
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 6, No. 3, June 2017, pp. 602 ~ 614
DOI: 10.11591/ijeecs.v6.i3.pp602-614 602

Received January 22, 2017; Revised April 6, 2017; Accepted April 21, 2017

An Optimized FPGA Implementation of CAN 2.0
Protocol Error Detection Circuitry

Md Farukh Hashmi*
1
, Avinash G. Keskar

2

1
Anurag Group of Institutions, Ghatkesar RR District, Hyderbad 500088

2
Visvesavraya National Institute of Technology, South Ambazari Road, Nagpur

*Corresponding author, e-mail: farooq786engg@gmail.com

Abstract
Controller Area Network is an ideal serial bus design suitable for modern embedded system

based networks. It finds its use in most of critical applications, where error detection and subsequent
treatment on error is a critical issue. CRC (Cyclic Redundancy Check) block was developed on FPGA in
order to meet the needs for simple, low power and low cost wireless communication. This paper gives a
short overview of CRC block in the Digital transmitter based on the CAN 2.0 protocols. CRC is the most
preferred method of encoding because it provides very efficient protection against commonly occurring
burst errors, and is easily implemented. This technique is also sometimes applied to data storage devices,
such as a disk drive. In this paper a technique to model the error detection circuitry of CAN 2.0 protocols
on reconfigurable platform have been discussed? The software simulation results are presented in the
form of timing diagram.FPGA implementation results shows that the circuitry requires very small amount of
digital hardware. The Purpose of the research is to diversify the design methods by using VHDL code entry
through Modelsim 5.5e simulator and Xilinx ISE8.3i.The VHDL code is used to characterize the CRC block
behavior which is then simulated, synthesized and successfully implemented on Sparten3 FPGA .Here,
Simulation and Synthesized results are also presented to verify the functionality of the CRC -16 Block. The
data rate of CRC block is 250 kbps .Estimated power consumption and maximum operating frequency of
the circuitry is also provided.

Keywords: cyclic redundancy check (CRC), controller area network (CAN), field programmable gate array
(FPGA), error detection, linear feedback shift register (LFSR)

Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Network must be able to transfer data from one device to another with complete

accuracy. A system that cannot guarantee that the data received by one device is identical to
the data transmitted by another device is essentially useless. Yet anytime data are transmitted
from source to destination, they can become corrupted in passage. Infect it is more likely that
some part of the message will be altered in transit than entire content will arrive intact. Many
factors including line noise can alter or wipe out one or more bit of the given data. Reliable
system must have a mechanism for detecting and correcting such errors. The acceptance and
introduction of serial communication to more and more applications has led to requirements that
the assignment of message identifiers to communication functions be standardized for certain
applications. These applications can be realized with CAN more comfortably, if the dress range
that originally has been defined by 11 identifier bits is enlarged. Therefore a second message
format ('extended format') is introduced that provides a larger address range defined by 29 bits.
This will relieve the system designer from compromises with respect to defining well-structured
naming schemes [1]. Users of CAN, who do not need the identifier range offered by the
extended format, can rely on the conventional 11 bit identifier range ('standard format') further
on. In this case they can make use of the CAN implementations that are already available on
the market, or of new controllers that implement both for-mats [2].

Embedded networks are used widely in most of critical embedded systems driven by
any transmission medium. In fact many embedded systems are distributed, consisting of
multiple microprocessors communicating over one or more networks to accomplish shared
tasks. Amongst various buses used in embedded communication, the most widely used and
important communication bus is Controller Area Network as CAN [3] in which worldwide

IJEECS ISSN: 2502-4752

An Optimized FPGA Implementation of CAN 2.0 Protocol Error … (Md Farukh Hashmi)

603

researching is going on. With high data flow through such channels, there is a chance of
potentially high noise. Reliable detection of bit errors is very important to prevent data corruption
in such systems. In CAN, Cyclic Redundancy Check (CRC) is used to detect multi bit errors.

There are some works related to can protocol available in literature.Milind Khanapurkar
et al. in [4] proposed an automotive Black Box design intends for storing and retrieving the data
of various Electronics Controller Units (ECUS) on standards CAN protocol frame. The data thus
stored and retrieved can be used for introspection of cause of failure or unfortunate miss
happening with the vehile. Mazran Esro et al. [1] focused on method of application of CAN bus
system in place, the methods of controlling each station in the security system has changed
significantly. The system permits each station to send and receive data according to the
message priority.Reinder J Bril et al. [5] revisits the basic message response time analysis of
Controller Area Network (CAN) [6]. It was shown that existing response time analysis, as
presented as optimistic.

In this paper, we presented a technique to model the error detection circuitry of CAN
protocol using hardware description language (HDL).The HDL model is implemented on FPGA
platform in the laboratory environment. Logic circuit requirement and FPGA resource utilization
is presented. The estimated power consumption of the implementation is found to be 38mW
which is very suitable for battery power application. The resource utilization report shows that
very small amount of FPGA resources are used keeping ample scope to implement the rest of
the circuitry in the same FPGA.

The VHDL source code has been edited and synthesized using Xilinx ISE 13.1, and
then simulated and tested using ISim (VHDL/Verilog). Spartan 3A FPGA starter kit from Xilinx
has been used for downloading the design into Xilinx Spartan 3A FPGA chip. The design has
been tested in a hardware environment for different data inputs

The materials in this article are organized as follows: in Section II, a brief description of
the backgrouond of CAN protocol; problem formulation for CRC detection circuitary algorithm is
discussed in Section III; the methodoldogy for hardware modeling for error correction will be
described in Section IV; as well as the top-level design, RTL view; the simulation results and
discussion is given in Section V;In Section VI, FPGA implementation and synthesis results will
be concluded, at the end, a conclusion will be given in Section VII.

2. Background of CAN 2.0 Protocol

Controller Area Network (CAN) is a serial communications bus designed to provide
simple, efficient and robust communications for in-vehicle networks. CAN was developed by
Robert Bosch GmbH, beginning in 1983, and presented to a wider audience at the Society of
Automotive Engineers (SAE) Congress in 1986-effectively the birth of CAN. In 1987, the first
CAN controller chips were released by Intel (82526) and Philips (82C200). In the early 1990s,
Bosch submitted the CAN specification (Bosch, 1991) for standardization, leading to publication
of the first ISO standard for CAN (11898) in 1993 (ISO, 1993). Mercedes was the first
automotive manufacturer to deploy CAN in a production car, the 1991 S-class. By the mid
1990s, the complexity of automotive electronics was increasing rapidly [1]. The number of
networked Electronic Control Units (ECUs) in Mercedes, BMW, Audi and VW cars went from 5
or less at the beginning of the 1990s to around 40 at the turn of the millennium. With this
explosion in complexity traditional point-to-point wiring became increasingly expensive to
manufacture, install, and maintain due to the hundreds of separate connections and tens of
kilograms of copper wire required [7-8]. As a result CAN was rapidly adopted by the cost-
conscious automotive industry, providing an effective solution to the problems posed by
increasing vehicle electronics content. Following on from Mercedes, other manufacturers
including Volvo, Saab, BMW, Volkswagen, Ford, Renault, PSA, Fiat and others all adopted CAN
technology [9].

In order to distinguish standard and extended format the first reserved bit of the CAN
message format, as it is defined in CAN Specification 1.2, is used. This is done in such a way
that the message format in CAN Specification 1.2 is equivalent to the standard format and
therefore is still valid. Furthermore, the extended format has been defined so that messages in
standard format and extended format can coexist within the same network [10-11].

 ISSN: 2502-4752

 IJEECS Vol. 6, No. 3, June 2017 : 602 – 614

604

This CAN Specification 2.0 consists of two parts, with:
1. Part A describing the CAN message format as it is defined in CAN Specification
2. Part B describing both standard and extended message formats.

2.1. Message Format

In CAN data transmission is done using formatted message frames. There are two
protocols versions in which a CAN network may be configured namely 2.0A and 2.0B. The
former su2pports 11-bit message identifiers while the later supports 2.0B which supports both
11-bit and 29-bit identifiers. A data frame is shown in Figure 1. A data frame is composed of
seven different fields: start of frame, arbitration field, control field, data field, CRC field, Ack field
and end of frame. In CAN 2.0 A arbitration field consist of 11 bit identifier and RTR bit where as
in CAN 2.0B it consist of 29 bit identifier, IDF bit and RTR bit [12].

a. Data length code
The number of bytes in the data field is included by the data length code. This data

length code is 4bits wide and is transmitted within the control field .Here the admissible number
of data bytes (0,1…7,8). And other values may not be used. The DLC format is shown in the
Table 1.

2.2. Error Detection CAN

 Data flow though channels may subject to unpredictable changes due to interference,
which may lead to change in the shape of the signal. For reliable communication error must be
detected. Error detection communication error must be detected. Error detection mechanism
uses redundancy means addition of extra bit information to the information. in CAN cyclic
redundancy check is used to detect multi bit errors [13-14].

Figure 1. Format of Data Frame

Explaining research chronological, including research design, research procedure (in

the form of algorithms, Pseudocode or other), how to test and data acquisition [1-3]. The
description of the course of research should be supported references, so the explanation can be
accepted scientifically [4-5].

3. Problem Formulation as a CRC-16 Error Detection Circuitry
3.1. Cyclic Redundancy Check (CRC-16)

In the CRC method, a certain number of check bits, often called a checksum, are
appended to the message being transmitted. The receiver can determine whether or not the
check bits agree with the data, to ascertain with a certain degree of probality whether or not an
error occurred in the transmission [15]. If an error occurred the receiver sends a ‘negative
acknowledgement (NAK) back to the sender, requesting that the message be transmitted. The
CRC is based on polynomial arithmetic. The redundancy bits used by CRC are derived by
dividing the data unit by a pre-determined divisor and the remainder is CRC, Addition and
Subtraction are done in modulo 2 that is, they are both the same as theexculisive or operator. In
this technique at Sender ‘side a sequence of redundant bits the CRC or the CRC remainder, is

IJEECS ISSN: 2502-4752

An Optimized FPGA Implementation of CAN 2.0 Protocol Error … (Md Farukh Hashmi)

605

appended to the end of a data unit so that the resulting data unit becomes exactly divisible by
the same predetermined binary number. At its destination, the incoming data unit a divided by
the same number. If at this step there is no remainder, the data unit is assumed to be intact and
is therefore accepted. A reminder indicates that the data unit has been damaged in transit and
therefore must be rejected [16-17].
a. At Sender’s Side

First n Numbers of 0s bits are appended to the original data where n is a less than the
predetermined divisor, which is n+1 bit.Secondaly, drawn out data unit is divided by divisor;
using binary divison.The remainder resulting from this division is the CRC. Third the CRC is
replaced with the 0s that has been appended in the first step. A CRC may consist of all 0s also.
b. At Receiver side

The receiver divides the whole data with the predetermined divisor that was used to find
the CRC remainder. If there is a change in data, the division yields a non zero remainder and
the data unit does not pass. The sender reminder and the data unit do not pass the sender side
and receiver side technique has been demonstrated in the Figure 2.

3.2. Algorithm for CRC Computation

The hardware implementation of cyclic Redundancy check computation is done by
using linear shift register (LFSR) the shift register is driven by a clock. At every clock pulse, the
input data is shifted in to the register in addition to transmitting the data. When all the input bits
have been processed, the shift register contains the CRC bits, which are then shifted out on the
data line. The algorithm is as follows.

Table 1. Representation for Data Length Code
Number of Bytes Data Length Code

DLC03 DLC02 DLC01 DLC00

0 d d d d
1 d d d r
2 d d r d
3 d d r r
4 d r d d
5 d r d r
6 d r r d
7 d r r r
8 r d d d

Abbreviations:-d ‘dominant’’ r ‘receive’

Figure 2. Cyclic Redundancy Check (CRC) Block Diagram

(i) Initialize the CRC register to all o-bits.
(ii) Get first/next message bit m.
(iii) Append (G-1) o bits to the original message
(iv) If the high –order bit of CRC is 1
(v) Shift CRC and m together 1 position and Xor the results with the low order r bits of G.
(vi) Otherwise, just shift CRC and m1 position.

 ISSN: 2502-4752

 IJEECS Vol. 6, No. 3, June 2017 : 602 – 614

606

Where G is generating polynomial and r is the degree of polynomial.
Polynomials: Instead of representing the data string in 1’s and 0s they are represented

in algebraic polynomials. The algebraic polynomials are very short to represent and also they
can used to prove the concept mathematically. Two important conditions while selecting
polynomials are it should not be divisible by x and it should be divisible but x+1.

4. Methodology for Hardware Modeling

The block diagram of the error detection mechanism of CAN is presented in the
Figure 3. The Entire circuitry has been divide into three main blocks; LFSR.CRC Generator and
a Counter. The input data bytes are applied to LFSR whose output is supplied to CRC
generator. The counter progresses through its count sequences and generates a pulse to latch
the output CRC generator based on the DLC input [18]. The output available from the CRC
generator is appended with the data field and transmitted over the network. In the receiver side
the CRC checking circuit is implanted using the same LFSR of Figure 4.

Figure 3. Block Diagram for CAN Bus Error Detector Implementation

Transmitter: CRC process can easily be implemented as a dividing circuit consisting of
exclusive OR gates and one bit shift registers. Implementation is as follows.

Process:
1. The input register contains N bit, equal to the length of the FCS.
2. There can be up to n exclusive OR gates.
3. The presence or absence of a gate corresponds to the presence of a term in the divisor

polynomial other than to the major significant to the polynomial.
4. Always there is a feedback from the highest corresponding shift register to the input and the

same feedback is fed to the other XOR gate, which is given below Figure 4 and Contents of
Shift Register at Transmitter is given in Table 1.

Figure 4. Implementation of CRC polynomial at Transmitter

IJEECS ISSN: 2502-4752

An Optimized FPGA Implementation of CAN 2.0 Protocol Error … (Md Farukh Hashmi)

607

Table 1. Contents of Shift Register at Transmitter

Figure 5. Implementation of CRC polynomial at Receiver

Receiver: At the receiver the same circuit deployed in the transmitter to formulate the
CRC will be deployed. In this case the information will be the received message which has been
transmitted from the transmitter M+R.

Process:
1. At the zero clock pulse or step 0, all shift registers reset to zero.
2. From Step 1 the received message will be input, one bit at a time with the most significant

bit. [11]
Contents of Shift Register at Reciever is given in Table 2.

Table 2. Contents of Shift Register at Reciever

 ISSN: 2502-4752

 IJEECS Vol. 6, No. 3, June 2017 : 602 – 614

608

4.1 Hardware Modules
4.1.1. Linear Feedback Shift Register (LFSR)

An n-bit LFSR is an n-bit length shift register with feedback to its input. The feedback is
formed by XORing or XNORing the outputs of selected stages of the shift register - referred to
as 'taps' - and then inputting this to the least significant bit (stage 0). Each stage has a common
clock. The 'linear' part of the term 'LFSR' derives from the fact that XOR and XNOR are linear
functions [18]. An example of a 5-bit LFSR is shown below Figure 5.

Figure 6. Implementation of Linear Feedback Shifft Register (LFSR)

This has taps at stages 1 and 4 with XOR feedback. Note also that the LS bit of the shift
register is, by convention, shown at the left hand side of the shift register, with the output being
taken from the MS bit at the right hand side. So what is it about a LFSR that makes it
interesting? It will produce a pseudorandom sequence of length 2n-1 states (where n is the
number of stages) if the LFSR is of maximal length. The sequence will then repeat from the
initial state for as long as the LFSR is clocked. Assume that the example LFSR above is set to
$1F after initialization. The output of the feedback XOR gate will be 0 (since 1 XOR 1 = 0) and
the first clock edge will load 0 into stage 0. [13] An LFSR is of 'maximal' length when the
sequence it generates passes through all possible 2n-1 values. The LFSR sequence depends
on the seed value, the tap positions and the feedback type. So far we have seen how to
implement LFSRs in VHDL such that any device can be targeted. Xilinx devices however, will
allow optimal implementation of LFSRs with their internal distributed RAM. This type of RAM is
available in the XC4000, Spartan/XL, Spartan-II and all Virtex families. Each CLB can be
configured as a RAM and this allows very compact shift registers to be built. [5]

4.1.2. Up-Down Counter

In digital logic and computing, a counter is a device which stores (and sometimes
displays) the number of times a particular event or process has occurred, often in relationship to
a clock signal.Counter that can change state in either direction, under the control of an up/down
selector input, is known as an up/down counter. When the selector is in the upstate the counter
increment its value. When the selector is in the down state, the counters decrement its
count [18].

Proceed through a well-defined sequence of states in response to count signal
3 Bit Up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000,...
3 Bit Down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111,...

A counter is a degenerate finite state machine/sequential circuit where the state is the
only output. A counter can be easily made by using T (Toggle) flip-flop [5]. An Example of
Up/Down Counter is shwn in Figure 7.

Figure 7. Implementation of Up/Down Counter

IJEECS ISSN: 2502-4752

An Optimized FPGA Implementation of CAN 2.0 Protocol Error … (Md Farukh Hashmi)

609

5. Simulation Results and Discussion
This design is implemented in VHDL platform using Xilinx ISE 13.1. The Register

transfer logic(RTL) and Internal RTl View view are shown in the Figure 8 and Figure 9. LFSR is
represented by 1st two blocks & the third block is CRC generator. The input data & DLC is
applied to the circuit and generates the CRC and Input Data at Tansmitter is presented in Figure
10.The simulation results of the CRC generator in the form of waveforms are presented in
Figure 11. Here input data is 10101010 is applied at the input of CRC & the output obtained is
100001110010001. Now the output CRC is appended taking the MSB first to the main data &
transmitted over the network. Figure 12 is showing the simulation waveform for CRC checker.
Here the transmitted data is checked by CRC checker. The input is data and the CRC. The
waveform shows that after 23rd clock the output is 0 which indicates no error. In Figure 13, an
error has been purposefully introduced in 16th clock period. The result in Figure 14 shows that
the output of CRC checker is non-zero meaning that an error has occurred during transmission.

Figure 8. RTL View of CRC -16 Can 2.0 Error Detector

Figure 9. Internal RTL View of CRC -16 Can 2.0 Error Detector

For Input data: It shows the input data given at transmitter side and also shows the

initial values that are assigned to the different registers and counters.

 ISSN: 2502-4752

 IJEECS Vol. 6, No. 3, June 2017 : 602 – 614

610

Figure 10. Input data at Transmitter

For Transmitter: This figure shows the CRC bits that are generated in CAN bus. Here
the CRC bits are appended with given input data and then transmitted.

Figure 11. Output waveforms for Transmitter

This figure shows the output at receiver side. The waveform shows that after 26rd clock
the output is 0 which indicates no error.

IJEECS ISSN: 2502-4752

An Optimized FPGA Implementation of CAN 2.0 Protocol Error … (Md Farukh Hashmi)

611

Figure 12. Output waveforms for Receiver

Output waveforms in Error Case:-
This figure shows output waveform at transmitter part in case of error. It generates the

CRC bits for transmitter when any error is occurred in given data.

Figure 13. Output Waveforms at Transmitter Side in case of Error

 ISSN: 2502-4752

 IJEECS Vol. 6, No. 3, June 2017 : 602 – 614

612

Output in case of Error
This figure shows the output at receiver side. The waveform shows that after 26rd clock

the output is non zero which indicates error.

Figure 14. Output Waveforms at Reciever Side in case of Error

6. FPGA Implementation and Synthesis Result
The design is implemented in Xilinx Spartan 3A (device XC3s400) FPGA platform.HDL

Synthesis report (Macro Statistics)and Advanced Synthesis report(Macro Statistics) of the
implementation is presented in Table 3 and Table 4.The devices has been used are adder,
multiplexers, registers and xors gates. The 7 bit counter uses an adder to increment its value.
The multiplexers are used in the CRC generator, Based on the value in DLC, the CRC
generator with the help of multiplexer selects one of the output instances from LFSR.Registers
have been used to store the data at different level of the CRC generation process.Seven, 1 –bit
XOR gates are used in LFSR to produce the new bit in the string for each clock pulse. Table 5
shows the Device Utilization Summary that the circuit utilizes a very small amount of the
available resources. The percentage of device utilization for number of slice Flip Flops, number
of 4 input LUTS, number of IOBS and numbers of GCLKS are shown. It has been found that the
estimated power consumption using Xilinx Xpower is very low and it is 38mW. The maximum
operating frequency found is 117.08 MHz’s

Table 3. HDL Synthesis Report Macro Statistics
#Counters 2
32-bit up cunter 2
#Register 26
1-bit register 23
16-bit register 2
23-bit register 1
#Comparators 1
32-bit comparator or less 1
Xors 14
1-bit xor2 14

IJEECS ISSN: 2502-4752

An Optimized FPGA Implementation of CAN 2.0 Protocol Error … (Md Farukh Hashmi)

613

Table 4. Advanced HDL Synthesis Report (Macro Statistics)
#Counter 2
32- bit up counter 2
#Registers 78
Flip-Flops 78
#Comparators 1
32-bit Comparator Less 1
#Xors 14
1-bit Xor2 14

Table 4. Device Utilization Summary
 Number of Slices 56 out of 3584 1%
Number of Slice Flip Flops 71 out of 7168 0%
Number of 4 Inputs LUTs 77 out of 7168 1%
Number of Bonded IOBs 26 out of 141 18%
Number of GCLKs 1 out of8 12%

TIMING REPORT: Timinng Analysis is presented in following Table 5.

Table 5. Timinng Analysis
Timing Parameter Calculated Results

Minimum period: 8.097ns (Maximum Frequency: 117.08 MHz.
Minimum input arrival time before clock: No path found
Maximum output required time after clock 12.426ns
Maximum combinational path delay: No path found No path found

7. Conclusion

A Technique to model the error detection circuitry of CAN protocol in VHDL is
described. The VHDL Model of CRC generator and checker is implemented on FPGA Xilinx ISE
13.1.The FPGA implementation result shows that the design is attractive from resource
utilization, power consumption and operating frequency Here we have utilized 114696 kilobyte
memory. The referred paper describes error circuitry in case of ‘no error’ our contribution – after
reviewing the paper we designed error controlling circuitry for CAN bus in case of error.

Usually components, like LFSR, XOR and Counters are used, so the entire circuit can
be easily designed. This approach is efficient both in terms of hardware, speed and power
cocsumption. The additional hardware required is very simple. This technique works efficiently
in case of ASIC design also. We have shown that hardware implementation on FPGA can be
effectively used to improve the performance of CRC implementation for CAN protocol.

References
[1] Shukla, Sunil, and Neil W. Bergmann. Single bit error correction implementation in CRC-16 on FPGA.

Poceedings of the IEEE International Conference on Field-Programmable Technology. Brisbane,

Australia. 2004; 319-322.
[2] Al-Ali Y, Al-Habian G, Saifi S, Al-Rousan M. Automobile Black Box for Accident Simulation. CSIDC.

American University of Sharjah. 2005.
[3] Specification C.A. N. Version 2.0. Robert Bosch GmbH. 1991 Sep.
[4] M Khanapurkar, P Bajaj, SDH Wandhare. Design approach for VHDl and FPGA Implementation of

Automotive Black Box using Can Protocol. International journal of Computer Science and Network
Security. 2008; 8(9): 214-218.

[5] M Esro, AA Basari, S Kumar, A Sahiqin MI, Z Syariff. Controller Area Network (Can) Application in
security System. World Academy of Science, Engineering and Technology. 2009; 59: 299-302.

[6] Eisenreich, Dan, and Brian De Muth. Designing Embedded Internet Devices. Newnes. USA: Elsevier
Science. 2003; 467-482.

[7] BA Forouzen, Chapter 10. Data Communication and Networking. 3rd ed. Tata Mcgraw-Hill publishing
Company Limited. 2004; 243-252.

[8] Xing W, Chen H and Ding H. The application of controller area network on vehicle. Proceedings of
the IEEE International on Vehicle Electronics Conference. 1999; 455-458.

 ISSN: 2502-4752

 IJEECS Vol. 6, No. 3, June 2017 : 602 – 614

614

[9] Carvalho FC, Jansch-Pôrto I, Freitas EP, Pereira CE. The TinyCAN: an optimized CAN controller IP
for FPGA-based platforms. Proceedings of the 10th IEEE Conference on Emerging Technologies and
Factory Automation.The TinyCAN: An Optimized CAN Controller IP for FPGA-Based Platform.
Catania, Italy. 2005; 374-377.

[10] Donchev B, Hristov M. Implementation of CAN controller with FPGA structures. Proceedings of the
IEEE 7th International Conference on the Experience of Designing and Application of CAD Systems
in Microelectronics. Lviv–Slavsko, Ukraine. 2003; 577-580.

[11] Khanapurkar M, Bajaj P, Gharode D. A design approach for intelligent vehicle black box system with
intra-vehicular communication using lin/flex-ray protocols. Proceedings of the IEEE International
Conference on Industrial Technology. Chengdu, China. 2008; 1-6.

[12] Koopman, Philip, and Tridib Chakravarty. Cyclic redundancy code (CRC) polynomial selection for
embedded networks. Poceedings of the IEEE International Conference on Dependable Systems

and Networks. Florence, Italy. 2004; 145-154.
[13] Peterson, William Wesley, and Daniel T Brown. Cyclic codes for error detection. Proceedings of the

IRE. 1961; 49(1): 228-235.
[14] Rajib Sarkar & Bijoy Kumar. Design of VHDL Based Error Detection Circuitry in CAN. Poceedings of

the international Conference on Emerging Trends in Engineering & Technology. 2010; 106-110.
[15] Williams, Ross. A painless guide to CRC error detection algorithms. Internet publication, August

1993.
[16] Jagannathan Sarangapani, Krishna Chaitany Emani, Keong Kam, Maciej Zawodniok Yahong Rosa

Zheng. Improvement of can bus performance by using error-correction codes. Department of
Electrical and Computer Engineering, University of Missouri-Rolla.

[17] Emani, Krishna Chaitanya, Keong Kam, and Maciej Zawodniok. Improvement of CAN bus
performance by using error-correction codes. Proceedings of the IEEE Region 5 Technical

Conference, Fayetteville, AR. 2007; 205-210
[18] Bhasker, Jayaram. A VHDL Primer. PHI Pvt. Ltd 3, 2008.

