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Abstract 
We develop an efficient MRI denoising algorithm based on sparse representation and curvelet 

transform with variance stabilizing transformation framework. By using sparse representation, a MR image 
is decomposed into a sparsest coefficients matrix with more no of zeros. Curvelet transform is directional 
in nature and it preserves the important edge and texture details of MR images. In order to get sparsity and 
texture preservation, we post process the denoising result of sparse based method through curvelet 
transform. To use our proposed sparse based curvelet transform denoising method to remove rician noise 
in MR images, we use forward and inverse variance-stabilizing transformations. Experimental results 
reveal the efficacy of our approach to rician noise removal while well preserving the image details. Our 
proposed method shows improved performance over the existing denoising methods in terms of PSNR 
and SSIM for T1, T2 weighted MR images.  
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1. Introduction 
Recently, Magnetic Resonance Imaging (MRI) has been extensively used in diagnosis 

of diseases and treatments. Due to the extensive use of MRI, the quality of MR images 
becomes an important issue [1]. However, during image acquisition process by different types of 
sensors, they may introduce noises and artifacts appear reducing the quality of image. In order 
to obtain the best possible diagnosis from MR images, it is required to denoise MR images 
without affecting its anatomical details [2]. Therefore, MRI denoising remains a challenge due to 
presence of noise and artifacts [3]. In general, the noise introduced in MRI usually follows rician 
distribution and hence it is modelled as rician noise [4]. 

In MRI literature, many denoising algorithms have been proposed to remove rician 
noise present in MR images. Henkelman et al., [5] and McGibney et al., [6] were the first to 
present their effort to reduce noise in MR images. A number of filtering techniques have also 
been used for MRI denoising such as adaptive smoothing [7], total variation based convex 
filtering [8], anisotropic wiener filtering [9], and anisotropic diffusion [10]. Generally, filtering 
techniques can successfully remove noise from corrupted MR images but it blurs the fine 
details. Hence, transformed based denoising methods have been introduced and it removes 
noise without bluing the image [11]. For example, denoising methods based on wavelet 
transforms which relies on statistical inference are used for MR image denoising [12-13]. 
Recently, square sparsifying transforms have been used with an over complete dictionary as 
compared to wavelet basis. Denoising algorithms with sparse representation based image 
denoising has shown its popularity [15]. To achieve sparse signal representation K-means 
singular value decomposition (KSVD) is used for adapting dictionaries [15]. KSVD based 
algorithms show very good results for gaussian noise removal [16].  

In this paper, we use KSVD denoising technique for rician noise removal of brain MR 
images. As rician noise is signal dependent and it is observed that noise variance is not uniform. 
It is also observed that based MRI denoising algorithm is computationally inefficient. We use 
forward and inverse variance-stabilizing transformations instead of directly applying KSVD for 
rician noise removal. The optimal forward transform is applied to convert rician distributions into 
gaussian distribution with constant variance which is subsequently used with KSVD. Inverse 
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variance stabilization transform is used with the obtained intermediate result to get back the 
original distributions. The proposed algorithm is stable and computationally efficient for MRI 
denoising. In addition, to enhance the robustness of the proposed denoising algorithm so as to 
retain fine details in an MR image we propose to use curvlet transform along with KSVD. We 
post process the denoising result of KSVD through curvelet transform in order to preserve the 
important edge and texture details of MR images. The proposed algorithm has been tested in a 
simulated environment with different MR images. The result shows that our proposed approach 
is efficient in removing rician noise while well preserving the texture details over the state of the 
art methods and there is a substantial improvement in the PSNR and SSIM measures for MR 
images containing edges. 

The rest of the paper is organized as follows. In Section 2, we present a short overview 
of MRI model, KSVD based denoising, Curvelet transform for texture preservation and 
Variance-stabilizing transformation. We introduce a robust MRI denoising algorithm for rician 
noise removal Section 3. In section 4, we present experimental results and compare the 
denoising performance of our proposed method with some existing methods before concluding 
in Section 5. 

 
 

2. Background 
In this section, we present the theoretical and technical concept of important elements 

required for development of our proposed method. 
 

2.1. MRI Model 
MR images are usually computed from both real and imaginary components where both 

of the two components are corrupted by zero mean gaussian noise [1]. Normally, the 
reconstruction of MRI is performed by calculating inverse discrete fourier transform of the 
original data. Therefore, noise present in reconstructed MR image is complex white gaussian 
noise [2]. For computer and visual analysis of MRI, the reconstructed magnitude is basically 
used. The noisy in MRI follows a rician distribution and it is image dependent [3]. Hence, 
removal of rician noise in MRI is difficult. If the real and imaginary components are 

contaminated by gaussian noise with mean values RA  and IA  respectively and with standard 

deviation σ, the rician distribution will be described by: 
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where 0I  denotes zeroth order Bessel function and A  is given by 
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2.2. KSVD in Medical Image Analysis 

Sparse representation has shown its popularity in performing image denoising. The 
KSVD algorithm is based on sparse based image denoising technique [11]. In KSVD, the noisy 
image is partitioned in to a set of image patches [13]. For any given noisy image Y, we divide Y 
into L no of image patches.  The sparse decomposition is defined as: 

  

     (2) 
 

Where, ix  represents the sparse matrix, D  is the dictionary, ε  represents sparsity threshold,         

is the 0l  norm that represents number of non-zero coefficients. Here, the objective is to 

find dictionary D  in such a way that it yields a sparse representation 0X for noisy imageY

.However, exact determination of 0X proves to be a non-polynomial hard problem. Instead of 

exact determination, approximate solution may be considered [17]. In order to find such 
solutions, a simplest pursuit algorithm OMP is used. KSVD requires number of iterations to 
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optimize D  and X . Each iteration consists of two stages such as sparse coding stage to 

update the coefficients of X and dictionary update stage to optimize atoms or columns of 

dictionary D . Here, we focus on sparse decomposition of MR images and apply KSVD 
algorithm for denoising of MRI data sets. 
 
2.3.  Curvelet Transform for Texture Preservation 

The curvelet transform has many directions and positions that represent edges and 
curve-singularities efficiently than wavelet. The limitations of wavelet based image denoising are 
avoided by the development of curvelet transform which is based on both multiscale analysis 
and geometrical ideas to obtain optimal rate of convergence [18]. In image processing, most 
natural images show curved edges instead of straight and it is not possible to obtain efficient 
representations using ridgelets alone. In order to capture curve edges, the image is first 
partitioned into sub-images and then, at sufficiently fine scales ridgelet transform is deployed to 
each of the obtained sub-images. This multiscale ridgelet transform is called as Curvelet 
transform [19].  

In Discrete Curvelet Transform, the object y  uses a dyadic sequence and a bank of 

sub-band filters ( , , .........)0 1 2p y y y   with the frequency distribution such that the bandpass 

filter  i  is determined near the frequencies 
2[2 ,2 ]i i

 as given: 
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The basic idea of curvelet based image denoising is based on thresholding, where each 

curvelet coefficient is compared with a given threshold [20-21]. The curvelet coefficient is set to 
zero if it is found to be less than the given threshold. Otherwise it is kept as it is or slightly 
reduced in magnitude. 
 
2.4. Variance-Stabilizing Transformations (VST) 

In order to use standard image denoising algorithms for rician noise removal in MR 
images, variance-stabilizing transformations is developed [22]. It converts rician distribution with 
variable variance to gaussian distribution with constant variance. It provides a stable and fast 
iterative method for estimation of noise level in MRI. Generally, variance stabilizing transforms 
requires three steps for removal of rician noise in MR images. First, it is used as optimal forward 
transform to stabilize noise variance and converts rician distributions into gaussian distribution. 
In second step standard denoising method is applied. After denoising operation, the inverse 
VST is applied to the denoised output to get back the original distributions.  

The mean and variance of rician distribution is given by: 
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From equation 5, it is observed that noise variance is not consistent for entire MR data. 

And, from equation 4, the expectation varies from the parameter of interest, specifically v . The 

first issue is solved by applying forward variance-stabilizing transformation to the MR data 
before applying denoising method, whereas the second issue is addressed by applying the 
inverse transformation after denoising, which provides a robust estimation of ν out of the filtered 
transformed data.  
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3. Proposed Method: A Combined Approach of KSVD and Curvelet Transform with 
Variance Stabilizing Transformation Framework (KSVDCT) 

The proposed MRI denoising method combines the advantages of variance stabilizing 
transformation and sparse representation based curvelet transform to reconstruct MR images 
corrupted with rician noise. Figure 1 shows the steps followed in our proposed method. First, the 
noisy MR image is processed by the variance stabilization transform so that the rician 
distribution is converted into gaussian distribution with constant variance. As variance stabilizing 
transformation removes the dependency of noise variance, it makes the standard denoising 
methods suitable for the transformed images. Then KSVD based denoising technique is applied 
on the stabilized data to remove the gaussian noise. The output of KSVD denoising is 
processed through Curvelet transform to preserve edge and texture of MR image. Finally, the 
processed result is converted back to its initial state by the inverse variance stabilization 
transformations and we get the denoised image. 
 
 

 
 

Figure 1. Block Diagram of Proposed Rician Noise Removal Method 
 
 

 
 
 

4. Experimental Result and Discussion 
In this section, we assess the visual and quantitative performance of our proposed 

method on noisy MR image. We compare the performance of our method with KSVD and KSVD 
denoising with VST framework (KSVD+VST). We perform experiments using simulated brain 

KSVDCT Algorithm 
The method consists of following steps 

 The rician distributed noisy MR image is converted to gaussian distribution by 
applying variance stabilising transformation. 

 Then the gaussian distributed noisy MR image is divided into no of overlapping 
image patches of size . 

 Using K-SVD denoising, noisy MR image is decomposed into a sparse vector  
(Equation 2). 

 Compute threshold value of the distorted image .  

 Apply Discrete Curvelet Transform on sparse vector to shift it from spatial 
domain to curvelet domain (Equation 2). 

 Apply computed threshold on distorted image. 

 Apply inverse Discrete Curvelet Transform on distorted image (followed by 
application of threshold on it) to shift image from curvelet domain to spatial domain. 

 Finally, inverse variance stabilising transformation transform is applied to get back 
original distribution. 
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MR images. For visual and quantitative performance, we consider two criteria which include 
PSNR and SSIM.Peak Signal to Noise Ratio (PSNR) provides quantitative results of various 
denoising methods [23]. PSNR is given by: 

 
2
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L
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
                        (6) 

 

where L  represents the highest pixel value and MSE  represents the mean squared error. 

Structural similarity (SSIM) index explores the structure information [24] and is defined 
as: 
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Where x and r represents the mean of images x  and r  respectively whereas x  and r  

represents their corresponding standard deviations, xr is the covariance, 2

1 1( )c k L  and 

2
2 2( )c k L  are two constants. L is the dynamic range of the intensity values. 

In this experiment, we have used simulated brain data from Harvard database. The 
simulated brain data consists of T1 and T2-weighted brain images of size 256x256. Here, we 
have taken the noisy versions of the above images contaminated with rician noise using 
Equation1 having different noise variance. To be more specific, the noise varying from 9% to 
15% with an increment of 2% is used in the experiments. In our experiments, we set the 
parameters for MRI based denoising as the dictionaries in use are of size 64x256, the sparsity 

limit 0T and the number of iteration is 10. In order to prove the effectiveness of sparsity based 

denoising technique to reduce rician noise, we add rician noise with different standard deviation 
to T1-weighted brain MR image. Figure 1 and 2 shows the visual evaluation of different methods 
on the T1w and T2w brain MR image with noise percentage of 9% respectively. Figure 2(a) 
shows the original T1w MR image, while Figure 2(b) shows the equivalent noisy MR image. 
Figure 2(c) shows the denoised result by KSVD, Figure 2(d) shows the denoised result by 
KSVD+VST and Figure 2(e) shows the denoised result by our proposed method. Similarly, 
Figure 3(a), (b), (c), (d) and (e) show the original T2w MRI image, corresponding noisy image, 
denoised result by  KSVD, denoised result by KSVD+VST and the denoised result by our 
proposed method respectively. It is observed from both Figure 2 and 3 that the KSVD method 
applied directly on rician noisy MR image blurs the output image. However, KSVD with VST 
framework reduce rician noise effectively. But, our proposed method KSVDCT suppresses 
rician noise more while retaining phantom details.   

 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 2. (a) Original T1w MR image (b) Noisy T1w MR image (c) Denoised T1w MR image 

using KSVD (d) Denoised T1w MR image using KSVD with VST framework (e) Denoised T1w 
MR image using Proposed method KSVDCT 

 

            (a)             (b)             (c)             (d)             (e) 
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Figure 3. (a) Original T2w MR image (b) Noisy T2w MR image (c) Denoised T2w MR image 
using KSVD (d) Denoised T2w MR image using KSVD with VST framework (e) Denoised T2w 

MR image using Proposed method KSVDCT 
 
 

Table 1. PSNR and SSIM Comparison of Different Methods for T1w and T2w MR Data 

 Noise Level 
Percentage 
Noise=9% 

Percentage 
Noise=11% 

Percentage 
Noise=13% 

Percentage 
Noise=15% 

 Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

T1w 

Noisy Image 19.318 0.4311 17.575 0.3844 16.126 0.3433 14.884 0.3073 
KSVD 21.260 0.5364 19.539 0.5060 18.095 0.4747 16.841 0.4420 

KSVD+VST 25.617 0.5760 23.914 0.5257 22.539 0.4865 21.375 0.4519 
Proposed 
Method 

27.403 0.8107 26.085 0.7479 24.966 0.6960 24.042 0.6597 

T2w 

Noisy Image 19.313 0.3684 17.577 0.3183 16.136 0.2761 14.903 0.2405 
KSVD 21.334 0.5025 19.592 0.4631 18.119 0.4230 16.832 0.3816 

KSVD+VST 25.726 0.5258 24.101 0.4743 22.691 0.4289 21.380 0.3865 
Proposed 
Method 

27.989 0.7282 26.667 0.6779 25.518 0.6261 24.392 0.5647 

 
 

Table 1 shows the comparative results of PSNR and SSIM values of three different 
methods on T1w and T2w brain MR images. From the Table, it can be found that KSVD with 
VST framework based denoising improves PSNR values more than KSVD applied directly on 
rician noisy MR image. However, our post-processing method KSVDCT performs best result for 
entire range of noise.  
 
 
5. Conclusion 

We introduced an efficient denoising technique KSVDCT based on sparse 
representation and curvelet transform for noise removal in MRI. This method employs sparse 
coefficients of the image, seeking the most similar patches in the whole image. Also, we 
preserve the texture and important details of MR images using curvelet transform.  We conduct 
experiments on the simulated brain images to estimate the visual and quantitative performance 
of our proposed method. The denoising results show that the propose rician noise removal 
technique performs better than some of the state-of-the-art image denoising methods. It 
provides better texture preservation and noise attenuation. Also, our approach can preserve 
singularities along lines and edges in an efficient way. Our proposed denoising method can be 
used widely in MRI applications. 
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