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Abstract 
Subspace model identification (SMI) method is the effective method in identifying dynamic state 

space linear multivariable systems and it can be obtained directly from the input and output data. Basically, 
subspace identifications are based on algorithms from numerical algebras which are the QR 
decomposition and Singular Value Decomposition (SVD). In industrial applications, it is essential to have 
online recursive subspace algorithms for model identification where the parameters can vary in time. 
However, because of the SVD computational complexity that involved in the algorithm, the classical SMI 
algorithms are not suitable for online application. Hence, it is essential to discover the alternative 
algorithms in order to apply the concept of subspace identification recursively.  In this paper, the recursive 
subspace identification algorithm based on the propagator method which avoids the SVD computation is 
proposed. The output from Numerical Subspace State Space System Identification (N4SID) and 
Multivariable Output Error State Space (MOESP) methods are also included in this paper. 
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1. Introduction 
Subspace model identification (SMI) is a method used in identifying system matrices of 

the state space model directly from the input and output data measurements.  The advantage of 
SMI method is the reliable numerical tools- based which are the QR decomposition and singular 
value decomposition (SVD).  Furthermore, this method can be implemented for multiple inputs 
and multiple outputs (MIMO) system identification.  There are several algorithms commonly 
used for subspace identification which are Canonical Variate Analysis (CVA) proposed by [1, 2], 
Multivariable Output Error State Space (MOESP) by [3, 4] and Numerical Subspace State 
Space System Identification (N4SID) by [5, 6].  Basically, subspace identification algorithms are 
based on the concepts from different branches which are system theory, numerical linear 
algebra and statistics [7]. 

Subspace identification methods for linear time invariant systems initially can be divided 
into two groups. The first group aim for obtaining the column space of the extended 

observability matrix, and subsequently use the shift invariant structure of this matrix to 
estimate A and C matrices. Then, the estimation of B and D matrices is done by recursive least 
squares method. The MOESP method is considered in this group.  Meanwhile, the second 
group consists of method that aim at approximating the state sequence of the system and 
consequently use the approximate state to estimate the system matrices A, B, C and D. The 
methods that consider in the second group are the N4SID methods [5], [8] and CVA methods. 

The difference in each subspace identification methods is CVA applies the canonical 
correlation analysis to estimate the state variables and fit them to the state space model.  An 

ordinary MOESP algorithm transforms a Hankel matrix of ]:[
ff

YU  into QR decomposition and 

then does an SVD on submatrix of R. The singular matrix obtained from the SVD is taken as f
Γ , 

based on which A and C matrices are estimated, while B and D are obtained based on least 

square fitting.  Meanwhile N4SID projects f
Y  onto ];;[

fpp
UUY  and does an SVD on the part 
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corresponding to the past data. The right singular vectors are estimated as state variables and 
fit them to the state space model [9]. 

In general, the subspace methods are based on robust numerical tools which are QR 
decomposition and SVD where these tools are applicable for batch processing. However, 
because of the computational complexity and the storage costs, they are not suitable for online 
identification.  Therefore, an online subspace identification consists a recursive algorithm is 
needed.  The most important thing in order to develop a recursive subspace state space system 
identification algorithm is to online update the estimation of the extended observability matrix 
when the new data received. 

New technique for updating LQ decomposition through Givens rotation is proposed  
by [10]. The algorithm implemented forgetting factor in Recursive Stochastic Subspace 
Identification (RSSI) and applied to structural damage diagnosis. Then, based on the optimized 
version of the predictor-based subspace identification (PBSID) method for batch data, an 
algorithm so-called PBSIDopt method is presented in [11]. The recursive implementation of the 
PBSIDopt method applied propagator method to identify linear time invariant models from data 
measured in open or closed loop. The algorithm was applied to 2D airfoil system.  By using this 
algorithm, the computational complexity is reduced by exploiting the structure in data equations 
and by using array algorithms to solve the main linear problem. 

In [12], a recursive subspace identification algorithm for autonomous underwater 
vehicles (AUV) has been proposed. The AUV model is constructed as a Hammerstein model 
with nonlinear feedback in the linear part.  The identification procedure is under general noise 
assumption and the propagator method (PM) based subspace approach is extended into errors 
in variable framework in order to make the algorithm recursively. 

 
 
2. Research Method 
2.1. Subspace Identification 

Consider the linear time invariant state space model: 
 

kkkk
wBuAxx 

1  

kkkk
vDuCxy          (1)

     

where uy n

k

n

k

n

k
 uyx   and  , are the system state, output and input respectively.  

Meanwhile yn

k

n

k
 vw  and  are additional unknown noise sequences.  The goal is to 

estimate system matrices A, B, C and D with appropriate dimensions.  In subspace 
identification, it is assumed that the number of available data point goes to infinity and the data 
is ergodic [8].  The main problem is the estimation of the column space of the extended 

observability matrix, which defined as: 
 

 Ti 1 CACACACΓ 2         (2) 

 
One important equation in the derivation of subspace state space system identification 

algorithms is the block Hankel matrices constructed from the input and output data.  The input 
and output block Hankel matrices, U and Y, and the block triangular Toeplitz matrix, H are 
defined as: 
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The starting point of some subspace identification algorithms for the estimation of the 

column space of  is given by: 
 

)()()()( tttt
fffff

bUHxΓY         (6) 

 
Hence, a typical state space subspace system identification algorithm involves two steps: 

a) Identification of the extended observability matrix,   and a block triangular Toeplitz 
matrix, H. 

b) Estimation of the system matrices A, B, C and D from the identified observability 
matrix and Toeplitz matrix. 

 
2.2. Recursive Subspace Identification 

 As time goes on in online identification, it is very important to update the model with a 
reduced computational time and cost.  The batch subspace identifications are not appropriate 
for online implementation because of the computational complexity of SVD.  Hence, it is 
necessary to find the SVD alternatives in order to apply the subspace algorithm in a recursive 
framework [13].  In this paper, we will adapt a method from array signal processing which is the 
propagator method. 

All propagator based techniques are built up of two important steps which are: 
a) Online update the observation vector, z. 
b) Recursive estimation of the extended observability matrix from the online update of 

the observation vector. 
The fundamental principle of using the relationship between array signal processing and 

subspace identification is to apply the propagator method which initially obtained in array signal 
processing in order to track the subspace spanned by the extended observability matrix. In 
array signal processing, the considered subspace tracking problem consists in recursively 

determine the direction of arrival (DOA), , by online estimating the column subspace of the 

steering matrix, (), from the following data generation model [13]: 
 

)()()()( ttt bsθΓz   

 
where z is the output of the sensors, s is the vector of the signal waveforms and b is the 
additive noise. 

The goal of recursive subspace identification methods is to estimate online recursively 
the system matrices which are [A, B, C, D] at each new input and output data acquisition. The 
algorithms developed are based on the MOESP approach where the main problem is the 
consistent estimation of the extended observability matrix. 
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Thus, the relationship between subspace identification and array signal processing can 
be written as: 

 

)()()()( tttt
ffffff

bxΓuHyz        (7) 

 
From Eqn. (7), there are two steps required to recursively estimate the extended 

observability matrix. The first step is to update of the observation vector, zf, from the input and 
output measurements: 

 

)()( tt
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uHyz  .        (8) 

 
Consider the QR decomposition, part of the MOESP method. 
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When a new input and output couple is available, the QR decomposition on the right hand side 
of Eqn.(9) will becomes 
 

 
 
 

 
 























































11

1

1

)()()(

)()(

)(

2

1

333231

2221

11

0

0Q

0Q

y

w

u

RRR

0RR

00R



















f

p

f

     

 
In this paper, the Gauss elimination method which applies the elementary row operation 

(ERO) procedures is performed in order to transform the transpose of R matrix together with the 
new input output data in the last row into lower triangular matrix form. This approach has 
advantage to show the good numerical performances in terms of round of error. 
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After obtaining the observation vector, the second step of estimating the extended 

observability matrix is the estimation of a basis of f from the observation vector by using  
 

)()( tt
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This can be done by applying the propagator method.  Assume that [A, C] is 

observable. Then, since xx nn
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linearly independent rows.  With the assumption that the order of nx is a priori known, it is 

possible to construct a permutation matrix, 
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extended observability matrix can be decomposed as: 
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where 
1f

Γ  is the submatrix of nx independent rows and 
2f

Γ the submatrix of the 
xy

nfn   others.  

Thus, 
2f

Γ  can be expressed as a linear combination of 
1f

Γ .  More specifically, there is a unique 

matrix, xyx nfnn

f


P  named as propagator where 

12 f

T
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ΓPΓ  .  Hence, it is easy to verify that 
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3. Results and Analysis 

In this paper, we conducted simulations using data from Daisy data (CD player arm) 
[11] with two inputs and two outputs.  The inputs for this simulation are the forces of the 
mechanical actuators.  Meanwhile the outputs are related to the tracking accuracy of the arm. 
Figure 1 shows the output for N4SID method. The percentage of the variance accounted for 
(VAF) output 1 is 83.0633% and for output 2 is 97.2517%. The VAF for output 2 shows a good 
tracking performance but the range between VAF of output 1 and 2 is quite large that is 
14.1884. Figure 2 shows the poles for A matrix which tabulated in a unit circle. 

 
 

 
Figure 1. Measured and predicted output using N4SID method. 

 
 

 
Figure 2. Poles for N4SID method 

 
 
Figures 3 and 4 show the output for MOESP method. The percentage of the variance 

accounted for output 1 is 91.3743% and for output 2 is 96.3767% where the range of VAF 
between outputs 1 and 2 is 5.0024. From both algorithms, MOESP gives higher value but 
smaller range of variance accounted for both outputs 1 and 2 compared to N4SID algorithm.  
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Figure 3. Measured and predicted output using MOESP method. 

 
 

 
Figure 4. Poles for MOESP method 

 
 

In this paper also, a simulation example has been carried out to show the performances 
of the developed algorithm which apply the ERO and propagator based method. Consider the 
3

rd
 order system: 
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where the input is assumed to be a zero mean white noise with variance I2 where I2 is the 2 by 2 
identity matrix. The number of data N taken for this simulation is 1000, and the number of block 
rows used is 15. Figure 5 shows the output for N4SID method.  The percentage of the variance 
accounted for output 1 and output 2 are 99.98% and 99.92% respectively. This shows the high 
accuracy of the model given by N4SID. 

The recursive MOESP approach with the application of ERO to zero out the new input 
output data is also tested. The output from the recursive method is shown in Figure 6. The 
variance accounted for the output 1 from this method is 99.9850 and the variance accounted for 
output 2 is 99.9927. 
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Figure 5. Measured and predicted output using N4SID method from simulation example. 

 
 

 
Figure 6. Measured and predicted output by recursive method. 

 
 

From the system model, the eigenvalues of matrix A are 0.8, 0.3 and 0.5. Figure 7 
illustrates the eigenvalues of the estimated matrix Ai using recursive MOESP propagator 
method. It shows that the eigenvalue of the estimated matrix Ai approaching those of the 
eigenvalues of the system.  

 

 
Figure 7. Eigenvalues of Ai 

 
 
4. Conclusion 

A recursive subspace identification algorithm using the propagator method is proposed 
in this paper. The algorithm developed is based on the MOESP approach where the extended 
observability matrix is obtained from the observation vectors using propagator algorithm which 
adapted from array signal processing. The output shows the good tracking performance 
between the measured and predicted outputs.  
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