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Abstract 

In recent years, video super resolution techniques becomes mandatory requirements to get high 
resolution videos. Many super resolution techniques researched but still video super resolution or scaling 

is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural 
network architecture to eliminate the b lurriness in the images and video frames and to provide better 
reconstruction quality while scaling of large datasets from lower resolution frames to high resolution 
frames. We compare our outcomes with multiple exiting algorithms. Our extensive results of proposed 
technique Rem CNN (Reconstruction error minimization Convolution Neural Network) shows that our 
model outperforms the existing technologies such as b icubic, b ilinear, MCResNet and provide better 
reconstructed motioning images and video frames. The experimental results shows that our average 
PSNR result is 47.80474 considering upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for 
Myanmar dataset which is very high in contrast to other existing techniques. This results proves our 
proposed model real-time video scaling based on convolution neural network architecture’s high efficiency 
and better performance. 
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1. Introduction 
The In recent years, high definition devices such as HDTV (High-definition television), 

Smart phones, LAPTOPS, iPad, MacBook Pro and UHDTV (Ultra-high-definition television) 

have gained immense popularity due to its high resolution quality. Therefore there is an 
extensive demand of super-resolution in this modern era. 

Therefore in recent years Super resolution becomes one of most vital technique for 

video editing and post-processing applications. Super-resolution is a technique of enhancing the 
low resolution images or video frames into high resolution frames and images. Super Resolution 
approach uses neighboring pixels to recover the lost pixels and provide better quality [1]. In 

many applications such as medical [2], satellite imaging [3], surveillance [4], HDTV [5], video 
coding or decoding [6-8], stereoscopic video processing [9], [10] and face recognition [11] the 
use of super resolution becomes mandatory requirement. 

Super resolution approach is use to extract high-frequency information from the images 
and video frames with low resolution quality to reconstruct the original image by el iminating the 
ringing effect [12]. Hence, Super resolution technique needs high amount of accuracy and 

speed for the processing of video frame sequences and images. Earlier techniques such as 
Lanczos, bilinear, and bi-spline provides poor quality of images and video frames with number 
of visual artifacts like ring, blocking and blurring. However, they are cost efficient and can be 

easily implemented on chip. As a result of poor resolution they cannot provide required precise 
high quality of images and video frames. Many issues occurs in the hardware implementation of 
video scaling such as high computational complexity, large memory requirements, requirement 

of high resolution quality video, pixel replication and redundancy in pixels. Therefore, this 
motivates us to implement our video scaling model via software. 

Therefore, to eliminate these drawback, in recent years a high resolution CNN 

(Convolution Neural Network) technique [13, 14] come in the existence. The most dynamic 
advantage of CNN is that it can easily train with large datasets such as ImageNet [15] and 
Myanmar dataset [16] by using parallel computing on GPU. These datasets are very bulky in 
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size which can be a challenging aspect for other existing techniques. CNN techniques are much 

faster than the conventional techniques due to its easy training and pure feed-forward methods. 
However, still most of the existing techniques cannot reconstruct the video frames as efficiently 
as required. Therefore, in this paper, we present a real-time video scaling approach based on 

       technique to provide high resolution scaling for images and video frames. 
Our proposed technique        provides better efficiency and performance in 

contrast to the existing approaches by eliminating blurriness in the images or video frames to 
recover the original images and its information. In practical, the key reason of noise occurrence 

is the difference between the training samples of the training datasets and testing samples of 
actual application scenes.  Therefore, to eliminate this type of noise the proper classific ation of 
actual application scenes through Super Resolution (Scaling) approach is necessary so that 

training samples becomes more similar to that of actual content [17]. In recent years many high 
resolution devices such as TV (Televisions), laptops and mobile phones developed. However, 
still many issues such as bulk storage, poor quality and transmission overhead faced by the 

subscribers. Therefore, to counter these type of conventional issues our proposed        can 
be prove very vital technique to help researchers and industries considering the current 

scenarios. 
 Video Scaling techniques can be partitioned into two parts such as multi -frame and 

single-frame based approaches [18-19]. Single image based approach mostly utilizes 

interpolation or example techniques due to their least computational cost. However, in this 
single-frame based approach resources becomes limited which reduces the system 
performance hence image quality. Therefore, Video Scaling with multi -frame based approach 

becomes an import aspect for current scenarios in real time to get better quality reconstructed 
image. Multi-frame based Video Scaling consists of either reconstruction approach or example 
based approach or combination of them. However, reconstruction approach provides bett er 

fidelity but cannot handle large datasets and large motions. On the other hand, Example-based 
approaches comes with better performance but mostly  depends on quality training [20-21]. 
Therefore to counter these problems our proposed video scaling approach is highly capable 

which rely upon        (Reconstruction error minimization Convolution Neural Network) 
architecture. In this proposed model we use sparse coding reconstruction technique to eliminate 

the error which generated after feature extraction. We use       (Sparse Rectified Linear Unit) 
to describe non-linearity. Sparse Coding Based Architecture (   ) considered to provide better 

complex relationship between input low resolution images and its generated output high 
resolution images 

However, previous studies [22-23] consist of some limitations related to its high 

resolution and image reconstruction when upscaling factor increases. Previous experimental 
results demonstrate that the efficiency of a system drastically decreases whenever upscaling 
factor increase. This is due to high frequency component of an image is difficult to extract when 

scaling factor increases as noise and blurriness level also increases. Therefore our model 
concentrates on maintaining the efficiency of a system even if upscaling factor further increases. 
However, to provide better efficiency we apply parallel computing on GPU using CAFFE 

framework regardless of its upscaling factor. Our experimental results demonstrates that the 
performance of our video scaling model with        architecture outperforms the existing 

techniques in terms of scaling factor enhancement outcomes, quality high resolution, noise 
elimination and precise image reconstruction.  

This paper is organized in following sections which are as follows. In section 2, we 

describe about the video scaling issues and how they can be eliminate by our proposed model. 
In section 3, we described our proposed methodology. In section 4, experimental results and 
evaluation shown and section 5 concludes our paper. 

 
 
2. Video Scalling Issues 

Explaining There are many types of issues which can occur while scaling (either 
upscaling or downscaling) of images and video frames. In [24], Image Fusion and Super-
Resolution with Convolutional Neural Network adopted to eliminate blurriness and provide sharp 

images for digital photography. In this process author Zhong J faces pixel level image fusion 
issues. In [25], 3D Video Super-Resolution Using Fully Convolutional Neural Networks has been 
proposed to sort out redundancy, degradation in quality of fused image and huge data size 
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problems. In [26], Video Super-Resolution with Convolutional Neural Networks adopted to 

eliminate the problems of video super-resolution. In this paper author faces problem of ill posed 
in reconstruction of high dimension super resolution image and training of large datasets is also 
a vital issue. In [18] Image super-resolution: The techniques, Applications, and future provided 

to review the recent super resolution works and its applications. The biggest challenge face by 
author Linwei Yue is that to maintain the quality of resolution in motioning conditions. In [27], 
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional 

Neural Network applied. In this paper author experiences global ill-posed reconstruction SR 
problem and Single Image Super Resolution (SISR) problem which increases the computational  
complexity of the model. In [28], Image Super-Resolution Based on Convolution Neural 

Networks Using Multi-Channel Input proposed to get better feature extraction to reconstruct the 
image. The problems faced by author in achieving this objective are gradient exploding and 
vanishing and ill posed super resolution problem. In [29], high-quality video/image super-

resolution accelerated using GPU to get better performance. In this paper the biggest challenge 
for the author is the running speed requirement for 4K video processing. In [30], Visualizing and 
Understanding Convolutional Neural Networks proposed to get better feature extraction and 

enhancement in image quality. There are two challenges such as training of large datasets like 
ImageNet dataset with elimination of error and poor capturing of pixels by higher layers are 
widely faced by the author. In [31], On Bayesian Adaptive Video Super Resolution model 

presented to get better high resolution reconstructed image with great feature extractions. In this 
paper, author faces performance degradation issues whenever scaling factor increases. In [32], 
learning a Mixture of Deep Networks for Single Image Super-Resolution model ill-posed, 

complex mapping of low-resolution images and inverse image recovery faced by author.  
In our paper, the proposed model compared with many existing Super Resolution Video 

scaling approaches based on CNN framework and there are multiple stages such as shrinking, 

mapping with sparse coding last layer on which the Convolution Neural Network (CNN) 
framework rely upon. This stage helps to eliminate the above mentioned poor quality and global 
ill-posed image reconstruction issues in existing approaches. Dataset videos such as Myanmar 

video tested with our model and the testing outcomes describes that it can quickly reconstruct 
the precise information of the video datasets. 

The performance of the Super Resolution video scaling architecture significantly 

increases by using CNN framework. To further improve the performance of the model and 
speed up the large datasets GPU computing used on a CAFFE framework. CAFFE frameworks 
not only accelerate the speed of large datasets but also increases the reconstruction quality of 

images and video frames. The performance of the system remains same in our system 
regardless of upscaling factor due to fast parallel computing and sparse coding reconstruction 
architecture. Sparse coding reconstruction technique helps to eliminate sufficient amount noise 

in image pixels and ill posed problem and reconstruct an efficient original high resolution image.  
 
 

3. Proposed Methodology 
In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Results can be presented in figures, graphs, tables and others that 

make the reader understand easily [3], [11]. The discussion can be made in several sub-
chapters. 
 

3.1. Video Scaling using CNN architecture  
In recent years, Convolution neural networks (CNN) gains extreme popularity due to its 

large success in the field of image or video scaling and image classification [33-34].CNN can 

also be easily applied in the fields of face detection [35], pedestrian recognition [36] and object 
detection [37-38].CNN provides fast computation for large training database such as ImageNet 
[15], Myanmar [16] and videoset4 [31]. There are multiple factors which make CNN architecture 

efficient and help in enhancing the performance of the system. 
a. It helps in the implementation of the training datasets on the efficient and powerful GPU 

[34] framework such as CAFFE. 

b. It uses ReLU (Rectifier Linear Unit) [36] to provide better performance and fastening 
speed in training and testing of datasets. 

c. It can easily train large datasets like Myanmar datasets [16]. 
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3.2. Image Reconstruction Architecture 

In recent years, precise image reconstruction from low-level resolution to high-level 
resolution image becomes a mandatory requirement. In previous work many techniques or 
approaches are applied to reconstruct a better quality image. However very few techniques are 

able to provide required high resolution reconstructed image. One technique, which shown high 
accuracy outcomes and better PSNR performance for image reconstruction, is         
(Reconstruction error minimization Convolution Neural Networks).In this paper, to compute 
large training datasets with ultra-high speed, GPU computing used in CAFFE framework. To 
make our system more precise and eliminate sufficient amount of noise from the image or video 

frame we apply here sparse coding reconstruction technique for a CNN architecture.  
The architectural viewpoint for sparse coding reconstruction method is given in  

Figure 1 which shows the architecture diagram of reconstruct ion of image. Consider a single 

low-dimension video frame. In our proposed model patch based feature extracted for each 
frame in a video. Then all the frames are down-sampled to the intermediate frames. Then for 
each frame mapping is require. Then frames are up sampled to the desired size. The difference 

of up sample and down sample frames fed to sparse coding image reconstruction block to 
reconstruct image to the original quality. Our proposed model outperforms existing techniques 
by eliminating the error present in the up sampled image and down sampled image. The 

reconstruction of image or video frames consists of total five stages in our proposed model. 
 
 

 
 

Figure 1. Sparse coding based image reconstruction architecture 
 

 
There are multiple stages in our proposed model image reconstruction architecture 

which are as follows. 

Patch based feature Extraction:  Our proposed        technique first performs patch 
based feature extraction on each original video frame without interpolation. We represents our 

input image as   .Our input image     convoluted to a group of filters to get high dimensional 
feature vector for each frame. In our model group of filters consists of multiple parameters such 

as           As our model perform feature extraction directly on the original frames, the filter 
size of first sheet    can be as     .The number of channels we have adopted here out of 

      is only channel Y hence the number of channel       Here,    is the number of feature 
dimension which has to determine. This feature dimension of first layer can be presented 

as            . Here   can be represented as the first sensitive variable. 
Down-Sampling: In existing techniques after feature extraction directly mapping 

presented. Then high dimension features converted into the high resolution features. This 
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increases computational overhead of the system and degrades the performance due to large 

size of  . 
Therefore to eliminate this drawback of the existing techniques here we first down 

sample the features extracted by the video frames. This approach can also be observed in high-
level vision methods to decrease computational cost.  

For the same concern we have down sampled the features of all the layers to decrease 

the feature dimension  .The filter size for second layer considered as       to perform linearly 
with features. The feature dimension for second layer can be presented as        .Now 

feature dimensions are decreased from   to  . Here, g is the second sensitive variable which 

calculates the amount of downsampling. This feature dimension of second layer       can be 
presented as            .This technique reduces large amount feature dimension. 

Mapping: It is the most vital phase of this proposed algorithm which enhances the 
performance of the model. This is a non-linear type mapping. In mapping, width and depth are 

two factors which are most affected. Here, width represent the number of filters present in a 
layer and depth represents the total number of layers. This operation perform non-linear 
mapping on each high-dimensional feature. In existing techniques mapping experiments not 

implemented on large deep networks which helps us to create a more significant non-linear 
mapping layer. To achieve this we consider a medium filter of size     .Then, to provide 
better efficiency we utilize multiple     layers. The complexity and accuracy performance 

calculated by a sensitive variable  . Each mapping layer consists of similar number of 

filters     . This non-linear mapping can be presented as             . 
Up-sampling: It is the reverse procedure of the down-sampling. To decrease the feature 

dimensions down-sampling used which helps in the reduction of computational complexities and 
produces a high quality video frame or image. Therefore, to generate a high quality image after 
mapping an up-sampling layer introduced. To retain synchronization between both the layers 

down-sampling and up-sampling we implemented     layers. As it is an inverse of down-
sampling, the up-sampling layer can represented as             .This layer increases the 

performance of the system. 
Sparse coding based image reconstruction: The final part of the image reconstruction is 

sparse coding based image reconstruction which used to reform a high quality image by 
eliminating the error produced in up-sampling and down-sampling. Then the outcome (weight 
parameter) is directly a reformed image with high quality. Here we have taken     filter layers 

and the sparse coding layer can be presented as                    . 
 

3.3. Sparse Rectified Linear Unit         
 After each layer,      (Rectified Linear Unit) used for the activation function. In our 
model we have used Sparse Rectified Linear Unit         instead of conventional     . The 

activation function for       can be  
 

 (  )     (    )               (1) 

 
Here    is the input for the activation function  ,   represents the channel and    represents the 

coefficient of negative phase. In existing techniques    kept as zero but in for       technique 

  is user-defined.      is a key to eliminate the dead features [40] generates in      by zero 

gradient vectors. This helps to test parameters of multiple networks for different designs to its  
full capacity. Our experimental outcomes demonstrate that the       networks is comparatively 

more efficient and stable. This method increases accuracy and speed as well.  
 

3.4. Modelling to Reduce Computational Complexity and Cost Function 
3.4.1. Computational Complexity 

In existing techniques the computational complexity remains very high which degrades 

the overall performance of the system. The reason for high computational complexity and cost 
function is the use of conventional      and drawback in the design architecture. In existing 

approaches computational complexity can be calculated as:  
 
 {   

        
        

     
} (2) 
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 Our proposed model consists of very low computational complexity. This is due to it s 

efficient and accurate modern design architecture and use of sparse rectified linear unit 
        which helps in increasing the speed and avoiding time lapse by eliminating the dead 

features. In our proposed model computational complexity calculated as: 
 
 {                       

}   {      } (3) 
 
3.4.2. Cost Function 

In our model cost function described in terms of MSE (Mean Square Root) function. The 
following equation represent the cost function which used in previous techniques: 

 

   
 

 

 
∑   (  

   )      
 

 

   
 (4) 

 

Here,   
  and   are the     low and high resolution image pair in training.   is the 

parameter of the output system function  (  
   ). The efficiency of these parameters are 

maintained by utilizing standard back propagation approach with stochastic gradient.  
 

3.4.3. Sparse Coding Reconstruction 

 Network Architecture: Sparse Coding Based Architecture (   ) considered to provide 
better complex relationship between input low resolution images and its generated output high 
resolution images. This architecture provides better performance and increases high amount of 

accuracy. This SCA (Sparse Coding Based Architecture) implemented in corporation with neural 
networks to reconstruct a high resolution image from the original low-resolution image using 
LIST (Learned Iterative Shrinkage and Thresholding) approach [40]. Figure 2 shows the 

architectural diagram of Sparse Coding Based Architecture (   ). 
 

 

 
 

Figure 2. architectural diagram of Sparse Coding Based Architecture (   ) 

 
 

The objective of our model is to provide high amount of selectivity for the output high 
resolution image frame by applying SCA based LIST approach on each input frame in 
coordination with neural networks. We use       (Sparse Rectified Linear Unit) to describe 

non-linearity. The use of Reconstruction error minimizer Convolution Neural Networks 
(      ) with     reduces high amount of computational cost and enhances efficiency with a 

large extent. For each output high resolution frame a weight map generated based on pixels. 
Each generated weight-map multiplied with its equivalent pixels for every output frame. Then all 

the products of frames are summed up to reconstruct an original image frame. The 
reconstructed original image        can be represented as: 

 

        ∑         

 

 

      
      

   (5) 

 
Here,   represent the input low-resolution image, function           denotes the behavior of 

generated weight maps and another function    
      

  denotes the output high resolution 
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frame  . Equation (5) represents point wise multiplication of weighted map with its pixels for 

each reconstructed output image. 
Equation (6) the loss elimination between the input low-resolution frame and the 

estimated output frame in training, 
 

   
 

∑  
 

             
  (6) 

 

Here, function          denotes our output,    is the    high resolution frame and    represents 

the corresponding low-resolution image.   denotes a group of all parameters of our model. The 
combination of Equation (5) and (6) provides the cost function of our proposed model.  

 

   
   {   

}   
 

∑  
 

∑          

 

 

     
       

        
  (7) 

 
 

4. Results and Analysis 
We compute our outcomes with the similar dataset (Myanmar) as used in [16] to 

compare the performance and efficiency of our model to the existing techniques discussed in 

the related work. Our model is trained on different large dataset like Myanmar [16]. Testing 
results shows that our model outperforms most of the existing techniques in terms of PSNR and 
reconstruction efficiency. We have tested our model for different up scaling factors (2, 3 and 4). 

Our result shows accuracy and reconstruction efficiency increment to a large extent. Our model 
needs less amount of execution time to provide effective video scaling. Our model implemented 
on 64-bit windows 10 OS with 16 GB RAM which consists on INTEL (R) core (TM)  i5-4460 

processor. It consists of 3.20 GHz CPU. We have compared our model with Enhancer [41], 
Draft-CNN [42], Bayesian [31] and Bayesian-MB [43] and many other existing techniques. 
 

4.1. Implementation Details 
We have implemented our extensive experiments on large 4K video Myanmar dataset. 

In modern era, the availability of 4K monitors is highly increased. Therefore, there is a huge 

demand of low resolution videos to high-resolution videos in market. These high resolution 
video can be achieve through upscaling factor. Therefore we have used different upscaling 
factors to achieve these objectives by measuring performance and accuracy of the model for 

upscaling factor 2, 3 and 4. Myanmar dataset contains total 57 scenes. In these dataset, 50 
scenes used for training and 7 scenes for testing for different up-scaling factors. All the 
experiments are undertaken on the MATLAB 16b framework in configuration with CAFFE.  

 
4.2. Comparative Study 

Here, we have taken 7 scenes for testing out of 57 total scenes in Myanmar dataset 

video considering upscale-2 as used in [44]. All the scenes are compared to nine most popular 
existing techniques. Scene-2 represent the famous Myanmar temple which consists of total 594 
frames. Our proposed technique        gives 48.0492    PSNR. Scene-8 represents 

Myanmar golden temple which consists of 354 frames. Our proposed technique        gives 
36.99    PSNR for scene-8 which is little less compare to other existing technique. It is an 

exceptional case in our proposed model. Scene 18 and 33 represents snake and Buddha 
temple scenes in Myanmar video. Both the scenes consists of 632 frames and for both scenes 

our proposed technique        gives highest PSNR as 52.274 and 53.198   .  Scene 25 and 
45 represents yoga scene by a man and horse scenes in Myanmar video. Both the scenes 

consists of 594 frames and for both scenes our proposed technique        gives PSNR as 
47.031and 49.671   .Scene 48 represent tiger scene in Myanmar video. Our proposed 

technique        gives PSNR as 47.42    for this scene. Similarly, same scenes are used to 

compute PSNR considering upscale-3 and upscale-4.Our proposed technique shows highest 
PSNR for scene-1 (temple) which consists of 816 frames. The PSNR results for different 
upscaling factor 2, 3 and 4 are 54.07, 48.96 and 45.05    which is much better than the existing 

techniques. The percentage improvement of our proposed model in contrast to other 
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conventional techniques is very high. Scene-48 gives highest improvement of 22.17% 

considering upscale-2. Similarly, scene-45, 33 and 18 gives improvement of 10.21%, 16.37% 
and 15.22% respectively. However, scene-8 and 25 gives little less accuracy considering 
upscale-2. Our model gives best improvement result for scene-1 as 28.83% considering 

upscale-2. 
Similarly, Scene-18 gives highest improvement of 15.22% considering upscale-4. 

Similarly, scene-2, 8, 45 and 48 gives improvement of 3.95%, 12.46%, 2.18% and 14.07 % 

respectively. However, scene-25 and 33 gives little less accuracy considering upscale-4.Our 
model gives best improvement result for scene-1 as 28.17% considering upscale-4. Similarly, 
our model gives best improvement result for scene-1 as 28.15% considering upscale-3. 

Average PSNR improvement considering upscale-2 and upscale-4 is 7.79% and 4.45%. 
Table 1 shows the comparison of different scenes of a Myanmar dataset for multiple 

existing techniques. The following results shows that our average PSNR result is 47.80474    

considering upscale-2, 41.70209    for upscale-3 and 38.24503    for upscale-4 (table 4.3) 

considering all seven testing scenes which is much better than the existing techniques for 
MYANMAR dataset. Similarly, Table 2 and 3 represent SSIM (structural similarity index) 
comparison with recent existing techniques considering upscale-2 and 4 for scene 2, 8, 18, 25, 

33, 45 and 48. Table 4 represent SSIM comparison with        and          considering 
upscale 2, 3 and 4 for scene-1 which is better than existing techniques. 

 
 

Table 1. PSNR values (in DB) of the SR frame for various methods and test scenes (best 

results are shown in bold) consideing upscale-2 
Scenes bicubic bi-

level 
SDMF-

B 
SDMF-

R 
MDSF MDMF-

B 
MDMF-

R 
MDMF-
B-VT 

MDMF-
R-VT 

Our 
Proposed 

Scene-2 45.27 46.12 46.81 46.41 46.79 47.66 46.86 48.14 47.41 48.0492 
Scene-8 38.18 39.94 40.08 40.32 40.34 40.59 40.60 40.98 41.05 36.99 
Scene-18 41.43 43.04 43.41 43.69 43.37 43.92 44.19 44.32 44.46 52.274 

Scene-25 44.40 46.69 47.52 47.68 47.37 48.45 47.83 49.19 48.59 47.031 
Scene-33 40.22 42.95 43.08 43.55 43.27 43.68 44.05 44.49 44.48 53.198 
Scene-45 42.43 43.72 44.07 44.18 44.05 44.49 44.28 44.60 44.62 49.671 
Scene-48 33.90 36.10 36.20 35.66 36.55 36.67 36.07 36.91 36.64 47.42 

 

 
Table 2. PSNR values (in DB) of the SR frame for various methods and test scenes (best 

results are shown in bold) consideing upscale-4 
Scenes Bicubic bi-level 

[45] 

NE+NN

LS [46] 

NE+LLE 

[47] 

ANR 

[48] 

SR-

CNN 
[49] 

Enhance

r [41] 

Bayesia

n [31] 

MDMF

-B-VT 
[44] 

MDMF

-R-VT 
[44] 

Our 

Proposed 

Scene-2 39.58 40.50  41.32 41.12 41.32 43.17  40.62 39.18 43.48 42.90 45.2676 
Scene-8 32.13 32.46  33.00 32.95 32.81 33.40  32.09 31.73 33.48 33.42 38.2453 
Scene-18 35.65  36.37 36.76 36.82 36.76 37.50  36.44 35.70 37.68 37.65 44.44899 

Scene-25 36.10  37.02 37.90 37.78 37.49 38.35  37.44 35.34 39.03 38.75 38.96423 
Scene-33 32.15  33.44 33.79 33.94 34.00 34.57  34.67 32.14 34.92 34.86 28.45522 
Scene-45 36.13 36.71 37.12 37.27 37.35 37.90  37.15 35.76 38.42 38.10 38.87859 
Scene-48 27.25  28.03 28.04 28.20 28.26 28.73  27.75 26.76 28.75 28.49 33.45522 

Average 34.14  34.93 35.42 35.44 35.43 36.23  35.17 33.80 36.54 36.31 38.24503 

 
 

Table 3. PSNR values (in DB) of the SR frame for various methods and test scenes Considering 

Upscale-2,3,4 for MYANMAR dataset 
Scenes  Our proposed (upscaling -2) Our proposed (upscaling-3) Our proposed (upscaling-4) 

Scene-2 48.0492 49.34129143 45.26765851 
Scene-8 36.99 41.61521459 38.24530073 
Scene-18 52.274 48.24806934 44.44898805 
Scene-25 47.031 42.87746065 38.96423093 

Scene-33 53.198 31.56951803 28.45521909 
Scene-45 49.671 42.19030456 38.87859171 
Scene-48 47.42 36.07273785 33.45522214 
AVERAGE 47.80474 41.70209 38.24503 
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Table 4. PSNR comparison for upscale 2, 3 and 4 with MD MFB-VT and MD MFR-VT for 

scene-1 
 MD MFB-VT  MD MFR-VT Our        

UPSCALE-2 38.48 40.04 54.07 
UPSCALE-3 34.42 35.18 48.96 
UPSCALE-4 31.85 32.36 45.05 

 

 
Table 5. SSIM values (in DB) of the SR frame for various methods and test scenes (best results 

are shown in bold) consideing upscale-2 
Scenes Bicubic bi-level 

[45] 

NE + 

NNLS 
[46] 

NE + 

LLE 
[47] 

ANR 

[48] 

SR-

CNN 
[49] 

Enhan

cer 
[41] 

Bayesi

an [31] 

MDMF-

B-VT 
[44] 

MDMF-

R-VT 
[44] 

Our 

Proposed 

Scene-2 0.9830  0.9879 0.9851 0.9834 0.9857 0.9859  0.9854 0.9874 0.9882 0.9882 0.9971 
Scene-8 0.9738  0.9842 0.9824 0.9817 0.9832 0.9852  0.9823 0.9828 0.9884 0.9882 0.9926 
Scene-18 0.9738  0.9849 0.9820 0.9816 0.9833 0.9844  0.9844 0.9842 0.9877 0.9884 0.9963 

Scene-25 0.9917  0.9961 0.9938 0.9936 0.9952 0.9955  0.9938 0.9954 0.9970 0.9967 0.9960 
Scene-33 0.9786  0.9904 0.9879 0.9889 0.9902 0.9907  0.9908 0.9900 0.9937 0.9938 0.9801 
Scene-45 0.9718  0.9810 0.9772 0.9776 0.9791 0.9797  0.9764 0.9790 0.9812 0.9823 0.9942 
Scene-48 0.9668  0.9808 0.9774 0.9785 0.9799 0.9826 0.9751 0.9770 0.9846 0.9821 0.9872 

Average 0.9771  0.9865 0.9837 0.9836 0.9851 0.9863  0.9840 0.9851 0.9887 0.9885 0.9919 

 
 

Table 6. SSIM values (in DB) of the SR frame for various methods and test scenes (best results 

are shown in bold) consideing upscale-4 
Scenes Bicubic bi-level 

[45] 
NE+NN
LS [46] 

NE+LL
E [47] 

ANR 
[48] 

SR-
CNN 
[49] 

Enhan
cer 
[41] 

Bayesi
an [31] 

MDMF-
B-VT 
[44] 

MDMF-
R-VT 
[44] 

Our 
Propos

ed 

Scene-2 0.9648  0.9662 0.9691 0.9675 0.9691 0.9703  0.9695 0.9660 0.9737 0.9740 0.9900 
Scene-8 0.9013  0.9099 0.9145 0.9187 0.9107 0.9198  0.9121 0.8972 0.9266 0.9250 0.9515 

Scene-18 0.9122  0.9209 0.9243 0.9249 0.9243 0.9280  0.9308  0.9183 0.9331 0.9341 0.9837 
Scene-25 0.9515  0.9546 0.9622 0.9607 0.9587 0.9633  0.9621 0.9473 0.9702 0.9687 0.9741 
Scene-33 0.8899  0.9140 0.9157  0.9188  0.9206 0.9230  0.9304 0.8945 0.9363 0.9374 0.8795 
Scene-45 0.9101  0.9155 0.9193 0.9211 0.9226 0.9253  0.9267 0.9083 0.9340 0.9316 0.9617 

Scene-48 0.8514  0.8730 0.8710 0.8757 0.8780 0.8883  0.8679  0.8393 0.8921 0.8842 0.9224 
Average 0.9116  0.9220 0.9252 0.9268 0.9263 0.9311  0.9285 0.9101 0.9380 0.9364 0.9519 

 
 

Table 7. SSIM comparison for upscale 2, 3 and 4 with MD MFB-VT and MD MFR-VT for  
scene-1 

                 Our        

UPSCALE-2 0.9679 0.9777 0.9973 
UPSCALE-3 0.9247 0.9387 0.9956 

UPSCALE-4 0.8834 0.8987 99.08 

 

 
4.3. Image Reconstruction Comparison 
 Here, we have demonstrated 350

th
 frame of scene-8 as used in all the other existing 

techniques. The original Myanmar video dataset contains total 57 scenes and its original 
resolution is           . We have shown PSNR and image reconstruction quality comparison 

with all the conventional techniques. The PSNR result             outperforms all the existing 
state-of- the- art techniques. From our experimental results it is clearly visible that our 

reconstruct frame has better reconstruction quality than any other recent existing techniques. 
Table 8 comparison with different existing techniques. 
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4.4. Reconstruction Error Map 

 Here, we reconstruct error map for 350
th

 frame of scene-8 shown in Table 8. 
Reconstruction map is the combination of planning motion and local motion of background and 
foreground respectively. The reconstruction error depends on the iterations as the iteration 

increases, the error become decreases. In the final outcomes error become disappears or 
become negligible using our proposed technique       . Table 9 reconstructed error map 

from original image. 
 
 

 
            Original Image 

 
 Reconstructed Error Map 

 

 
4.5. Graphical Analysis 
 The following graphs shows the comparison between our proposed model and existing 

approaches MD MFB-VT and MD MFR-VT for upscale 2, 3 and 4 considering Myanmar dataset. 
Figure 1 shows PSNR comparison considering upscale -2 for the scenes 2, 8, 18, 25, 33, 45 
and 48. Figure 2 shows PSNR comparison considering upscale -4 for the scenes 2, 8, 18, 25, 

33, 45 and 48. Figure 3 demonstrates PSNR comparison considering upscale-2,3 and 4 for 
scene-1 with both recent existing techniques MD MFB-VT and MD MFR-VT. PSNR for upscale-
2 using our proposed RemCNN technique is 54.07 dB, with upscale-3 is 48.96 dB and fro 

upscale-4 is 45.05 db which is very high compare to other techniques. 
. 
 

 
 

Figure 3. PSNR comparison for proposed vs existing techniques for upscaling factor -2 for 
Myanmar DATASET 
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Figure 4. PSNR comparison for proposed vs existing techniques for upscaling factor -4 For 

Myanmar dataset 
 
 

 
 

Figure 5. PSNR for proposed vs existing considering upscale factor 2, 3 and 4 for Myanmar 
dataset 

 
 
4. Conclusion 

In current era, huge demand and popularity of high resolution videos made researchers 
to carry out work in video scaling field to offer ease of accessibility of high-resolution videos to 
the subscribers. Therefore, we have introduced a real-time video scaling based on convolution 

neural network architecture to eliminate the blurriness in the images and video frames and to 
provide better reconstruction quality while scaling of large datasets. CNN architecture helps us 
to restore high frequency components of the video frames. Our proposed model can easily train 

the bulky datasets such as Myanmar and Videoset4.Our experimental results shows that our 
model outperforms many existing techniques in terms of PSNR, fidelity and reconstruction 
quality. The experimental results shows that our average PSNR result is 47.80474 considering 

upscale-2, 41.70209 for upscale-3 and 36.24503 for upscale-4 for Myanmar dataset which is 
very high in contrast to other existing techniques. Our model gives best improvement result for 
scene-1 as 28.83% considering upscale-2, 28.17% considering upscale-4, 28.15% for  

upscale-3.  
This results proves our proposed model real-time video scaling based on convolution 

neural network architecture’s high efficiency and better performance. Our proposed model can 

be effectively used in the applications such as medical, satellite imaging, surveillance, HDTV, 
video coding or decoding, stereoscopic video processing, and face recognition for future 
purpose to reconstruct efficient images or video frames. 
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