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Abstract 
This paper presents a new passivity condition for fixed-point state-space interfered digital filters 

using saturation arithmetic. Passivity is a way to characterize input-output stability of a system, that is, 
supplied bounded input energy produces bounded output energy. The presented criterion also ensures 
asymptotic stability of the state-space digital filter with zero external disturbances. The result is expressed 
in terms of linear matrix inequality, and therefore, can be solved via existing numerical packages. A 
numerical example is arranged to validate the usefulness of the proposed method. 

  
Keywords: Interefered Digital filter; Saturation arithmetic; Nonlinear effect; Nonlinear system; Passivity 

    
Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved. 

 
 

1. Introduction 
The implementation of digital filters on a finite wordlength fixed point processor 

unavoidably has nonlinear effects because of quantization/overflow. Due to the existence of 
these nonlinearities, implemented digital filter may show unstable behavior [1, 2]. Therefore, 
many researchers have devoted significant efforts to study the stability properties of the state-
space digital filters with nonlinearities [3-5] and references therein.  

The implementation of digital filter of high-order in hardware can be achieved by 
cascading several biquad filters. External or mutual interference is unavoidable in high-order 
filter implementation. Such interferences may result in poor performance and malfunctioning of 
the implemented filters [6, 7]. Thus, analysis of the effects of the presence of external 
disturbances in digital filter is practical and significant problem.  

In recent times, many results have been appeared for the stability analysis of interfered 
digital filters via saturation arithmetic [8-11]. Criterion for limit cycle free state-space interfered 

digital filters usingsaturation arithmetic via idea of 
H

 
has been formulated in [8] Refs [9-11] 

present results for induced l  stability of digital filters via saturation nonlinearities and 

externaldisturbance.The resultreported in [12] discusses with problem of 
l  performance 

analysis for time-varying delayed neural networks. The concept of  
2 l l  have been widely 

used in various applications such as discrete-time switched neural networks [13], Takagi–
Sugeno fuzzy neural networks [14], FIR filters [15] etc.The study of digital filters in the existence 
of nonlinearities and external disturbance is significant and appealing problem.  

Passivity is an important concept for analysis and design of controller based on input-
output data for many complex systems [16, 17]. Passivity is closely associated to stability that 
is, if supplied energy to the system is bounded then it produces bounded output energy. 
Passivity analysis problem has attracted attention of researchers and several results have been 
reported in [16-21]. To deal with time-varying delays, passivity conditions for uncertain system 
have been established in [18]. Based on the concept of passivity a robust stability and passivity 
conditions have been established in [19]. Passivity is exploited to study hybrid systems in 
piecewise polynomial form in [20] and for stochastic neural networks with mixed time delaysin 
[21]. However, no stability results are available for digital filters with nonlinearitites and outward 
disturbances in the context of passivity.  



                     ISSN: 2502-4752           

 IJEECS Vol. 6, No. 2, May 2017 : 431 – 437 

432 

Motivated by the above discussions, we present a criterion for very strict passivity in 
state-space digital filters via saturation arithmetic and externaldisturbance. The proposed 
criterion is established in linear matrix inequality (LMI) settings and therefore, one can solve the 
conditions by available numerical packages such as MATLAB LMI Toolbox. The rest of the 
paper is structured as follows. Section 2 gives the notation used and states the system under 
investigation. A new condition for very strict passivity of fixed-point state-space interfered digital 
filters with saturation arithmetic is brought out in Section 3. In Section 4, a numerical example is 
given to show the usefulness of the proposed result, and finally, conclusions are outlined in 
Section 5.  

Throughout this paper, the superscript T  means the transpose of a matrix; k  and 
k k  denote the k  dimensional Euclidean space and the set of k k  real matrices, 

respectively; 0G >  ( 0G < ) indicates that G  is positive (negative) definite symmetric matrix. The 

null matrix or null vector is denoted as 0. The notation used to represent identity matrix of 

appropriate dimension is I . Any vector or matrix norm is indicated by . .  

 
 
2. Problem Formulation  

Consider the nonlinear system with external disturbance described by 
 

( 1)q  = ( ( )) ( )q q     

 1 1 2 2= ( ( )) ( ( )) ( ( ))
T

n nq q q       

 1 2( ) ( ) ( )
T

nq q q         (1a) 

 

( )q  1 2
= ( ) ( ) ( ) ( ) + ( )

T

n
q q q q q    A   (1b) 

 

where ( ) kq    is  the  state vector, ( ) kq   denotes the output vector, ( ) kq    represents 

the external interference, and k kA is the known coefficient matrix. The normalized and 

symmetric saturation nonlinearities under considered in this paper are given by 
 

1, ( ) 1,

( ( )) ( ), 1 ( ) 1,

1, ( ) 1,

i

i i i i

i

q

q q q

q



   






   
   

1, 2, ,i k  (2) 

 

where ( ( ))i i q   is limited to sector [0, 1] i.e.  

 

(0) 0i   ,    
( ( ))

0 1
( )

i i

i

q

q

 


  ,       1, 2, ,i k  (3) 

 
The motive of this paper is to design a filter (1) in order to satisfy the following conditions:  

1) The system is said to be exponentially stable with ( )q  0 . 

2) A very strict passivity condition for all nonzero ( )q , under the zero initial condition 

such that  

0

0 0 0

( ) ( ) ( ) ( ) ( ) ( )
q q q

T T T

s s s

s s s s s s 
  

        
0

( ( ))
q

s

s


    0q   (4) 

 

where  , 0 ,   are nonnegative constants and ( ( )) 0s   is storage function. 
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3. Novel Passivity Results 
The following theorem establishes a sufficient passivity criterion for system (1)-(2). 

Theorem 1. The The digital filter (1)-(2) is very strict passive from the external disturbance 

( )q  to the output ( )q , if there exist matrices T
0P = P > , T

0U = U > , 

1 2
= ( , , , ) > 0

n
diag n n nN  and scalars 0  ,

0 0    and 0   satisfying: 

 

0 0

0 0

1
( )

2

2  <

1
( 1)

2

T T T   



    

  
      

  
   
 

         

0

+ A A U P A N A

NA P I N P + N

A P + N P + + I

  (5) 

 
ProofConsider a Lyapunov function: 
 

( ( )) ( ) ( )Tq q q   P   (6) 

 
Application of (6) to (1a) provides,  
 

( ( ))q  = ( ( 1)) ( ( ))q q       

= [ ( ( )) ( )] [ ( ( )) ( ))]Tq q q q      P ( ) ( )T q q P
 

= ( ( )) ( ( ))T q q   P ( ( )) ( )T q q  P ( ) ( ( ))T q q  P   

( ) ( )T q q P ( ) ( )T q q P  (7) 

 
For a positive scalar  , the following is true by (2) 

 

[ ( ) ( ) ( ( )) ( ( ))] 0T Tq q q q         (8) 

 
which also implies: 
 

[ ( ) ( ) ( ) ( ) ( ) ( )T T T T Tq q q q q q       A A A A ( ) ( ) ( ( )) ( ( ))] 0T Tq q q q         (9) 

 

By means of (9) and adding and subtracting 
0( ) ( ) ( ) ( ) ( ) ( )T T Tq q q q q q          ,  

Equation (7) yields: 
 

( ( ))q x ( ( )) ( ( ))T q q    P ( ( )) ( )T q q  P ( ) ( ( ))T q q  P ( ) ( )T q q P  

( ) ( )T q q P ( ) ( )T q q A ( ) ( )T q q  + 0 ( ) ( )T Tq q  A A 0 ( ) ( )T q q  A

0 ( ) ( )T Tq q  A 0 ( ) ( )T q q   ( ) ( )T q q   ( ) ( )T Tq q  A A ( ) ( )T q q  A

( ) ( )T Tq q  A ( ) ( )T q q   ( ( )) ( ( ))T q q     ( ) ( )T q q 
0

( ) ( )T q q  

( ) ( )T q q   ( )q ( )q  

( ) ( )T q q= μ μ ( ) ( )T q q U ( ) ( )T q q 
0

( ) ( )T q q   ( ) ( )T q q   ( )q  (10) 

 
Where, 
 

( ) [ ( ) ( ( )) ( )]T T T Tq q q qμ      (11) 

 
And, 
  

 ( ) = 2 ( ( )) ( ) ( ( ))Tq q q q     N  (12) 
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which is nonnegative by considering (2).  
When  0 , Equation (10) satisfies 

 

0
( ( )) < ( ) ( ) + ( ) ( ) ( ) ( )T T Tq q q q q q q       x U ( ) ( )T q q    (13) 

 
Summation of both sides of (13) from 0 to q  leads to 

 

0

0 0 0

( ) ( ) ( ) ( ) ( ) ( )
q q q

T T T

s s s

s s s s s s
  

        U
0 0

( ) ( ) ( ( ))
q q

T

s s

s s s
 

        

= ( ( 1)) ( (0)) 0q        (14) 

 
which can be written as  
 

0

0 0 0

( ) ( ) ( ) ( ) ( ) ( )
q q q

T T T

s s s

s s s s s s 
  

        
0

( ) ( ) ( ( ))
q

T

s

s s q


     U +      (15) 

 

where ( (0))     and ( ( )) 0q    under the zero initial condition that assures (4). This 

completes the proof of Theorem 1. 

Now, by choosing ( )q  0  one can achieve the following result.  

Corollary 1. The The system (1)-(2) is said to be very strict passive for ( )q  0  and 

asymptotically stable  when ( )q  0 , if there exist k k  matrices T
0P = P > , T

0U = U > ,

1 2
= ( , , , ) > 0

n
diag n n nN  and  scalars 0  , 

0 0   and 0   satisfying 

 

0 0

0 0

1
( )

2

2  <

1
( 1)

2

T T T   



    

  
      

  
  
 

         

0

+ A A U P A N A

NA P I N P + N

A P + N P + + I

 (16) 

 

0

T  0U + A A   (17) 

 

Proof For a digital filter given by (1) with ( )q  0 , the forward difference of the Lyapunov 

function satisfies, 
 

0
( ( )) < ( ) ( ) ( ) ( )T T Tq q q q q      U A A  

0( ) ( ) 0T Tq q     U + A A   (18) 

 
which leads to: 

 

lim ( )
q

q


 0   (19) 

 

The condition (19) confirms that the sysem (1)-(2) is asymptotically stable when ( )q  0 . This 

completes the proof of Corollary 1. 
Remark 1. Corollary 1 is in LMI settings, thusone may verify that by using MATLAB LMI 

toolbox [22, 23]  
Remark 2. The system (1)-(2) for the objective (4) is said to be  

(i) passive when 0 0   ,  

(ii) input strict passive when 0 0   and 0  ,  

(iii) output strict passive when 0 0   and 0  .  
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Thus, passive, input strict passive and output strict passive are the special cases of very strict 
passive and conditions for them can be obtained from Theorem 1 as special cases. 

Remark 3. Digital filters are most conveniently realized on a digital signal processor 
which may be a general purpose digital computer or a specially designed hardware. The 
realized digital filter is expected not to show any zero input limit cycle and delivers acceptable 
performance. The result reported in Theorem 1 is formulated by considering saturation 
arithmetic and external disturbance. One may find it interesting to extend the proposed idea for 
any combination of quantization/overflow nonlinearities and state-delays. Further, the proposed 
approach can also be extended for two-dimensional [26] systems which appears to be an 
appealing future work. 
 
 
4. Numerical Results 

To test our method and to validate the effectiveness of the proposed problem 
resolution, consider the system (1)-(2) with 

 

0.35 0.5

0.4 0

 
  
 

A  (20) 

 

and external interference ( )q  is  

 

1 2[0.2 ( ) 0.25 ( )] , 0 50,
( )

[0 0] , otherwise,

T

T

q q q
q

   
 


  (21) 

 

where
1( )q  and 

2 ( )q  are white Gaussian sequences with 0   and 1  , where   

represents mean and   shows the variance. By means of Corollary 1, a feasible solution to the 

LMIs (16) and (17) using MATLAB LMI toolbox [22, 23] is given by 
 

0.1372 0.0136

0.0136 0.1334

 
  

 
P ,  

0.0405 0.0330

0.0330 0.0339

 
  

 
U  

0.2252 0

0 0.2867

 
  
 

N , 0.0992  , 
0

0.2107  , 0.0816        (22) 

 
Therefore, Corollary 1 confirms the digital filter is very strictly passive in the existence of 
external disturbance and asymptotically stable when external disturbance vanishes. 

Figure 1 and 2 show the state trajectories for the states 1( )q  and 2 ( )q  for the initial 

condition (0) [2 1.5]T  . This figure clears that  ( )q  is restricted around the origin where 

( )q  0  and converges to zero with ( )q  0 . 

 
 

 
The plot of 1( )q  

 



                     ISSN: 2502-4752           

 IJEECS Vol. 6, No. 2, May 2017 : 431 – 437 

436 

 
The plot of 2 ( )q  

 
 

5. Conclusion 
A sufficient condition for very strict passivity for state-space interfered digital filters withi 

saturation nonlinearities has been established. In the scenario of non existence of external 
disturbance, condition to confirm asymptotic stability of realized digital filter has been 
madeavailable. The proposed result is computationally efficient and a mathematical example is 
provided to validate the given result. 
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