage in a way that it can compute the optimal solution for a power system in a 
very short time, but possesses an ability to produce nearly optimal settlement solution [21]. 
Therefore, cloning technique is adapted to create better individuals for mutation in EP. This 

immune EP (IEP) would provide broader space for tournament selection. In this paper, IEP is 
used to optimise the size and the location of PV to be injected into the transmission system with 
low loss as the objective function. Results obtained from the study, implemented on the chosen 

test systems demonstrated the effectiveness of the proposed technique.  
 
 

2. Research Method 
2.1. Compensation Scheme 

One of the aims of this study is to see the feasibility of RE as a mean to compensate 

loss in transmission system. Loss control issue is very crucial in power system as uncontrollable 
loss would subject a system to fail. As loss and instability of a network would increase with the 
increased reactive loaddemand, an injected PV may be a saver by providing more real power 

supply. Nevertheless, a backup energy supply cannot be simply added to a power system 
network. Figure 1 shows how the performance of a transmission system may deteriorate when 
PV is incrementally injected withoutadhering to any constraint while load is fixed.  

 
 

 
 

 Figure 1. A network performance with injected non-optimized PV 

 
 

Installation of PV to an existing network with improper sizing may lead to possible 

higher loss and putting the network at high risk of collapse when no proper planning exists. As 
such, the use of IEP is suggested as the optimisation tool in planning such compensating 
scheme. IEP will be integrated into the pre-optimised load flow of transmission system to 

calculate the optimum PV in terms of size and location to improve the performance of the 
network. The overall idea of this work is depicted in Figure 2.  

 

 

 
Figure 2. Overview of determining PV size and location using IEP 
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Figure 3. Flowchart of the overall work 
 

 
2.2. Conceptual Idea 

The main objective of this work is to minimise the total loss when reactive load 

increases by injecting PV at a load bus. IEP is employed to determine the optimum size and 
location of PV such that highest total loss reduction percentage can be achieved while fulfilling 
load demand and other network constraints. The idea can be conceptually presented by  

Figure 3. The detailed formulation of the loss control problem is presented in the following 
sections. 
 

2.3. Objective Function 
The objective function to be minimized is the system losses given by  Kron’s loss 

formula: 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ ∑ 𝑃𝑖 𝐵𝑖𝑗𝑃𝑗 + ∑ 𝐵0𝑖𝑃𝑖 + 𝐵00

𝑛𝑔

𝑖 =1

𝑛𝑔

𝑗=1

𝑛𝑔

𝑖=1

 (1) 

 
Where 𝐵𝑖𝑗 , 𝐵0𝑖  and 𝐵00  are loss coefficients. 

This objective function is subjected to the following constraint:  

1. Power balance equality constraint 
 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑 + 𝑃𝑙𝑜𝑠𝑠 = ∑ 𝑃𝑖

𝑛

𝑖=1

 (2) 

 
Where 𝑃𝑑𝑒𝑚𝑎𝑛𝑑  is the total system load demand and 𝑃𝑙𝑜𝑠𝑠  is the total system loss. 𝑃𝑖  is 

the total power at the 𝑖𝑡ℎgenerator. 

2. Inequality constraint 
The inequality constraint for the power is given by Equation (3). 
 

𝑃𝑖𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖𝑚𝑎𝑥      , 𝑖 = 1, 2, … , 𝑛 (3) 
 

Where 𝑃𝑖𝑚𝑖𝑛  and 𝑃𝑖𝑚𝑎𝑥  are the minimum and the maximum real power outputs of 𝑖𝑡ℎ 

generator, respectively. 
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Another inequality constraint to be satisfied is the minimum voltage of the system, 

𝑉𝑚𝑖𝑛 . Following IEEE standard, ideal voltage would be in the range stated by Equation (4)  
 

0.95 ≤ 𝑉𝑚𝑖𝑛  ≤ 1.05 p.u (4) 
 

2.4. Proposed Immunized-Evolutionary Programming 
Figure 4 shows the flowchart of IEP technique for PV injection to load bus. The IEP is 

proposed to improve the global optimum search of the PV sizing and location by presenting 

more candidates for the selection tournament. 
The processes in Figure 4 are briefly explained;  
 

 

 
Figure 4. Flowchart of the IEP for optimal PV size and location 

 
 

a. Initialization Process and Fitness Calculation: 

Initialization process is a process to generate all the control variables, which optimize 
the fitness value. The number for individuals that forms the population depends on the nature of 
the optimization process. In most literatures, 20 individuals are the acceptable number to 

perform complete optimization process. Unlike genetic algorithm (GA), the number of individuals 
that forms the population reaches 500. Random pairs are generated to be in the initial 
population pool.  

In this phase, all the generated random numbers or normally termed as control 
variables must satisfy all the constraints equations involving inequality constraints and equality 
constraints, including Equation (5). 

 
𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 ≤ 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (𝑏𝑎𝑠𝑒) (5) 

 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙(𝑏𝑎𝑠𝑒)  is generated from pre-optimized load flow.  It must be made sure that PV 

will not be located at the swing bus or generator bus. A reliable initial population matrix should 
have considered all the constraints, while the corresponding fitness values are computed 

accordingly. The general parent matrix for the individuals during initial population is generally 
given by Equation (6): 
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𝑥𝑛𝑘 = [

𝑥11 𝑥12 …
𝑥21

⋮
𝑥22

⋮
⋱

𝑥𝑛1 𝑥𝑛2 …

𝑥1,𝑘−1 𝑥1𝑘

𝑥2,𝑘−1

⋮

𝑥2𝑘

⋮
𝑥𝑛,𝑘−1 𝑥𝑛𝑘

] (6) 

 
Matrix size:20x k .  
where; 𝑛 is the population size. 

𝑘  is the number of control variables. 

The population size is 20in accordance to the suggestion given in [21]. For the first 
iteration or evolution, the parent matrix is the same as those of the initial population 
matrix.Calculation of fitness values takes all the values of the control variables. Nevertheless, 

calculation of fitness for the second evolution or iteration onwards will have to consider the 
individuals whom survived during the tournament and selection process. The parent population 
is then represented by Equation (7), where 𝑓𝑛   is the fitness of the 𝑛𝑡ℎ  individual; 

 

𝐹𝑖𝑡1 = [

𝑥11 𝑥12 …
𝑥21

⋮
𝑥22

⋮
…

𝑥𝑛1 𝑥𝑛2 …

𝑥1,𝑘 𝑓1
𝑥2𝑘

⋮
𝑓2
⋮

𝑥𝑛𝑘 𝑓𝑛

] (7) 

 

b. Cloning Process 
Each individual in the parents’ matrix is then cloned via the cloning phase. This forms a 

cloned matrix which has multiplied the individuals. The size of the cloned matrix depends on 

how many multiplication is desired. The multiplication factor is uniform for each individual. The 
general cloned matrix 𝑥𝑚𝑛𝑘is given in (8). 

 

𝑥𝑚𝑛𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[

𝑥11 𝑥12 …
𝑥21

⋮
𝑥22

⋮
…

𝑥𝑛1 𝑥𝑛2 …

𝑥1,𝑘 𝑓1
𝑥2𝑘

⋮
𝑓2
⋮

𝑥𝑛𝑘 𝑓𝑛

] 1

[

𝑥11 𝑥12 …
𝑥21

⋮
𝑥22

⋮
…

𝑥𝑛1 𝑥𝑛2 …

𝑥1,𝑘 𝑓1
𝑥2𝑘

⋮
𝑓2
⋮

𝑥𝑛𝑘 𝑓𝑛

] 2

⋮

[

𝑥11 𝑥12 …
𝑥21

⋮
𝑥22

⋮
…

𝑥𝑛1 𝑥𝑛2 …

𝑥1,𝑘 𝑓1
𝑥2𝑘

⋮
𝑓2
⋮

𝑥𝑛𝑘 𝑓𝑛

] 𝑚

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (8) 

 

Matrix size : mn x k .= 200 x k 
where ; 𝑛 is the population number = 20 
𝑘  is the number of variables 

m  is the cloning number = 10 
 

c. Mutation Process and New Fitness Calculation: 
Mutation is a process to breed offspring. In this work, Gaussian mutation technique as 

shown in Equation (9) is used for the mutation process. There are several other mutation 

operators which can be adopted such as Cauchy, levy and chaotic. However, in this study 
Gaussian technique is adopted due to its simplicity reported in previous works [21], [24–26]. 

 

𝑥 𝑖+𝑚,𝑗 = 𝑥 𝑖,𝑗 + 𝑁 (0, 𝛽(𝑥𝑗𝑚𝑎𝑥 − 𝑥𝑗𝑚𝑖𝑛 ) (
𝑓𝑖

𝑓𝑚𝑎𝑥

)) (9) 

 
 



IJEECS  ISSN: 2502-4752  

Immunized-Evolutionary Algorithm Based Technique for Loss Control … (Sharifah A.S.) 

742 

Where: 

𝑥 𝑖+𝑚,𝑗 𝑖s mutated parent (offspring) 

𝑥 𝑖,𝑗is parent 

β is search step 
𝑥𝑗𝑚𝑎𝑥is maximum value of parent 

𝑥𝑗𝑚𝑖𝑛  is minimum value of parent 

𝑓𝑖 is fitness of 𝑖𝑡ℎrandom number 

𝑓𝑚𝑎𝑥  is maximum fitness 
Recalculation of fitness or termed as fitness 2 is conducted using the offspring values. 

The size of this matrix is the same as the fitness 1. 

 
d. Combination 

The parent matrix and the offspring matrix are combined in cascoded form. If the parent 

matrix and the offspring matrixare as represented by (10) and (11) respectively, then the 
combined matrix, C, has the form as in Equation (12) 

 

𝐴1 = [

𝑥11 𝑥12 …
𝑥21

⋮
𝑥22

⋮
…

𝑥𝑚𝑛1 𝑥𝑚𝑛2 …

𝑥1,𝑘 𝑓1
𝑥2𝑘

⋮
𝑓2
⋮

𝑥𝑚𝑛𝑘 𝑓𝑚𝑛

] (10) 

 

𝐴2 = [

𝑋11 𝑋12 …
𝑋21

⋮
𝑋22

⋮
…

𝑋𝑚𝑛1 𝑋𝑚𝑛2 …

𝑋1 ,𝑘 𝐹1
𝑋2𝑘

⋮
𝐹2

⋮
𝑋𝑚𝑛𝑘 𝐹𝑚𝑛

] (11) 

 

𝐶 = [
𝐴1

𝐴2
] (12) 

 
e. Selection: 

The combined matrix Cis to go through a selection process. The best candidates from 
matrix C will be chosen for the next iteration. They will be ranked based on the loss produced 
should they were selected. This approach is adopted due to its simplicity. Other selection 

techniques such as piecewise comparison, elitism or rouloutte wheel can also be employed if 
appropriate. Fitness compliance, mutation and selection process will be repeated until the 
fitness value is stagnant. 

 
f. Convergence test: 

The convergence test will signal the evolution process to stop as the optimal solution is 

now achieved. The criterion would be the difference between the maximum fitness and the 
minimum fitness, while the fitness must be less than the initial value. It is mathematically 
represented as in (11). 

 
𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙(𝑚𝑎𝑥 ) − 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (𝑚𝑖𝑛) ≤ 0.00001 (13) 

 

 

3. Results and Discussion 
The optimized PV is planned to be installed at one of the load bus of a 12-bus system. 

The 12-bus system is a transmission system formed by connecting two IEEE 6-bus system by 
two lines. The two systems are arranged such that they are the mirror-image of each other. The 
system is shown in Figure 5. 

In this study, four cases will be simulated: 
a. Case I: Reactive load is varied at one load bus 
b. Case II: Reactive load is varied at two load buses 

c. Case III: Reactive load is varied at three load buses 
d. Case IV: Contingency case 
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Figure 5. Single line diagram of 12-Bus System Model 

 
The application of the IEP technique to power system has been tested on the weakest 

bus of a 12-bus transmission system. The weakest bus is identified from the load flow program; 

reactive load was added on individual bus until the load flow close to the divergence point. The 
bus that has the minimum tolerance to the incremental load will be selected as the weakest bus. 
From the result of the pre-optimized load flow shown in Figure 6, it is concluded that bus 5 is the 

weakest, followed by bus 7 and then bus 10. This is because the voltage at bus 5, Vm(5), is the 
lowest at the 35 MVar point. The voltage is less than 0.6 p.u., which is when the system is 
already collapse. 

Figure 7 to figure 8 present the results for case I; where load variation is subjected to 
only one bus, i.e. bus 5. Figure 7 shows how the loss of the 12-bus transmission network can be 
reduced by installing PV at the optimize location within the optimal size. The pre-set data are 

the loss values extracted from pre-optimized load flow. In this case, the optimal PV is located at 
bus 7, with its corresponding sizing of 34 MW. Figure 8 presents the comparative results on the 
percentage of loss reduction optimized using EP and IEP for case-I. 

 
 

 
Figure 6. Base values of voltage from pre-optimized load flow of a 12-bus system 

 

From the Figure 8, IEP performs better than EP at all loading conditions subjected to 
the system. Percentage of loss reduction is higher at higher reactive loading using both 

optimization techniques. At the minimum point, the loss reduction by EP technique is 48.53% 
while by IEP technique is 48.62%. On the other hand, at the maximum point (Qd =35 MVAR), 
the loss reduction by EP technique is 56.13%, while by IEP technique is 56.19%. This indicates 

implementation of IEP is still worthy, especially when it is possibly translated to monetary.  
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Figure 7. Network performance with increasing reactive load and PV injected 

 
 

 
 

Figure 8. Performance comparison between EP and IEP  

 
 

Since the 12-bus transmission system is not a standard network, the IEEE 14-bus 

system is then used to check the feasibility of the proposed IEP technique. Figure 9 confirms 
that this technique is able to determine the optimal sized of PV which reduces the loss suffered 
by the IEEE 14-bus network when its reactive load is increased by installing optimum-sized PV 

at the optimal location. IEP optimization technique is able to compensate the total network loss 
by at least 48.62%. Comparing Figure 8 and Figure 9, the minimum and the maximum total load 
reduction when IEP is used are the same for both 12-bus system and IEEE 14-bus system. This 

could be due to the fact that both systems are not very much different.  
 
 

 
 

Figure 9. Effect of optimal PV injection on reactively loaded IEEE 14-bus system using IEP 
technique 
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In terms of network stability, adding the optimal PV to cater for increasing demand 

would also improve the voltage level of the network as shown in Table 1. Although IEP is slightly 
better than EP in maintaining the voltage stability, adding optimal PV certainly improve the 
voltage compared to the network without PV. As the objective function of the optimization 

technique in this work is loss minimization, the slight improvement of minimum voltage profile is 
acceptable. 

 

 

Table 1. Minimum Voltage profile obtained when bus 5 was reactively loaded using Load Flow, 
EP and IEP technique in the 12-Bus System 

Reactive load, Qd (MW) Load Flow  (pu) EP (pu) IEP (pu) 

5 0.8273 0.8775 0.8776 

15 0.7684 0.8267 0.8269 
25 0.6938 0.7676 0.7677 
35 0.5701 0.6936 0.6938 

 

 

As mentioned, the results presented earlier are found when the reactive load is varied 
only at one bus,i.e. bus 5.To see the capability of IEP technique to determine the optimal size 
and location of PV to the 12-bus transmission system in order to control the system loss, the 

reactive load is then incrementally added to other busses. Hence case II is simulated, where the 
reactive load at two load busses, bus 5 and bus 7,  are uniformly increased. The maximum 
reactive load that can be uniformly added to each bus in case-II and case-III is 20MVar each.  

Figure 10 depicts the ability of IEP to control the loss of the network in case-II by finding 
the optimal PV size and optimal PV location. The loss is reduced by at least 48.51%. As the 
reactive load is increased, so does the loss reduction percentage. 

The computation of optimal size and optimal placement of PV by IEP technique is 
continued with case III; the reactive load is increased uniformly on bus 5, 7 and bus 10 in the 
12-bus system. The network performance based on total system loss is graphically presented in 

Figure 11. Again, IEP is able to reduce the system loss with multi -increment load by determining 
the optimal PV location and optimal PV size. 

Figure 8, Figure 10 and Figure 11 illustrate that the loss reduction increases as the load 

is reactively incremented. This is because the extra power supplied by the optimal PV is put to 
the better usage by the network to cater for incremental demand. It is to be noted that the 
optimal PV sizing and the location are found to be the same for all reactive load subjectedto the 

system. Hence, the PV may have provided unnecessary extra energy that is wasted at lightly-
loaded instances. The comparisons of load reduction between case-I, case-II and case-III at 
three reactive loading points are tabulated in Table 2. 

 
 

 
 

Figure 10. Effect of Optimal PV injection on two-reactively loaded bus of 12-bus system using 
IEP technique 
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Figure 11. Effect of Optimal PV injection on three-reactively loaded bus of 12-bus 
system using IEP technique 

 

 
In case-IV, the contingency scenario is considered, where one of the transmission lines 

is taken-out. The line connecting bus-3 and bus-4 is chosen for this case. Without the 

compensation scheme, the 12-bus network quickly collapses. But, with optimal PV injected to 
the system, the network is able to be recovered. Table 3 tabulates the results for this case. 
From the table, installation of PV to the system during contingency condition (line removal) 

managed to revive the system. This is also optimized using IEP. 
 

 

Table 2. Loss Reduction Comparison Between Case-I, Case-II and Case-III 
Reactive Load, Qd 

(Mvar) 
 Total Loss Reduction (%) 
 Case I Case II Case III 

0  48.62 48.51 48.56 
10  49.57 49.74 49.43 
20  50.41 52.46 57.36 

 

 

Table 3. Network Performance of 12-Bus System with IEP during Contingency Scenario   
Reactive Load, Qd 

(Mvar) 
PV Location   PV size (MW) Loss (MW) Vmin (p.u.) 

10 7 42.00 6.33 0.86 

20 10 39.76 8.81 0.77 
25 7 41.55 7.60 0.77 

 

 

4. Conclusion 

  This paper has presented immune-evolutionary programming technique for loss-control 
in transmission system by optimizing the size and the location of a PV to be assimilated to 
existing system. Results of IEP outperform the EP in finding the optimal solution of the size and 

location of the PV while minimizing the loss. It is concluded that injecting correct size of PV at 
the right location would reduce the network loss, when there is multi -load increment. The 
optimal PV size and location calculated by IEP is also able to support the 12-bus system during 

contingency case. 
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