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Abstract 
 This paper presents the design space exploration of the hardware-based inverse fixed-point 

integer transform for High Efficiency Video Coding (HEVC). The designs are specified at high-level using 
CAL dataflow language and automatically synthesized to HDL for FPGA implementation. Several parallel 
design alternatives are proposed with trade-off between performance and resource. The HEVC transform 
consists of several independent components from 4x4 to 32x32 discrete cosine transform and 4x4 discrete 
sine transform.This work explores the strategies to efficiently compute the transforms by applying data 
parallelism on the different components. Results show that an intermediate version of parallelism, whereby 
the 4x4 and 8x8 are merged together, and the 16x16 and 32x32 merged together gives the best trade-off 
between performance and resource. The results presented in this work also give an insight on how the 
HEVC transform can be designed efficiently in parallel for hardware implementation. 
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1. Introduction 
Nowadays, people can play and manipulate image and video content via various 

electronic and smart devices. Due to the evolution of the quality of the video from High 
Definition (HD) to Ultra High Definition (UHD), HEVC is considered as the latest video 
compression standard, which is accepted by International Telecommunication Union 
Telecommunication Standardization Sector (ITU-T) [1]. HEVC decoder provides at least 36% 
higher coding efficiency compared to H.264 or Advance Video Coding (AVC) algorithm ([2, 3]). 
The decoder with Reconfigurable Video Coding Common Actor Language (RVC-CAL) 
programming language application by using parallel architecture can be used to optimize further 
the current series implementation. The inverse HEVC transform, or here known as the xIT block 
is one of the core components in a HEVC decoder as it performs fixed-point integer transform of 
the input data stream [2]. 

There are several advantages of the xIT block, one of them is it does not have 
dependen- cies, and hence it could be optimized for data parallelism. The parallel 
implementation can also improve further the computing time of the video processing compared 
to the one that have been designed in series. The appropriate parallel and serial fusion designs 
are also able to optimize further the resources utilization [4]. 

This paper describes the parallel and serial design and implementation of HEVC trans- 
form using CAL dataflow actor programming [5]. The high-level dataflow specifications are syn- 
thesized automatically to HDL using the appropriate tools [6], and then synthesized at low level 
to Xilinx FPGAs. The results are analyzed for latency, frequency, and FPGA resource utiliza- 
tions. Based on the explored designs, we present the one that shows the best trade-off between 
performance and resource. 
 
 
2. Background and Related Works 

In the hybrid block-based HEVC coding mechanism, the transform are implemented 
often to the residual signal from RQT. The residual signal of a picture is split into blocks with 
identical length and width, both with certain integer power of two in the encoder. Every rows 
and columns can undergo one dimensional transform individually and exhaustively in order to 
obtain two di- mensional transform results. After that, the resulting transform coefficient will be 
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pushed to the quantization process to get the quantized transform coefficient at the  
encoder [4]. 

Meanwhile, the reverse process occurs at the decoder, which is convert the quantized 
transform coefficient into the de-quantized transform coefficient by multiplying it with 
quantization step size. Eventually, the de-quantized values are passed back to the residual 
block of quantized samples and having increment to the intra- or inter-prediction samples in 
order to receive the reconstructed block. In addition, the forward matrices is the transpose of 
the inverse matrices [7]. They are constructed in the way that almost lossless 
reimplementation compared to the input residual signal without consider the quantization 
process. Figure 1 illustrates the coding algorithm used by the encoder and the decoder where 
C is the transform matrix, Qstep is the quantization step size, coeff is the transform coefficient 
and coeffQ is the de-quantized transform coefficient [4]. 

 

 
 

Figure 1. High-level overview of video encoder and decoder 
 
 

The core transform of HEVC is noted with flexible size from 4x4 to 32x32 with 
increment in power of two to allow two-dimensional transforms [7]. Although the flexibility 
provided could enhance the performance of block-based motion-compensated video 
compression, the method to use it also become more complex [8].  In HEVC, only inverse 
transform are defined instead   of forward transform, so the forward transform are using the 
exact IDCT in default. The finite precision of inverse discrete cosine transform (IDCT) for all 
transform sizes are applied rather than the exact IDCT. It is because the main reason to obtain 
the transform is to disassociate with the input residual block, which is optimally obtained by the 
Karhunen-Loeve transform (KLT), and hence the exact IDCT could be neglected. The situation 
is obvious when the alternate transform is utilized in the 4x4 luma intra-picture prediction 
integer transform, which is conducted by using 4x4 integer transform according to the discrete 
sine transform (DST) [9]. There are many different approach of IDCT were identify for the core 
transform in the evolution of HEVC. The pioneer version of HEVC Test Model HM1 exercise 
the 4x4 and 8x8 blocks transform, and the 16x16 and 32x32 blocks transform by using AVC 
transform and Chens fast IDCT respectively [10], which contribute to the increasing of 
complexity of HEVC transform. For instance, the non-flat inverse quantization matrices are 
experienced by different transform sizes, which require bigger block sizes for huge transform 
of de-quantization matrices with high application cost, moreover, the difficulty in hardware 
sharing across various transform capacity will raise the area of the hardware. Besides that, 
larger transpose buffer size is required to save the transitional results obtained from the first 
transform stage in two-dimensional transform, which will have to raise the size and bandwidth 
of the memory [4]. 

Another problem is encountered with the full factorization structure that needs 
cascaded multiplier and transitional rounding for 16x16 and 32x32 transforms. It will 
consequently add the data path dependencies and affect parallel processing performance, as 
well as extend the bit width for multipliers and accumulators. On the other hand, the increasing 
of area and the rising of circuit delay will also be faced in hardware with the consequence of 
restricting the highest frequency available for the inverse transform process [9]. Lastly, a new 
approach of core transform was accepted so that the difficulties in HM1 design could be 
overcame as explaining in [11] and to achieve better efficiency in applying the transform to 
hardware besides SIMD machines. The HEVC core transform matrices were constructed to 
fulfil the specification of almost orthogonal and identical norm of all basis vectors, identical 
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symmetry properties as the IDCT basis vectors, approximately the same as IDCT, 16 bit 
transpose buffer, 8 bit representation of transform matrix components. Furthermore, it 
employed smaller transform matrices in bigger transform matrices, able to process the 
multipliers by using 16 bit or less without the implementation of cascade multiplications or 
intermediate rounding, and also apply the accumulators with less than 32 bit [12]. 
 
 
3. Design Methodology 
3.1. Tools and Models 

The software used for the design and re-design of the xIT block is the Eclipse Orcc 
Com- piler [13]. The parallel architectures have been created using dataflow programming, 
know as the CAL actor language. This high-level description can be synthesized automatically 
into C program- ming language for software implementation. For the simulation in software, the 
C programming files were linked into the execution files and generated by using MinGW based 
on the Make files, which were compiled and made via Cmake GUI. 

Similarly with the software method, the various parallel and series designs have been 
created and then synthesized into HDL for hardware implementation. The low-level hardware 
synthesis and implementation have been made using Xilinx Vivado into the Artix7 FPGA. The 
timing and resource utilization reports have also been collected using Xilinx Vivado. 

Based on the analysis using the methodology presented in [14] and [15], the original 
xIT block is able to operate in parallel configuration, which means the inverse transform of 4x4 
DST, 4x4 IT, 8x8 IT, 16x16 IT and 32x32 IT could be carried out concurrently and 
independently. Figure 2 shows the structural block diagram of the original parallel 
implementation of xIT block. 
 

 
Figure 2. Block diagram of the original fully parallel xIT in the ORCC design 

environment 
 
 
A full merging by combining IT4x4 with IT8x8 block into one block and by merging 

IT16x16 with IT32x32 block into one block, so that the IT could be conducted in series for 4x4 
coefficient and 8x8 coefficient, concurrently for 16x16 coefficient and 32x32 coefficient. The 
finite state machine is implemented into the design with appropriate scheduling to produce the 
correct results as well as to the original design. The top level of this parallel architecture is 
shown in Figure 3. 
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Figure 3. Block diagram of the merged dataflow actors for xIT in the ORCC design 

environment 
 
 

The purpose of IT Splitter is to distribute the computation of inverse transform 
according to the configuration taken from the input of Size. The data of Size is grouped and 
attributed into different tags to figure out which transform should be conducted to the 
coefficient, and then further split the coefficient to various operational block from the output of 
the IT Splitter. The Size is split into different conditional tags in order to accomplish this 
functionality. 

The other designs have been created based on the partial implementation of Full 
Merging design, such as Parallel xIT Block with Merging of IT4x4 and IT8x8, Parallel xIT Block 
with Merging of IT16x16 and IT32x32 and the regenerated serial design. The Parallel xIT 
Block with Merging of IT4x4 and IT8x8 introduced the merging of IT4x4 and IT8x8 blocks in 
xIT while the Parallel xIT Block with Merging of IT16x16 and IT32x32 introduced the merging 
of IT16x16 and IT32x32 blocks in xIT. 

In terms of functionality, serial xIT is the same as the parallel xIT, but the main 
difference is the finite state machine scheduling and control. The modelling of serial xIT is 
performed not only by merging all the CAL codes into a same block CAL codes, but also all the 
inputs and outputs of the process of different blocks are assigned into different variables. 
 
 
4. Results and Discussion 

Figure 4 shows the graph of time taken to obtain the last results for all xIT by giving 
the same set of inputs, i.e. the design latency. The time taken to obtain the last results 
indicated that the time taken to finish up the operation with same inputs. For the original 
parallel xIT, the time taken for the particular process is 8118ns. On the other hand, the time 
taken to receive the last results for the xIT with merging IT4x4 and IT16x16, as well as the xIT 
with merging IT16x16 and IT32x32 are 8264ns and 8242ns respectively. For the xIT with full 
merging, the time taken to get the last results is 8328ns. Lastly, as expected the serial design 
shows the most inferior results as expected with 9600ns. 
 

 
Figure 4. Time taken to obtain all results for all xIT designs 
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Figure 5 shows the graph of maximum operating frequency for all types of xIT designs. 
The trend here is quite similar to latency, where the parallel designs show roughly similar 
values. The serial xIT as expected, shows the most inferior frequency of only 44.78 MHz. This 
is due to the longer path in the serial design compared to the parallel design. 

 

 
Figure 5. Maximum operating frequency for all xIT designs 
 
 

Figure 6 shows the graphs of FPGA resource utilization of all xIT designs, with (a) the 

Lookup Table (LUT), (b) LUTRAM (LUTRAM), (c) the Flip-flop, (d) block RAM, and (e) DSP48. 

It can be seen that the serial design uses the least resource and the full parallel uses the most 

as expected. 

 
Figure 6. FPGA resource utilization graphs. 
 
 

Based on the performance and resource results, it can be concluded that the xIT with 
merging IT4x4 and IT8x8 together, and merging IT16x16 and IT32x32 together leads to the 
most efficient architecture with the best trade-off.  Full parallel consumes the most resource, 
but with  a only a slight increase in performance. Serial implementation on the other hand uses 
the least resource but with significantly low performance. 
 



IJEECS  ISSN: 2502-4752  

Exploring the Design Space of HEVC Inverse Transforms with Dataflow … (Khoo Zhi Yion) 

109 

5. Conclusion 
This paper aims to explore the hardware design space of the HEVC integer transform, 

and to provide an insight on how the complex transform unit can be efficiently implemented in 
parallel. Based on the results, the fully parallel design shows the best performance, but not 
much from an intermediate parallel design with quite significantly less resource. On the other 
hand, the full serial design uses the least resource, but gives poor performance. The design 
with the best trade-off is found by merging the IT4x4 and IT8x8 together, and also merging the 
IT16x16 and IT32x32 together. Future work involves improving further the performance of the 
transform unit by implementing a multiplierless architecture for the matrix operations. 
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