
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 4, No. 3, December 2016, pp. 655 ~ 664
DOI: 10.11591/ijeecs.v4.i3.pp655-664 655

Received September 25, 2016; Revised November 10, 2016; Accepted November 26, 2016

Mining Top-K Click Stream Sequences Patterns

Mehdi Ali
1
, Qun-Xiong Zhu*

2
, Yan-Lin He

3

1
College of information Science & Technology, Beijing University of Chemical Technology, Beijing, China

2,3
Engineering Research Center of Intelligent PSE, Ministry of Education of China, Beijing, China

*Corresponding author, e-mail: mehditer@hotmail.com

Abstract
Sequential pattern mining, it is not just important in data mining field, but it is the basis of many

applications. However, running applications cost time and memory, especially when dealing with dense of
the dataset. Setting the proper minimum support threshold is one of the factors that consume more
memory and time. However, it is difficult for users to get the appropriate patterns; it may present too many
sequential patterns and makes it difficult for users to comprehend the results. The problem becomes worse
and worse when dealing with long click stream sequences or huge dataset. As a solution, we developed
an efficient algorithm, called TopK (Top-K click stream sequence pattern mining), which employs the
output as top-k patterns, K is the most important and relevant frequencies (with a high support). However,
our algorithm based on pseudo-projection to avoid consuming more time and memory, and uses several
efficient search space pruning methods together with BI-Directional Extension. Our extensive study and
experiments on real click stream datasets show TopK significantly outperforms the previous algorithms.

Keywords: pattern mining, click stream sequence patterns mining, sequence database, top-k, data mining

Copyright © 2016 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Many studies have been done on sequential pattern mining algorithms [1-7], an

important problem is how the user get a useful amount of patterns by setting the proper
minimum support threshold, especially when dealing with dense of database [8-9]. This problem
is cost more time and memory to analyze the output patterns. However, setting high minimum
support speeds up the algorithms-running time but could get a few patterns or none [9-10]. And
the reverse, slow the algorithms and generate an extremely large amount of results that
consume time and memory.

 To address this problem, it was proposed to redefine the problem of mining click
stream Sequence Patterns as the problem of mining the top-k click stream Sequence Patterns,
where k is the number of Click Stream Sequence Patterns to be set by the user [1], [8-12]. The
current best algorithms for this problem are TSP, TKS [1], [10]. However, in our experimental
study, we found that TKS and TSP do not perform well on some types of datasets. Therefore,
an important research question is could we develop a top-k Click Stream Sequence Patterns
mining algorithm more efficient than TKS and TSP? We address this research question by
proposing a novel algorithm named TopK (Top-K Click Stream Sequence Patterns mining).
TopK is an efficient top-k algorithm for Click Stream Sequence Patterns mining.

We employ BI-Directional methods It uses the same representation and basic candidate
generation procedure as BIDE [8], [13]. Moreover, TopK incorporates several efficient
procedures to prune the search space and rely on a novel data structure named BESTofMS
(Best of minimum support) for fasting search operations. An extensive experimental study with
various real datasets shows that (1) TopK outperforms the TKS and TSP top-k Click Sstream
Sequence Patterns mining algorithms in terms of both execution time and memory usage.

The rest of the article is organized as follows. In section 2, the basic concepts of
sequential pattern mining are introduced and the problem of mining the top-K Click Stream
Sequence Patterns without minimum support is formally defined. In addition to the related work
on sequential pattern mining and top-K frequent pattern mining.

Section 3 presents the algorithm for mining top-K frequent Click Stream Sequence
Patterns. A performance study is reported in Section 4, the conclusion in Section 5.

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 3, December 2016: 655 – 664

656

2. Problem Definition & Related Work

Let I be a set of items. A set S = {e1, e2,. . ., ei} ⊆ I is called an itemset or i-itemsets if it
contains i items. For simplicity, from now on we denote an itemset I as a concatenation of items
between curly brackets. So, I1 = {a,b} and I2 = {b,c} are both two 2-itemsets. Also, without loss
of generality, we assume the items in every itemset are represented in a lexicographic
order [13].

A sequence s is a tuple s = I1,I2, . . . In > with Ii ∈ I, and ∀i : 1 ≤ i ≤ n. We denote the
size of a sequence |s| as the number of itemsets in that sequence. We denote the length of a

sequence (l = ∑
) as the number of items in it, and every sequence with i- items is called a

i-sequence. For instance, the sequence α = {a,b},{b,c}> is a 4-sequence with a size of 2

itemsets. We say α =Ia1,Ia2, . . . Ian > is a subsequence of another sequence β = Ib1, Ib2 . . .
Ibm > (or β is a super sequence of α), denoted as α sup(β), if there exist integers 1 ≤ j1 < j2 < . .

. < jn ≤ m such that Ia1⊆ Ibj1, Ia2 ⊆ Ibj2, . . ., Ian ⊆ Ibjn. For instance, {b},{c} is a subsequence

of {a,b},{b,c}, since {b} ⊆ {a,b} and {c} ⊆ {b,c} and the order in the itemsets is preserved.

Furthermore, the sequence {b},{c} is not a subsequence of {a,b,c}. A sequence database

SDB is collection of input sequences SDB = s1, s2, . . . sn, incrementally ordered by the
identifier of the contained sequences. In table 1.a we show a sample input database SDB with
four input sequences.

2.1. Problem Definition

To address the difficulty of how to set the proper minsup, the problem of sequential
pattern mining was redefined as the problem of top-k sequential pattern mining [1], [10], [12]. It
is to discover a set of k Click Stream Sequence Patterns in a sequence database SDB such that

for each pattern sa L, there no sequential pattern found if sb L | sup(sb) > sup(sa). For
example, for the database of Table 1a, 1b and k = 10, the top-k Click Stream Sequence

Patterns are 〈{b}〉, 〈{c},{g}〉, 〈{c}〉, 〈{f}, {d}〉, 〈{f}, {b}〉, 〈{c}, {d}〉 and〈{d}〉 with a support of 3, and
〈{f}, {g}〉, 〈{f}〉 and 〈{g}〉, with a support of 4. The definition of this problem is similar to the
definition of other top-k problems in the field of pattern mining such as top-k frequent itemset
mining [1], [11], [14], top-k association rule mining [10], [15] and top-k sequential rule mining.

Table 1a. SDB Sequence Database
SID Sequences

1 〈{c, f},{e},{g, b},{b},{d}〉
2 〈{c, a},{e},{f},{c, f, d, g}〉
3 〈{c},{f},{g},{d}〉

Table 1b. Click Stream Patterns Support
PID Pattern Support

1 〈{c},{g}〉 3
2 〈{c},{e}{g}〉 2

3 〈{f},{g, b}〉 2
4 〈{b},{d}〉 2
5 〈{e},{g}〉 2

Definition (top-k Click Stream Sequence Pattern): A sequence s is a frequent Click
Stream Sequence Pattern in a sequence database D if its support (i.e., occurrence frequency)
in D is no less than minimum support. A Click Stream Sequence Pattern s is a top-k if there
exist no more (k-1) Click Stream Sequence Patterns.

2.2. Related Work

The sequential pattern mining problem was first proposed by Agrawal and Srikant in [3],
and developed a generalized and refined algorithm, GSP [16], based on the Apriori
property [17]. Since that, many algorithms related sequential pattern mining have been
proposed for performance improvements [18]. Among those algorithms for top-k sequential
pattern mining like TKS and TSP [9], [11], [14]. Both algorithms were proposed for mining top-k
sequential patterns, in addition to that TSP also was proposed for respectively top-k closed

IJEECS ISSN: 2502-4752

Mining Top-K Click Stream Sequences Patterns (Mehdi Ali)

657

sequential patterns. The TSP algorithm is based on PrefixSpan [9], [19]. TSP first generates
frequent sequential patterns containing a single item. Then it recursively extends projecting and
scanning the resulting projected database for each pattern s to identify items that appear
greater than the value of minsup after s, and then add the items to s. The main benefit of this
projection-based approach is that it only considers patterns appearing in the database unlike
“generate-and-test” algorithms [1], [14], [20]. TKS is based on vertical database representation
and basic candidate-generation on procedure of SPAM [14], [21]. Furthermore, it also includes
several efficient strategies to discover top-k Click Stream Sequence Pattern efficiently. TKS first
scans SDB once to construct V(SDB) and counts the support of each single item [9], [14]. Then,
for each frequent item s, it calls the procedure “SEARCH”. This procedure outputs the

pattern 〈{s}〉 and recursively explore candidate patterns starting with the prefix 〈{s}〉.
However, the downside of TSP approach as projecting databases repeatedly and TKS

searching approach are costly time and memory, especially when dealing with long sequences
and huge items (our experimental study presented in Section 4).

3. Method Development
We propose a novel algorithm called TopK. TopK is an algorithm to modify the main

procedure of the BIDE algorithm [13] to transform it as a top k algorithm.
a. The TopK Algorithm

We modified frequent-sequence procedure in BIDE algorithm, first to enumerate the 1-
item frequency then sort the items as a number of frequency descending, then store the k

th

highest items in a map and set the minimum frequency of it as minsup, then create pseudo
projected database, Figure1 show the steps of TopK algorithm.

Figure 1. TopK Algorithm Steps

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 3, December 2016: 655 – 664

658

b. Definition (Projected sequence)
Set an input sequence S which contains a prefix i-sequence e1,e2,..ei, S is called the

projected sequence when removing the first instance of the prefix i-sequence e1,e2,..ei in w.r.t.
prefix e1,e2,..ei in S.
c. Definition (Projected database)

Set an input sequence database SDB, the complete set of projected sequences in
SDBB, w.r.t. a prefix sequence e1,e2,..ei is called the projected database w.r.t. prefix e1,e2,..ei
in SDB [13].
d. Definition pseudo-projection

Means record a set of pointers instead of physically record, each pointer point to the
start position of the corresponding projected sequence.

First of all, enumerate 1-item sequences that their frequencies in the database no less
than the autominsup Figure 2. Show the enumeration of Pseudo projection method to find the
set of locally frequent items, and Figure 3 shows the TopK algorithm.

It scans the database once to find the frequent 1-sequences (line 2) for each frequent 1-
sequences >=2, Sort items upon no of frequency (line3). Save the best of the K

th
 highest

minimum support from the sorting items to a list (line 4). Select the lowest from the list and set it
as minsup (line5). builds pseudo projected database for each frequent 1-sequence and not less
than the minsup (line 6 and 7), treats each frequent 1-sequence as a prefix and uses BackScan
method to check and prune if any can be pruned (line 9), if not, computes the number of
backward-extension-items (line 10), call Savepattren((f1, k, minsupq) functions to save Click
Stream Sequence Patterns(line 11), and recursively calls subroutine TopK (Sp_SDB,
Sp,min_sup,BEI,FS) (line 12).

Frequent-sequence-{enumeration (SDB, FS,k,)
Input: an input sequence database SDB, K
Output: the complete set of frequent sequences, •FS
1. FS = Ø;
2. c.all Frequent-s.equences(SDB, Ø, min_sup, FS.);
3. return FS;
Frequent-sequences (Sp._SDB, Sp FS)
Input: a projected sequence database Sp._SDB, a prefix sequence Sp.,
Output: the current set of frequent sequences, FS
1. Set autominsup to 2
2. if Sp. is non empty
3. FS =•FS U Sp.;
4. LF_Sp.= .locally frequent items (Sp._SDB, Sp.,•min_sup•);
5. if LF_Sp.is empty
6. Return;
7. for each locally frequent item i
8. Sp.i = <Sp.,i>;
9. Sp.i_SDB = p.seudo projected database (Sp.i,Sp._SDB•);
10. call Frequent-s.equences(Sp.i_SDB, Sp.i,•min_sup, FS);

Figure 2. Subroutine to Enumerate the Sequences in Dataset

After finding Click Stream Sequence Pattern the TopK algorithm call savepattern

function() to save patterns, in Figure 3 and 4. shows the function steps and detailed as follows:
Save frequent sequence to list SL, If SL length less than k then, Set autominsup by call
BESTofMS (Best of minimum support procedure) by selecting the next frequency in the list FL,
otherwise remove sequences from SL until SL length equal K [14], and set autominsup to the
lowest frequency in the list SL.

IJEECS ISSN: 2502-4752

Mining Top-K Click Stream Sequences Patterns (Mehdi Ali)

659

TopK (SDB,K, F,S) ¿Input: an input sequence database ÀSDB, K
Output: the complete set of frequent sequences, ÂFÀS 1: FCS = Ø ;
1. Set min_sup to 2;
2. F1=frequent 1-sequences(SDB,autminsup);
3. F1s=Sort(F1) descending upon the support;
4. min_supA= Select the k th support as min_sup
5. min_supQ= the lowest support of min_supA;
6. for (each 1-sequence f1 in F1) do
7. SDB= pseudo projected database (SDB);
8. for (each f1 in F1s) do
9. if (!BackScan(f1, SDB))
10. BEI=backward extension check (f1, SDB);
11. Savepattren((f1, k, minsupq)
12. cÎall bide(SDB,f1,min_supQ, BEI, FS);
13. return FS;

Figure 3. TopK Algorithm

Savepattren(FSe, k, minsup)
1. 1.put FSe to SP
2. IF length of FSe >k THEN
3. IF support of FSe sup(r) > minsup THEN
4. Remove all patterns from SP that has the lowest supports until size of

SP is equal K
5. END IF
6. Set mins_upQ to the lowest support of patterns in L.
7. END IF

ELSE
BESTofMS (Rise the mins_upQ to the next one)

Figure 4. Save founded pattern function.

4. Experimental Evaluation

This section reports the performance testing of TopK algorithm in large data sets. In
particular, we compare the performance of TopK with TSP, TKS and BIDE. Because the
synthetic datasets have far different characteristics from the real-world ones, in our experiments
we only used some real datasets to do the tests. However, we chose some real datasets which
can cover a range of distribution characteristics (sparse, a little dense, and very dense). The
datasets used in this study are BMSWebView1 (Gazelle), BMSWebView2 (Gazelle), and
Kosarak, real life datasets and, provided by Philippe. It can be obtained at [22]. Table 2 shows
details about these datasets.

All experiments were performed on Sony Vio 2.13GHz Intel Core i3 CPU with 3.00 GB
memory and Windows 7 Professional installed.

Table 2. Dataset Details
Dataset No of

sequences
No of repeated

items
Length of the

Largest sequence
Dataset Type

Kosarak 1
10 000

sequences
81407 608

Click-stream data
of a Hungarian on-

line news portal
Kosarak 2

25 000
sequences

201062 608

BMSWebView1 (Gazelle) 59,601 149638 267 Click stream data
from an e-
commerce

BMSWebView2 (Gazelle) 77,512 358278 361

http://www.philippe-fournier-viger.com/spmf/datasets/BMS1_spmf
http://www.philippe-fournier-viger.com/spmf/datasets/BMS1_spmf

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 3, December 2016: 655 – 664

660

Our algorithm was based on BIDE algorithm, we compared TopK algorithm with BIDE.
The comparison is based on assigning the optimal minsup to BIDE so that it generates the
same set of top-k Click Stream Sequence Patterns as TopK for specified values of k.

Table 3. Comparative the Running Time for the Three Algorithms

Dataset Algorithm
Total Runtime (MS)

k=500 k=1500 k=2500 k=3500

Kosarak1
contains 10 000
sequences

TopK 2398 4564 5537 5996
TSP 2844 4920 5862 6524
TKS 2545 9054 12117 24458

Kosarak2
contains 25 000
sequences

TopK 4428 7575 11093 13652
TSP 4894 7923 12184 16877
TKS 4693 11192 21554 31923

BMSWebView1
contains 59,601
sequences

TopK 4479 5435 7213 8015
TSP 4674 5985 7588 8211
TKS 2501 6897 12859 18316

BMSWebView2
contains 77,512
sequences

TopK 4350 9692 12656 17536
TSP 4809 9631 12696 23255
TKS 2511 5505 12486 22063

The experiments show that TopK is more efficient than BIDE in terms of run time and
memory storage (specified k as top-k sequential mining) as seen in Figure (5-8).

Figure 5. Execution time (ms) of

BMSWebView1 dataset
Figure 6. Execution time (ms) of Kosarak1

dataset

Figure 7. Memory usage (MB) of

BMSWebView1 dataset
Figure 8. Memory usage (MB) of

BMSWebView2 dataset

500 1000 1500 2000 2500 3000 3500

4000

6000

8000

10000

12000

14000

R
u

n
ti
m

e
 (

m
s
)

K

 TopK

 BIDE

BMSWebView1

contains 59,601 sequences

500 1000 1500 2000 2500 3000 3500

2000

4000

6000

8000

10000

12000

14000

16000

R
u

n
ti
m

e
 (

m
s
)

K

 TopK

 BIDEKosarak

contains 10,000 sequences

500 1000 1500 2000 2500 3000 3500

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

BMSWebView1

contains 59,601 sequences

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

K

 TopK

 BIDE

500 1000 1500 2000 2500 3000 3500

180

200

220

240

260

280

BMSWebView2

contains 77,512 sequences

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

K

 TopK

 BIDE

IJEECS ISSN: 2502-4752

Mining Top-K Click Stream Sequences Patterns (Mehdi Ali)

661

In the experiments we compared TopK with two top- k sequential mining algorithms,
TSP and TKS, see Table 3. The source codes of TSP and TKS provided by TKS-
corresponding-author [22].

0 1000 2000 3000 4000 5000

0

5000

10000

15000

20000

25000

30000

35000

40000

Kosarak

10 000 sequences

R
u

n
ti
m

e
 (

m
s
)

K

 Topk

 TSP

 TKS

0 1000 2000 3000 4000 5000

0

10000

20000

30000

40000

50000

60000

R
u

n
ti
m

e
 (

m
s
)

K

 Topk

 TSP

 TKS

Kosarak

25 000 sequences

Figure 9. Execution time (ms) of Kosarak1
dataset

 Figure 10. Execution time (ms) of Kosarak2
dataset

0 1000 2000 3000 4000 5000

2000

3000

4000

5000

6000

7000

8000

9000

Kosarak

10 000 sequences

R
u

n
ti
m

e
 (

m
s
)

K

 Topk

 TSP

0 1000 2000 3000 4000 5000

4000

6000

8000

10000

12000

14000

16000

18000

Kosarak

25 000 sequences

R
u

n
ti
m

e
 (

m
s
)

K

 Topk

 TSP

Figure 11. Execution time (ms) of Kosarak1
dataset –TopK vs. TSP

 Figure 12. Execution time (ms) ofKosarak2
dataset –TopK vs. TSP

Figure 13. Execution time (ms) of
BMSWebView1 dataset

Figure 14. Execution time (ms) of

BMSWebView1 dataset –TopK vs TSP

0 1000 2000 3000 4000 5000

0

5000

10000

15000

20000

25000

R
u

n
ti
m

e
 (

m
s
)

K

 Topk

 TSP

 TKS

BMSWebView1

59,601 sequences

0 1000 2000 3000 4000 5000

4000

5000

6000

7000

8000

9000

10000

BMSWebView1

59,601 sequences

R
u

n
ti
m

e
 (

m
s
)

K

 Topk

 TSP

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 3, December 2016: 655 – 664

662

We executed the three algorithms Topk, TKS and TSP on all dataset with varying of the

quantity of K,K{500,1500,2500,3500} to assessment TopK algorithm comparing with the
others.

Table 3. Comparative Memory Usage between Three Algorithms

Dataset Algorithm
Maximum Memory Usage (MB)

k=500 k=1500 k=2500 k=3500

Kosarak1
contains 10 000
sequences

TopK 4 120 32 78
TSP 7 24 39 85
TKS 69 52 71 87

Kosarak2
contains 25 000
sequences

TopK 41 22 29 135
TSP 41 23 37 147
TKS 69 52 103 123

BMSWebView1
contains 59,601
sequences

TopK 18 55 64 95
TSP 25 71 94 29
TKS 2 22 114 23

BMSWebView2
contains 77, 512
sequences

TopK 80 44 60 78
TSP 81 48 97 28
TKS 100 11 154 94

Figures 9-10, show the comparison between TopK,TSP, and TKS to execute Kosarak
dataset with two deferent sizes, we notice that TopK better than TKS and TSP, and
Figures 11-14 show TopK stable for execution two types of datasets and outperforms TSP in
terms of executing time.

Figure 15. Memory usage (MB) of Kosarak1
dataset

Figure 16. Memory usage (MB) of Kosarak2
dataset

Figure 17. Memory usage (MB) of

BMSWebView1 dataset
Figure 18. Memory usage (MB) of

BMSWebView2 dataset

0 1000 2000 3000 4000 5000

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400
Kosarak

10 000 sequences

M
e

m
o

ry
 (

M
B

)

K

 Topk

 TSP

 TKS

0 1000 2000 3000 4000 5000

100

200

300

400

500

600

700
Kosarak

25 000 sequences

M
e

m
o

ry
 (

M
B

)

K

 Topk

 TSP

 TKS

0 1000 2000 3000 4000 5000

50

100

150

200

250

300

350

400

450

BMSWebView1

59,601 sequences

M
e

m
o

ry
 (

M
B

)

K

 Topk

 TSP

 TKS

500 1000 1500 2000 2500 3000 3500

200

300

400

500

600

BMSWebView2

77,512 sequences

M
e

m
o

ry
 (

M
B

)

K

 Topk

 TSP

 TKS

IJEECS ISSN: 2502-4752

Mining Top-K Click Stream Sequences Patterns (Mehdi Ali)

663

Figures 15-20 show the comparison between the three TopK, TSP, TKS for execution
deferent types and sizes fo dataset in terms of memory usage, figures show that TopK is more
efficient than the others, TopK uses less memory and stable for the deferent sizes of the
dataset.

0 1000 2000 3000 4000 5000

120

140

160

180

200

220

240

BMSWebView1

59,601 sequences

M
e

m
o

ry
 (

M
B

)

K

 Topk

 TSP

Figure 19. Memory usage (MB) of
BMSWebView1 dataset- TopK vs. TSP

500 1000 1500 2000 2500 3000 3500

160

180

200

220

240

260

280

300

320

340
BMSWebView2

77,512 sequences

M
e

m
o

ry
 (

M
B

)

K

 Topk

 TSP

Figure 20. Memory usage (MB) of
BMSWebView2 dataset- TopK vs. TSP

Our algorithm executed all datasets and was the best results than the TSP and TKS

algorithms in terms of execution time and memory usage. TopK faster than TSP and TKS and
use less memory.

5. Conclusions
We proposed TopK, a novel algorithm for mining frequent sequences our proposed

TopK algorithm is an efficient algorithm to discover the top-k Click Stream Sequence Patterns
as output, in term of execution time and less memory, where K is an integer number setting by
the user as input. Our method employed BI-Directional to work fast and with high efficiency for
discovering the top-k Click Stream Sequence Patterns. Our experiments show that TopK
consumes order(s) of magnitude less memory and runs over an order of magnitude faster than
the previously developed top-k sequential pattern mining algorithms, especially when K is high,
and has better scalability with respect to k.

References
[1] Petre Tzvetkov, Xifeng Yan, Jiawei Han. TSP: Mining Top-K Closed Sequential Patterns. ICDM. 2013;

347-354.

[2] Han J, Kamber M. Data Mining: Concepts and Techniques. San Francis-co: Morgan Kaufmann Publ.

2006; 2nd ed.

[3] Agrawal R, Srikant, R. Mining Sequential Patterns. Proc. Int. Conf. on Data Engineering. 1995; 3-14.

[4] M. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine Learning Journal.

2001; 42: 1-2.

[5] RJ Bayardo. Efficiently mining long patterns from databases, In Proc. Int. Conf. Managemen of Data

(SIGMOD’98). 1998; 85-93.

[6] Xiaofeng Liao, Liping Ding, Jian Gu. Extended Probabilistic Latent Semantic Analysis Model For

Topics In Time-Stamped Images. Intelligent Automation & Soft Computing. 2013; 17(7): 997-1007.

[7] Xiaodong Zhu. On Data Mining Technology to the Quantitative Efficiency Assessment using SBM

Model: An Empirical Study on Education Efficiency in Jiangxi Province. TELKOMNIKA Indonesian

Journal of Electrical Engineering. 2014; 12(2): 1933-1938.

[8] J Han, J Wang, Y Lu, P Tzvetkov. Mining top-k frequent closed patterns without minimum support. In
ICDM. 2002; 211–218.

http://www.philippe-fournier-viger.com/spmf/tsp.pdf

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 3, December 2016: 655 – 664

664

[9] Tzvetkov P, Yan X. Han J. TSP: Mining Top-k Closed Sequential Patterns. Knowledge and
Information Systems. 2005; 7(4); 438-457.

[10] Fournier-Viger, P, Tseng, VS. Mining Top-K Sequential Rules. Proc. of the 7th In-tern. Conf. on
Advanced Data Mining and Applications (ADMA 2011). Springer LNAI 7121. 2011; 180-194.

[11] Mao Yimin, Xue Xiaofang, Chen Jinqing. An Efficient Algorithm for Mining Top-K Closed Frequent

Item sets over Data Streams over Data Streams. TELKOMNIKA Indonesian Journal of Electrical

Engineering. 2013; 11(7); 3759-3766.

[12] Kun Ta C, Huang, JL, Chen M. Mining Top-k Frequent Patterns in the Presence of the Memory

Constraint. VLDB Journal. 2008; 17(5); 1321-1344.

[13] J. Wang, J Han. BIDE: Efficient Mining of Frequent Closed Sequences. ICDE .2004; 79-90.

[14] Fengqin Han, Ming Lei, Wenjuan Zhao, Jianxi Yang. New Support Vector Machine for Imbalance Data

Classification. Intelligent Automation & Soft Computing. 2013; 18(6): 679-686.

[15] Mustafa Bin Man, Wan Aezwani Wan Abu Bakar, Zailani Abdullah, Masita@Masila Abd Jalil, Tutut

Herawan. Mining Association Rules: A Case Study on Benchmark Dense Data. TELKOMNIKA

Indonesian Journal of Electrical Engineering. 2016; 3(3).

[16] R Srikant, R Agrawal. Mining sequential patterns: Generalizations and performance improvements. In

EDBT’96. Avignon France. 1996.

[17] R Agrawal, R Srikant. Fast algorithms for mining association rules. In VLDB’94, Santiago, Chile.1994.

[18] Fengqing Han, Ming Lei, Wenjuan Zhao Jianxi Yang .New Support Vector Machine for Imbalance

Data Classification. Intelligent Automation & Soft Computing. 2013; 18(6); 679-686.

[19] J Pei, J Han, B Mortazavi-Asl, J Wang, H Pinto, Q Chen, U Dayal, M Hsu. Mining Sequential Patterns

by Pattern-Growth: The PrefixSpan Approach. IEEE Trans. Knowl. Data Eng. 2004; 16(11); 1424-

1440.

[20] Ho, J, Lukov, L, Chawla, S. Sequential pattern mining with constraints on large protein databases. In

Proceedings of the 12th International Conference on Management of Data (COMAD). 2005; 89-100.

[21] J Ayres, J Gehrke, T Yiu, J Flannick. Sequential Pattern Mining Using Bitmaps. In Proceedings of the

Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton,

Alberta, Canada, July 2002.

[22] Fournier-Viger, P, Lin, CW, Gomariz, A, Gueniche, T, Soltani, A, Deng, Z, Lam, HT. The SPMF Open-

Source Data Mining Library Version 2. Proc. 19th European Conference on Principles of Data Mining

and Knowledge Discovery (PKDD 2016) Part III, Springer LNCS 9853. 2016; 36-40.

http://www.philippe-fournier-viger.com/spmf/icde04_bide.pdf
http://www.tandfonline.com/author/Lei%2C+Ming
http://www.tandfonline.com/author/Zhao%2C+Wenjuan
http://www.tandfonline.com/author/Yang%2C+Jianxi
http://www.tandfonline.com/toc/tasj20/current
http://www.tandfonline.com/author/Han%2C+Fengqing
http://www.tandfonline.com/author/Lei%2C+Ming
http://www.tandfonline.com/author/Zhao%2C+Wenjuan
http://www.tandfonline.com/author/Yang%2C+Jianxi
http://www.tandfonline.com/toc/tasj20/current
http://www.philippe-fournier-viger.com/spmf/prefixspan.pdf
http://www.philippe-fournier-viger.com/spmf/prefixspan.pdf
http://www.philippe-fournier-viger.com/spmf/SPAM.pdf

