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Abstract 
Sequential pattern mining, it is not just important in data mining field, but it is the basis of many 

applications. However, running applications cost time and memory, especially when dealing with dense of 
the dataset. Setting the proper minimum support threshold is one of the factors that consume more 
memory and time. However, it is difficult for users to get the appropriate patterns; it may present too many 
sequential patterns and makes it difficult for users to comprehend the results. The problem becomes worse 
and worse when dealing with long click stream sequences or huge dataset. As a solution, we developed 
an efficient algorithm, called TopK (Top-K click stream sequence pattern mining), which employs the 
output as top-k patterns, K is the most important and relevant frequencies (with a high support). However, 
our algorithm based on pseudo-projection to avoid consuming more time and memory, and uses several 
efficient search space pruning methods together with BI-Directional Extension. Our extensive study and 
experiments on real click stream datasets show TopK significantly outperforms the previous algorithms. 
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1. Introduction 
Many studies have been done on sequential pattern mining algorithms [1-7], an 

important problem is how the user get a useful amount of patterns by setting the proper 
minimum support threshold, especially when dealing with dense of database [8-9]. This problem 
is cost more time and memory to analyze the output patterns. However, setting high minimum 
support speeds up the algorithms-running time but could get a few patterns or none [9-10]. And 
the reverse, slow the algorithms and generate an extremely large amount of results that 
consume time and memory. 

 To address this problem, it was proposed to redefine the problem of mining click 
stream Sequence Patterns as the problem of mining the top-k click stream Sequence Patterns, 
where k is the number of Click Stream Sequence Patterns to be set by the user [1], [8-12]. The 
current best algorithms for this problem are TSP, TKS [1], [10]. However, in our experimental 
study, we found that TKS and TSP do not perform well on some types of datasets. Therefore, 
an important research question is could we develop a top-k Click Stream Sequence Patterns 
mining algorithm more efficient than TKS and TSP? We address this research question by 
proposing a novel algorithm named TopK (Top-K Click Stream Sequence Patterns mining). 
TopK is an efficient top-k algorithm for Click Stream Sequence Patterns mining. 

We employ BI-Directional methods It uses the same representation and basic candidate 
generation procedure as BIDE [8], [13]. Moreover, TopK incorporates several efficient 
procedures to prune the search space and rely on a novel data structure named BESTofMS 
(Best of minimum support) for fasting search operations. An extensive experimental study with 
various real datasets shows that (1) TopK outperforms the TKS and TSP top-k Click Sstream 
Sequence Patterns mining algorithms in terms of both execution time and memory usage. 

The rest of the article is organized as follows. In section 2, the basic concepts of 
sequential pattern mining are introduced and the problem of mining the top-K Click Stream 
Sequence Patterns without minimum support is formally defined. In addition to the related work 
on sequential pattern mining and top-K frequent pattern mining. 

Section 3 presents the algorithm for mining top-K frequent Click Stream Sequence 
Patterns. A performance study is reported in Section 4, the conclusion in Section 5. 
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2. Problem Definition & Related Work 

Let I be a set of items. A set S = {e1, e2,. . ., ei} ⊆ I is called an itemset or i-itemsets if it 
contains i items. For simplicity, from now on we denote an itemset I as a concatenation of items 
between curly brackets. So, I1 = {a,b} and I2 = {b,c} are both two 2-itemsets. Also, without loss 
of generality, we assume the items in every itemset are represented in a lexicographic 
order [13]. 

A sequence s is a tuple s = I1,I2, . . . In > with Ii ∈ I, and ∀i : 1 ≤ i ≤ n. We denote the 
size of a sequence |s| as the number of itemsets in that sequence. We denote the length of a 

sequence (l = ∑      
   ) as the number of items in it, and every sequence with i- items is called a 

i-sequence. For instance, the sequence α = {a,b},{b,c}> is a 4-sequence with a size of 2 

itemsets. We say α =Ia1,Ia2, . . . Ian > is a subsequence of another sequence β = Ib1, Ib2 . . . 
Ibm > (or β is a super sequence of α), denoted as α sup(β), if there exist integers 1 ≤ j1 < j2 < . . 

. < jn ≤ m such that Ia1⊆ Ibj1, Ia2 ⊆ Ibj2, . . ., Ian ⊆ Ibjn. For instance, {b},{c} is a subsequence 

of {a,b},{b,c}, since {b} ⊆ {a,b} and {c} ⊆ {b,c} and the order in the itemsets is preserved. 

Furthermore, the sequence {b},{c} is not a subsequence of {a,b,c}. A sequence database 

SDB is collection of input sequences SDB = s1, s2, . . . sn, incrementally ordered by the 
identifier of the contained sequences. In table 1.a we show a sample input database SDB with 
four input sequences. 

 
2.1. Problem Definition 

To address the difficulty of how to set the proper minsup, the problem of sequential 
pattern mining was redefined as the problem of top-k sequential pattern mining [1], [10], [12]. It 
is to discover a set of k Click Stream Sequence Patterns in a sequence database SDB such that 

for each pattern sa  L, there no sequential pattern found if sb  L | sup(sb) > sup(sa). For 
example, for the database of Table 1a, 1b and k = 10, the top-k Click Stream Sequence 

Patterns are 〈{b}〉, 〈{c},{g}〉, 〈{c}〉, 〈{f}, {d}〉, 〈{f}, {b}〉, 〈{c}, {d}〉 and〈{d}〉 with a support of 3, and 
〈{f}, {g}〉, 〈{f}〉 and 〈{g}〉, with a support of 4. The definition of this problem is similar to the 
definition of other top-k problems in the field of pattern mining such as top-k frequent itemset 
mining [1], [11], [14], top-k association rule mining [10], [15] and top-k sequential rule mining. 
 
 

Table 1a. SDB Sequence Database 
SID Sequences 

1 〈{c, f},{e},{g, b},{b},{d}〉 
2 〈{c, a},{e},{f},{c, f, d, g}〉  
3 〈{c},{f},{g},{d}〉  

 
 

Table 1b. Click Stream Patterns Support 
PID Pattern Support 

1 〈{c},{g}〉 3 
2 〈{c},{e}{g}〉 2 

3 〈{f},{g, b}〉 2 
4 〈{b},{d}〉 2 
5 〈{e},{g}〉 2 

 
 

Definition (top-k Click Stream Sequence Pattern): A sequence s is a frequent Click 
Stream Sequence Pattern in a sequence database D if its support (i.e., occurrence frequency) 
in D is no less than minimum support. A Click Stream Sequence Pattern s is a top-k if there 
exist no more (k-1) Click Stream Sequence Patterns. 
 
2.2. Related Work 

The sequential pattern mining problem was first proposed by Agrawal and Srikant in [3], 
and developed a generalized and refined algorithm, GSP [16], based on the Apriori  
property [17]. Since that, many algorithms related sequential pattern mining have been 
proposed for performance improvements [18]. Among those algorithms for top-k sequential 
pattern mining like TKS and TSP [9], [11], [14]. Both algorithms were proposed for mining top-k 
sequential patterns, in addition to that TSP also was proposed for respectively top-k closed 
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sequential patterns. The TSP algorithm is based on PrefixSpan [9], [19]. TSP first generates 
frequent sequential patterns containing a single item. Then it recursively extends projecting and 
scanning the resulting projected database for each pattern s to identify items that appear 
greater than the value of minsup after s, and then add the items to s. The main benefit of this 
projection-based approach is that it only considers patterns appearing in the database unlike 
“generate-and-test” algorithms [1], [14], [20]. TKS is based on vertical database representation 
and basic candidate-generation on procedure of SPAM [14], [21]. Furthermore, it also includes 
several efficient strategies to discover top-k Click Stream Sequence Pattern efficiently. TKS first 
scans SDB once to construct V(SDB) and counts the support of each single item [9], [14]. Then, 
for each frequent item s, it calls the procedure “SEARCH”. This procedure outputs the  

pattern 〈{s}〉 and recursively explore candidate patterns starting with the prefix 〈{s}〉. 
However, the downside of TSP approach as projecting databases repeatedly and TKS 

searching approach are costly time and memory, especially when dealing with long sequences 
and huge items (our experimental study presented in Section 4). 

 
 

3. Method Development 
We propose a novel algorithm called TopK. TopK is an algorithm to modify the main 

procedure of the BIDE algorithm [13] to transform it as a top k algorithm. 
a. The TopK Algorithm 

We modified frequent-sequence procedure in BIDE algorithm, first to enumerate the 1-
item frequency then sort the items as a number of frequency descending, then store the k

th
 

highest items in a map and set the minimum frequency of it as minsup, then create pseudo 
projected database, Figure1 show the steps of TopK algorithm. 

 
 

 
 

Figure 1. TopK Algorithm Steps 
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b. Definition (Projected sequence) 
Set an input sequence S which contains a prefix i-sequence e1,e2,..ei, S is called the 

projected sequence when removing the first instance of the prefix i-sequence e1,e2,..ei in w.r.t. 
prefix e1,e2,..ei in S.  
c. Definition (Projected database) 

Set an input sequence database SDB, the complete set of projected sequences in 
SDBB, w.r.t. a prefix sequence e1,e2,..ei is called the projected database w.r.t. prefix e1,e2,..ei 
in SDB [13]. 
d. Definition pseudo-projection 

Means record a set of pointers instead of physically record, each pointer point to the 
start position of the corresponding projected sequence. 

First of all, enumerate 1-item sequences that their frequencies in the database no less 
than the autominsup Figure 2. Show the enumeration of Pseudo projection method to find the 
set of locally frequent items, and Figure 3 shows the TopK algorithm. 

It scans the database once to find the frequent 1-sequences (line 2) for each frequent 1-
sequences >=2, Sort items upon no of frequency (line3). Save the best of the K

th
 highest 

minimum support from the sorting items to a list (line 4). Select the lowest from the list and set it 
as minsup (line5). builds pseudo projected database for each frequent 1-sequence and not less 
than the minsup (line 6 and 7), treats each frequent 1-sequence as a prefix and uses BackScan 
method to check and prune if any can be pruned (line 9), if not, computes the number of 
backward-extension-items (line 10), call Savepattren((f1, k, minsupq) functions to save Click 
Stream Sequence Patterns(line 11), and recursively calls subroutine TopK (Sp_SDB, 
Sp,min_sup,BEI,FS) (line 12). 
 
 

Frequent-sequence-{enumeration (SDB, FS,k,)  
Input: an input sequence database SDB, K 
Output: the complete set of frequent sequences, •FS 
1. FS = Ø; 
2. c.all Frequent-s.equences(SDB, Ø, min_sup, FS.); 
3. return FS; 
Frequent-sequences (Sp._SDB, Sp FS)  
Input: a projected sequence database Sp._SDB, a prefix sequence Sp., 
Output: the current set of frequent sequences, FS 
1. Set autominsup to 2 
2. if Sp. is non empty 
3. FS =•FS U Sp.; 
4. LF_Sp.= .locally frequent items (Sp._SDB, Sp.,•min_sup•); 
5. if LF_Sp.is empty 
6. Return; 
7. for each locally frequent item i 
8. Sp.i = <Sp.,i>; 
9. Sp.i_SDB = p.seudo projected database (Sp.i,Sp._SDB•); 
10. call Frequent-s.equences(Sp.i_SDB, Sp.i,•min_sup, FS); 

 
Figure 2. Subroutine to Enumerate the Sequences in Dataset 

 
 
After finding Click Stream Sequence Pattern the TopK algorithm call savepattern 

function() to save patterns, in Figure 3 and 4. shows the function steps and detailed as follows: 
Save frequent sequence to list SL, If SL length less than k then, Set autominsup by call 
BESTofMS (Best of minimum support procedure) by selecting the next frequency in the list FL, 
otherwise remove sequences from SL until SL length equal K [14], and set autominsup to the 
lowest frequency in the list SL. 
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TopK (SDB,K, F,S) ¿Input: an input sequence database ÀSDB, K  
Output: the complete set of frequent sequences, ÂFÀS 1: FCS = Ø ; 
1. Set min_sup to 2; 
2. F1=frequent 1-sequences(SDB,autminsup); 
3. F1s=Sort(F1) descending upon the support; 
4. min_supA= Select the k th support as min_sup 
5. min_supQ= the lowest support of min_supA;  
6. for (each 1-sequence f1 in F1) do 
7. SDB= pseudo projected database (SDB); 
8. for (each f1 in F1s) do 
9. if (!BackScan(f1, SDB)) 
10. BEI=backward extension check (f1, SDB); 
11. Savepattren((f1, k, minsupq)  
12. cÎall bide(SDB,f1,min_supQ, BEI, FS); 
13. return FS; 

 
Figure 3. TopK Algorithm 

 
 

Savepattren(FSe, k, minsup)  
1. 1.put FSe to SP  
2. IF length of FSe  >k THEN  
3. IF support of  FSe sup(r) > minsup THEN  
4. Remove all patterns from SP that has the lowest supports until size of 

SP is equal K 
5. END IF  
6. Set mins_upQ to the lowest support of patterns in L.  
7. END IF 

ELSE 
BESTofMS (Rise the mins_upQ to the next one) 

 
Figure 4. Save founded pattern function. 

 
 
4. Experimental Evaluation 

This section reports the performance testing of TopK algorithm in large data sets. In 
particular, we compare the performance of TopK with TSP, TKS and BIDE. Because the 
synthetic datasets have far different characteristics from the real-world ones, in our experiments 
we only used some real datasets to do the tests. However, we chose some real datasets which 
can cover a range of distribution characteristics (sparse, a little dense, and very dense). The 
datasets used in this study are BMSWebView1 (Gazelle), BMSWebView2 (Gazelle), and 
Kosarak, real life datasets and, provided by Philippe. It can be obtained at [22]. Table 2 shows 
details about these datasets. 

All experiments were performed on Sony Vio 2.13GHz Intel Core i3 CPU with 3.00 GB 
memory and Windows 7 Professional installed. 

 
 

Table 2. Dataset Details 
Dataset No of 

sequences 
No of repeated 

items 
Length of the 

Largest sequence 
Dataset Type 

Kosarak 1 
10 000 

sequences 
81407 608 

Click-stream data 
of a Hungarian on-

line news portal 
Kosarak 2 

25 000 
sequences 

201062 608 

BMSWebView1 (Gazelle) 59,601 149638 267 Click stream data 
from an e-
commerce 

BMSWebView2 (Gazelle) 77,512 358278 361 

 
 

http://www.philippe-fournier-viger.com/spmf/datasets/BMS1_spmf
http://www.philippe-fournier-viger.com/spmf/datasets/BMS1_spmf


                     ISSN: 2502-4752           

 IJEECS Vol. 4, No. 3, December 2016:  655 – 664 

660 

Our algorithm was based on BIDE algorithm, we compared TopK algorithm with BIDE. 
The comparison is based on assigning the optimal minsup to BIDE so that it generates the 
same set of top-k Click Stream Sequence Patterns as TopK for specified values of k. 

 
 

Table 3. Comparative the Running Time for the Three Algorithms 

Dataset Algorithm 
Total Runtime (MS) 

k=500 k=1500 k=2500 k=3500 

Kosarak1  
contains 10 000 
sequences  

TopK 2398 4564 5537 5996 
TSP 2844 4920 5862 6524 
TKS 2545 9054 12117 24458 

Kosarak2 
contains 25 000 
sequences 

TopK 4428 7575 11093 13652 
TSP 4894 7923 12184 16877 
TKS 4693 11192 21554 31923 

BMSWebView1 
contains 59,601 
sequences  

TopK 4479 5435 7213 8015 
TSP 4674 5985 7588 8211 
TKS 2501 6897 12859 18316 

BMSWebView2 
contains 77,512 
sequences  

TopK 4350 9692 12656 17536 
TSP 4809 9631 12696 23255 
TKS 2511 5505 12486 22063 

 
 

The experiments show that TopK is more efficient than BIDE in terms of run time and 
memory storage (specified k as top-k sequential mining) as seen in Figure (5-8). 

 
 

  
Figure 5. Execution time (ms) of 

BMSWebView1 dataset 
Figure 6. Execution time (ms) of Kosarak1 

dataset 
 
 

 

 
 

 
Figure 7. Memory usage (MB) of 

BMSWebView1 dataset 
Figure 8. Memory usage (MB) of 

BMSWebView2 dataset 
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In the experiments we compared TopK with two top- k sequential mining algorithms, 
TSP and TKS, see Table 3. The source codes of TSP and TKS provided by TKS-
corresponding-author [22]. 
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Figure 9. Execution time (ms) of Kosarak1 
dataset 

 Figure 10. Execution time (ms) of Kosarak2  
dataset 
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Figure 11. Execution time (ms) of Kosarak1 
dataset –TopK vs. TSP 

 Figure 12. Execution time (ms) ofKosarak2 
dataset –TopK vs. TSP 

 
 

 

  
 

 
 

Figure 13. Execution time (ms) of 
BMSWebView1 dataset 

  
Figure 14. Execution time (ms) of 

BMSWebView1 dataset –TopK vs TSP 
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We executed the three algorithms Topk, TKS and TSP on all dataset with varying of the 

quantity of K,K{500,1500,2500,3500} to assessment TopK algorithm comparing with the 
others. 

 
 

Table 3. Comparative Memory Usage between Three Algorithms 

Dataset Algorithm 
Maximum Memory Usage (MB) 

k=500 k=1500 k=2500 k=3500 

Kosarak1  
contains 10 000 
sequences  

TopK 4 120 32 78 
TSP 7 24 39 85 
TKS 69 52 71 87 

Kosarak2 
contains 25 000 
sequences 

TopK 41 22 29 135 
TSP 41 23 37 147 
TKS 69 52 103 123 

BMSWebView1 
contains 59,601 
sequences  

TopK 18 55 64 95 
TSP 25 71 94 29 
TKS 2 22 114 23 

BMSWebView2 
contains 77, 512 
sequences  

TopK 80 44 60 78 
TSP 81 48 97 28 
TKS 100 11 154 94 

 
 

Figures 9-10, show the comparison between TopK,TSP, and TKS to execute Kosarak 
dataset with two deferent sizes, we notice that TopK better than TKS and TSP, and  
Figures 11-14 show TopK stable for execution two types of datasets and outperforms TSP in 
terms of executing time. 
 
 

 
 

Figure 15. Memory usage (MB) of Kosarak1 
dataset 

 

Figure 16. Memory usage (MB) of Kosarak2 
dataset 

 
 

  
Figure 17. Memory usage (MB) of 

BMSWebView1 dataset 
Figure 18. Memory usage (MB) of 

BMSWebView2 dataset 
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Figures 15-20 show the comparison between the three TopK, TSP, TKS for execution 
deferent types and sizes fo dataset in terms of memory usage, figures show that TopK is more 
efficient than the others, TopK uses less memory and stable for the deferent sizes of the 
dataset. 
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Figure 19. Memory usage (MB) of 
BMSWebView1 dataset- TopK vs. TSP 
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BMSWebView2 dataset- TopK vs. TSP  

 
 
Our algorithm executed all datasets and was the best results than the TSP and TKS 

algorithms in terms of execution time and memory usage. TopK faster than TSP and TKS and 
use less memory. 

 
 

5. Conclusions 
We proposed TopK, a novel algorithm for mining frequent sequences our proposed 

TopK algorithm is an efficient algorithm to discover the top-k Click Stream Sequence Patterns 
as output, in term of execution time and less memory, where K is an integer number setting by 
the user as input. Our method employed BI-Directional to work fast and with high efficiency for 
discovering the top-k Click Stream Sequence Patterns. Our experiments show that TopK 
consumes order(s) of magnitude less memory and runs over an order of magnitude faster than 
the previously developed top-k sequential pattern mining algorithms, especially when K is high, 
and has better scalability with respect to k.  
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