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Abstract 
Controller Area Network is an ideal serial bus design suitable for modern embedded system 

based networks. It finds its use in most of critical applications, where error detection and subsequent 
treatment on error is a critical issue. CRC (Cyclic Redundancy Check) block was developed on FPGA in 
order to meet the needs for simple, low power and low cost wireless communication. This paper gives a 
short overview of CRC block in the Digital transmitter based on the CAN 2.0 protocols. CRC is the most 
preferred method of encoding because it provides very efficient protection against commonly occurring 
burst errors, and is easily implemented. This technique is also sometimes applied to data storage devices, 
such as a disk drive. In this paper a technique to model the error detection circuitry of CAN 2.0 protocols 
on reconfigurable platform have been discussed? The software simulation results are presented in the 
form of timing diagram.FPGA implementation results shows that the circuitry requires very small amount of 
digital hardware. The Purpose of the research is to diversify the design methods by using VHDL code entry 
through Modelsim 5.5e simulator and Xilinx ISE8.3i.The VHDL code is used to characterize the CRC block 
behavior which is then simulated, synthesized and successfully implemented on Sparten3 FPGA .Here, 
Simulation and Synthesized results are also presented to verify the functionality of the CRC -16 Block. The 
data rate of CRC block is 250 kbps .Estimated power consumption and maximum operating frequency of 
the circuitry is also provided. 
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1. Introduction 
Network must be able to transfer data from one device to another with complete 

accuracy. A system that cannot guarantee that the data received by one device is identical to 
the data transmitted by another device is essentially useless. Yet anytime data are transmitted 
from source to destination, they can become corrupted in passage. Infect it is more likely that 
some part of the message will be altered in transit than entire content will arrive intact. Many 
factors including line noise can alter or wipe out one or more bit of the given data. Reliable 
system must have a mechanism for detecting and correcting such errors. The acceptance and 
introduction of serial communication to more and more applications has led to requirements that 
the assignment of message identifiers to communication functions be standardized for certain 
applications. These applications can be realized with CAN more comfortably, if the dress range 
that originally has been defined by 11 identifier bits is enlarged. Therefore a second message 
format ('extended format') is introduced that provides a larger address range defined by 29 bits. 
This will relieve the system designer from compromises with respect to defining well-structured 
naming schemes [1]. Users of CAN, who do not need the identifier range offered by the 
extended format, can rely on the conventional 11 bit identifier range ('standard format') further 
on. In this case they can make use of the CAN implementations that are already available on 
the market, or of new controllers that implement both for-mats [2].  

Embedded networks are used widely in most of critical embedded systems driven by 
any transmission medium. In fact many embedded systems are distributed, consisting of 
multiple microprocessors communicating over one or more networks to accomplish shared 
tasks. Amongst various buses used in embedded communication, the most widely used and 
important communication bus is Controller Area Network as CAN [3] in which worldwide 
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researching is going on. With high data flow through such channels, there is a chance of 
potentially high noise. Reliable detection of bit errors is very important to prevent data corruption 
in such systems. In CAN, Cyclic Redundancy Check (CRC) is used to detect multi bit errors. 

There are some works related to can protocol available in literature.Milind Khanapurkar 
et al. in [4] proposed an automotive Black Box design intends for storing and retrieving the data 
of various Electronics Controller Units (ECUS) on standards CAN protocol frame. The data thus 
stored and retrieved can be used for introspection of cause of failure or unfortunate miss 
happening with the vehile. Mazran Esro et al. [1] focused on method of application of CAN bus 
system in place, the methods of controlling each station in the security system has changed 
significantly. The system permits each station to send and receive data according to the 
message priority.Reinder J Bril et al. [5] revisits the basic message response time analysis of 
Controller Area Network (CAN) [6]. It was shown that existing response time analysis, as 
presented as optimistic. 

In this paper, we presented a technique to model the error detection circuitry of CAN 
protocol using hardware description language (HDL).The HDL model is implemented on FPGA 
platform in the laboratory environment. Logic circuit requirement and FPGA resource utilization 
is presented. The estimated power consumption of the implementation is found to be 38mW 
which is very suitable for battery power application. The resource utilization report shows that 
very small amount of FPGA resources are used keeping ample scope to implement the rest of 
the circuitry in the same FPGA. 

The VHDL source code has been edited and synthesized using Xilinx ISE 13.1, and 
then simulated and tested using ISim (VHDL/Verilog). Spartan 3A FPGA starter kit from Xilinx 
has been used for downloading the design into Xilinx Spartan 3A FPGA chip. The design has 
been tested in a hardware environment for different data inputs 

The materials in this article are organized as follows: in Section II, a brief description of 
the backgrouond of CAN protocol; problem formulation for CRC detection circuitary algorithm is 
discussed in Section III; the methodoldogy for hardware modeling for error correction will be 
described in Section IV; as well as the top-level design, RTL view; the simulation results and 
discussion is given in Section V;In Section VI, FPGA implementation and synthesis results will 
be concluded, at the end, a conclusion will be given in Section VII. 
 
 
2. Background of CAN 2.0 Protocol 

Controller Area Network (CAN) is a serial communications bus designed to provide 
simple, efficient and robust communications for in-vehicle networks. CAN was developed by 
Robert Bosch GmbH, beginning in 1983, and presented to a wider audience at the Society of 
Automotive Engineers (SAE) Congress in 1986-effectively the birth of CAN. In 1987, the first 
CAN controller chips were released by Intel (82526) and Philips (82C200). In the early 1990s, 
Bosch submitted the CAN specification (Bosch, 1991) for standardization, leading to publication 
of the first ISO standard for CAN (11898) in 1993 (ISO, 1993). Mercedes was the first 
automotive manufacturer to deploy CAN in a production car, the 1991 S-class. By the mid 
1990s, the complexity of automotive electronics was increasing rapidly [1]. The number of 
networked Electronic Control Units (ECUs) in Mercedes, BMW, Audi and VW cars went from 5 
or less at the beginning of the 1990s to around 40 at the turn of the millennium. With this 
explosion in complexity traditional point-to-point wiring became increasingly expensive to 
manufacture, install, and maintain due to the hundreds of separate connections and tens of 
kilograms of copper wire required [7-8]. As a result CAN was rapidly adopted by the cost-
conscious automotive industry, providing an effective solution to the problems posed by 
increasing vehicle electronics content. Following on from Mercedes, other manufacturers 
including Volvo, Saab, BMW, Volkswagen, Ford, Renault, PSA, Fiat and others all adopted CAN 
technology [9]. 

In order to distinguish standard and extended format the first reserved bit of the CAN 
message format, as it is defined in CAN Specification 1.2, is used. This is done in such a way 
that the message format in CAN Specification 1.2 is equivalent to the standard format and 
therefore is still valid. Furthermore, the extended format has been defined so that messages in 
standard format and extended format can coexist within the same network [10-11]. 
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This CAN Specification 2.0 consists of two parts, with: 
1. Part A describing the CAN message format as it is defined in CAN Specification  
2. Part B describing both standard and extended message formats.  

 
2.1. Message Format 

In CAN data transmission is done using formatted message frames. There are two 
protocols versions in which a CAN network may be configured namely 2.0A and 2.0B. The 
former su2pports 11-bit message identifiers while the later supports 2.0B which supports both 
11-bit and 29-bit identifiers. A data frame is shown in Figure 1. A data frame is composed of 
seven different fields: start of frame, arbitration field, control field, data field, CRC field, Ack field 
and end of frame. In CAN 2.0 A arbitration field consist of 11 bit identifier and RTR bit where as 
in CAN 2.0B it consist of 29 bit identifier, IDF bit and RTR bit [12]. 

a. Data length code 
The number of bytes in the data field is included by the data length code. This data 

length code is 4bits wide and is transmitted within the control field .Here the admissible number 
of data bytes (0,1…7,8). And other values may not be used. The DLC format is shown in the 
Table 1. 
 
2.2. Error Detection CAN 

 Data flow though channels may subject to unpredictable changes due to interference, 
which may lead to change in the shape of the signal. For reliable communication error must be 
detected. Error detection communication error must be detected. Error detection mechanism 
uses redundancy means addition of extra bit information to the information. in CAN cyclic 
redundancy check is used to detect multi bit errors [13-14]. 

 
 

 
 

Figure 1. Format of Data Frame 
 

 
Explaining research chronological, including research design, research procedure (in 

the form of algorithms, Pseudocode or other), how to test and data acquisition [1-3]. The 
description of the course of research should be supported references, so the explanation can be 
accepted scientifically [4-5]. 
 
 
3. Problem Formulation as a CRC-16 Error Detection Circuitry 
3.1. Cyclic Redundancy Check (CRC-16) 

In the CRC method, a certain number of check bits, often called a checksum, are 
appended to the message being transmitted. The receiver can determine whether or not the 
check bits agree with the data, to ascertain with a certain degree of probality whether or not an 
error occurred in the transmission [15]. If an error occurred the receiver sends a ‘negative 
acknowledgement (NAK) back to the sender, requesting that the message be transmitted. The 
CRC is based on polynomial arithmetic. The redundancy bits used by CRC are derived by 
dividing the data unit by a pre-determined divisor and the remainder is CRC, Addition and 
Subtraction are done in modulo 2 that is, they are both the same as theexculisive or operator. In 
this technique at Sender ‘side a sequence of redundant bits the CRC or the CRC remainder, is 
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appended to the end of a data unit so that the resulting data unit becomes exactly divisible by 
the same predetermined binary number. At its destination, the incoming data unit a divided by 
the same number. If at this step there is no remainder, the data unit is assumed to be intact and 
is therefore accepted. A reminder indicates that the data unit has been damaged in transit and 
therefore must be rejected [16-17]. 
a. At Sender’s Side  

First n Numbers of 0s bits are appended to the original data where n is a less than the 
predetermined divisor, which is n+1 bit.Secondaly, drawn out data unit is divided by divisor; 
using binary divison.The remainder resulting from this division is the CRC. Third the CRC is 
replaced with the 0s that has been appended in the first step. A CRC may consist of all 0s also. 
b. At  Receiver side 

The receiver divides the whole data with the predetermined divisor that was used to find 
the CRC remainder. If there is a change in data, the division yields a non zero remainder and 
the data unit does not pass. The sender reminder and the data unit do not pass the sender side 
and receiver side technique has been demonstrated in the Figure 2. 
 
3.2. Algorithm for CRC Computation 

The hardware implementation of cyclic Redundancy check computation is done by 
using linear shift register (LFSR) the shift register is driven by a clock. At every clock pulse, the 
input data is shifted in to the register in addition to transmitting the data. When all the input bits 
have been processed, the shift register contains the CRC bits, which are then shifted out on the 
data line. The algorithm is as follows. 

 
 

Table 1. Representation for Data Length Code 
Number of Bytes Data Length Code 

DLC03 DLC02 DLC01 DLC00 

0 d d d d 
1 d d d r 
2 d d r d 
3 d d r r 
4 d r d d 
5 d r d r 
6 d r r d 
7 d r r r 
8 r d d d 

Abbreviations:-d ‘dominant’’ r ‘receive’ 
 

 
 

Figure 2. Cyclic Redundancy Check (CRC) Block Diagram 
 

 
(i) Initialize the CRC register to all o-bits. 
(ii) Get first/next message bit m. 
(iii) Append (G-1) o bits to the original message 
(iv) If the high –order bit of CRC is 1 
(v) Shift CRC and m together 1 position and Xor the results with the low order r bits of G. 
(vi) Otherwise, just shift CRC and m1 position. 
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Where G is generating polynomial and r is the degree of polynomial. 
Polynomials: Instead of representing the data string in 1’s and 0s they are represented 

in algebraic polynomials. The algebraic polynomials are very short to represent and also they 
can used to prove the concept mathematically. Two important conditions while selecting 
polynomials are it should not be divisible by x and it should be divisible but x+1. 
 
 
4. Methodology for Hardware Modeling 

The block diagram of the error detection mechanism of CAN is presented in the  
Figure 3. The Entire circuitry has been divide into three main blocks; LFSR.CRC Generator and 
a Counter. The input data bytes are applied to LFSR whose output is supplied to CRC 
generator. The counter progresses through its count sequences and generates a pulse to latch 
the output CRC generator based on the DLC input [18]. The output available from the CRC 
generator is appended with the data field and transmitted over the network. In the receiver side 
the CRC checking circuit is implanted using the same LFSR of Figure 4. 
 
 

 
 

Figure 3. Block Diagram for CAN Bus Error Detector Implementation 
 
 

Transmitter: CRC process can easily be implemented as a dividing circuit consisting of 
exclusive OR gates and one bit shift registers. Implementation is as follows. 

Process: 
1. The input register contains N bit, equal to the length of the FCS. 
2. There can be up to n exclusive OR gates. 
3. The presence or absence of a gate corresponds to the presence of a term in the divisor 

polynomial other than to the major significant to the polynomial. 
4. Always there is a feedback from the highest corresponding shift register to the input and the 

same feedback is fed to the other XOR gate, which is given below Figure 4 and Contents of 
Shift Register at Transmitter is given in Table 1. 

 
 

 
 

Figure 4. Implementation of CRC polynomial at Transmitter 
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Table 1. Contents of Shift Register at Transmitter 

 
 

 
Figure 5. Implementation of CRC polynomial at Receiver 

 

 

Receiver:  At the receiver the same circuit deployed in the transmitter to formulate the 
CRC will be deployed. In this case the information will be the received message which has been 
transmitted from the transmitter M+R. 

Process: 
1. At the zero clock pulse or step 0, all shift registers reset to zero. 
2. From Step 1 the received message will be input, one bit at a time with the most significant 

bit. [11] 
Contents of Shift Register at Reciever is given in Table 2. 
 
 

Table 2. Contents of Shift Register at Reciever 
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4.1 Hardware Modules 
4.1.1. Linear Feedback Shift Register (LFSR) 

An n-bit LFSR is an n-bit length shift register with feedback to its input. The feedback is 
formed by XORing or XNORing the outputs of selected stages of the shift register - referred to 
as 'taps' - and then inputting this to the least significant bit (stage 0). Each stage has a common 
clock. The 'linear' part of the term 'LFSR' derives from the fact that XOR and XNOR are linear 
functions [18]. An example of a 5-bit LFSR is shown below Figure 5. 

 
 

 
 

Figure 6. Implementation of Linear Feedback Shifft Register (LFSR) 
 
 

This has taps at stages 1 and 4 with XOR feedback. Note also that the LS bit of the shift 
register is, by convention, shown at the left hand side of the shift register, with the output being 
taken from the MS bit at the right hand side. So what is it about a LFSR that makes it 
interesting? It will produce a pseudorandom sequence of length 2n-1 states (where n is the 
number of stages) if the LFSR is of maximal length. The sequence will then repeat from the 
initial state for as long as the LFSR is clocked. Assume that the example LFSR above is set to 
$1F after initialization. The output of the feedback XOR gate will be 0 (since 1 XOR 1 = 0) and 
the first clock edge will load 0 into stage 0. [13] An LFSR is of 'maximal' length when the 
sequence it generates passes through all possible 2n-1 values. The LFSR sequence depends 
on the seed value, the tap positions and the feedback type. So far we have seen how to 
implement LFSRs in VHDL such that any device can be targeted. Xilinx devices however, will 
allow optimal implementation of LFSRs with their internal distributed RAM. This type of RAM is 
available in the XC4000, Spartan/XL, Spartan-II and all Virtex families. Each CLB can be 
configured as a RAM and this allows very compact shift registers to be built. [5] 

 
4.1.2. Up-Down Counter 

In digital logic and computing, a counter is a device which stores (and sometimes 
displays) the number of times a particular event or process has occurred, often in relationship to 
a clock signal.Counter that can change state in either direction, under the control of an up/down 
selector input, is known as an up/down counter. When the selector is in the upstate the counter 
increment its value. When the selector is in the down state, the counters decrement its  
count [18]. 

Proceed through a well-defined sequence of states in response to count signal 
3 Bit Up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000,... 
3 Bit Down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111,... 

A counter is a degenerate finite state machine/sequential circuit where the state is the 
only output. A counter can be easily made by using T (Toggle) flip-flop [5]. An Example of 
Up/Down Counter is shwn in Figure 7. 
 
 

 
Figure 7. Implementation of Up/Down Counter 
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5. Simulation Results and Discussion 
This design is implemented in VHDL platform using Xilinx ISE 13.1. The Register 

transfer logic(RTL) and Internal RTl View view are shown in the Figure 8 and Figure 9. LFSR is 
represented by 1st two blocks & the third block is CRC generator. The input data & DLC is 
applied to the circuit and generates the CRC and Input Data at Tansmitter is presented in Figure 
10.The simulation results of the CRC generator in the form of waveforms are presented in 
Figure 11. Here input data is 10101010 is applied at the input of CRC & the output obtained is 
100001110010001. Now the output CRC is appended taking the MSB first to the main data & 
transmitted over the network. Figure 12  is showing the simulation waveform for CRC checker. 
Here the transmitted data is checked by CRC checker. The input is data and the CRC. The 
waveform shows that after 23rd clock the output is 0 which indicates no error. In Figure 13, an 
error has been purposefully introduced in 16th clock period. The result in Figure 14 shows that 
the output of CRC checker is non-zero meaning that an error has occurred during transmission. 

 
 

 
 

Figure 8. RTL View of CRC -16 Can 2.0 Error Detector 
 
 

 
 

Figure 9. Internal RTL View of CRC -16 Can 2.0 Error Detector 
 
 
For Input data: It shows the input data given at transmitter side and also shows the 

initial values that are assigned to the different registers and counters. 
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Figure 10. Input data at Transmitter 
 
 

For Transmitter: This figure shows the CRC bits that are generated in CAN bus. Here 
the CRC bits are appended with given input data and then transmitted. 
 
 

 

 
Figure 11. Output waveforms for Transmitter  

 
 

This figure shows the output at receiver side. The waveform shows that after 26rd clock 
the output is 0 which indicates no error. 
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Figure 12. Output waveforms for Receiver 
 
 

Output waveforms in Error Case:- 
This figure shows output waveform at transmitter part in case of error. It generates the 

CRC bits for transmitter when any error is occurred in given data. 
 
 

 
 

Figure 13. Output Waveforms at Transmitter Side in case of Error 
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Output in case of Error 
This figure shows the output at receiver side. The waveform shows that after 26rd clock 

the output is non zero which indicates error. 
 
 

 
 

Figure 14. Output Waveforms at Reciever Side in case of Error 
 
 

6. FPGA Implementation and Synthesis Result 
The design is implemented in Xilinx Spartan 3A (device XC3s400) FPGA platform.HDL 

Synthesis report (Macro Statistics )and Advanced Synthesis report(Macro Statistics) of the 
implementation is presented in Table 3 and Table 4.The devices has been used are adder, 
multiplexers, registers and xors gates. The 7 bit counter uses an adder to increment its value. 
The multiplexers are used in the CRC generator, Based on the value in DLC, the CRC 
generator with the help of multiplexer selects one of the output instances from LFSR.Registers 
have been used to store the data at different level of the CRC generation process.Seven, 1 –bit 
XOR gates are used in LFSR to produce the new bit in the string for each clock pulse. Table 5 
shows the Device Utilization Summary that the circuit utilizes a very small amount of the 
available resources. The percentage of device utilization for number of slice Flip Flops, number 
of 4 input LUTS, number of IOBS and numbers of GCLKS are shown. It has been found that the 
estimated power consumption using Xilinx Xpower is very low and it is 38mW. The maximum 
operating frequency found is 117.08 MHz’s 

 
 

Table 3. HDL Synthesis Report Macro Statistics 
#Counters 2 
32-bit up cunter 2 
#Register 26 
1-bit register 23 
16-bit register 2 
23-bit register 1 
#Comparators 1 
32-bit comparator or less 1 
# Xors 14 
1-bit xor2 14 
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Table 4. Advanced HDL Synthesis Report (Macro Statistics) 
#Counter 2 
32- bit up counter 2 
#Registers 78 
Flip-Flops 78 
#Comparators 1 
32-bit Comparator Less 1 
#Xors 14 
1-bit Xor2 14 

 
 

Table 4. Device Utilization Summary 
 Number of Slices 56 out of 3584 1% 
Number of Slice Flip Flops 71 out of 7168 0% 
Number of 4 Inputs LUTs 77 out of 7168 1% 
Number of Bonded IOBs 26 out of 141 18% 
Number of GCLKs 1 out of8 12% 

 
 
TIMING REPORT: Timinng Analysis is presented in following Table 5. 
 
 

Table 5. Timinng Analysis 
Timing Parameter Calculated Results 

Minimum period: 8.097ns (Maximum Frequency: 117.08 MHz. 
Minimum input arrival time before clock: No path found 
Maximum output required time after clock 12.426ns 
Maximum combinational path delay: No path found No path found 

 
 
7. Conclusion 

A Technique to model the error detection circuitry of CAN protocol in VHDL is 
described. The VHDL Model of CRC generator and checker is implemented on FPGA Xilinx ISE 
13.1.The FPGA implementation result shows that the design is attractive from resource 
utilization, power consumption and operating frequency Here we have utilized 114696 kilobyte 
memory. The referred paper describes error circuitry in case of ‘no error’ our contribution – after 
reviewing the paper we designed error controlling circuitry for CAN bus in case of error.    

Usually components, like LFSR, XOR and Counters are used, so the entire circuit can 
be easily designed. This approach is efficient both in terms of hardware, speed and power 
cocsumption. The additional hardware required is very simple. This technique works efficiently 
in case of ASIC design also. We have shown that hardware implementation on FPGA can be 
effectively used to improve the performance of CRC implementation for CAN protocol. 
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