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Abstract 
Software industries face a common problem which is the maintenance cost of industrial software 

systems. There are lots of reasons behind this problem. One of thepossible reasons is the high 
maintenance cost due to lack of knowledge about understanding the software systems that are too large, 
and complex. Software clustering is an efficient technique to deal with such kind of problems that arise 
from the sheer size and complexity of large software systems. Day by day the size and complexity of 
industrial software systems are rapidly increasing. So, it will be a challenging task for managing software 
systems. Software clustering can be very helpful to understand the larger software system, decompose 
them into smaller and easy to maintenance. In this paper, we want to give research direction in the area of 
software clustering in order to develop efficient clustering techniques for software engineering.Besides, we 
want to describe the most recent clustering techniques and their strength as well as weakness. In addition, 
we propose genetic algorithm based software modularizationclustering method. The result section 
demonstrated that proposed method can effectively produce good module structure and it outperforms the 
state of the art methods. 
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1. Introduction 
Most of the software systems are very large and complex. That‟s why it is very difficult 

to understand the complex structure of those software systems. Software clustering is an 
important research area in software engineering. This research area has been carried out for a 
long time. During this time, several clustering techniques have been developed. In this research 
area, there is less work on selecting efficient methods for software clustering. There are many 
problems in software clustering. Many software systems need to modify according to varieties of 
demand such as improve program structure, fixing bugs, an extension to the new platform, easy 
maintenance and addition of the new capabilities [1]. When a software system is large then it 
must need to partition into a small system. Otherwise, it will be difficult to distribute larger 
system among the development team. Modular dependency graph (MDG) is useful to partition 
the large software system into smaller subsystem. It converts the source codes into language 
independent graph. Basically, clustering techniques partitions the MDG into the clusters and 
each cluster represents the subsystem. In this work, we want to give a research guideline for 
only software clustering algorithms that decompose larger software systems into asmaller 
subsystem, thus leading to understanding the software system. This is because understanding 
the structure of a software system is valuable for maintainers. Software clustering algorithms 
can be defined as groups of entities, such as classes or source files. On the other hand, we can 
say the main objective of software clustering is to break down large software systems into 
smaller and convenient subsystems that are easier to understand. Several papers [2-7] 
presented many distinct algorithms that can automatically create software decompositions. 
There are many essential difficulties and challenges for implementing clustering algorithms. In 
this work, we include adescription of four efficient clustering techniques that illustrate how 
software modules are partitioning into clusters according to some pre-specified criteria. We 
alsopropose a genetic algorithm based software modularization clustering (GASMC) method to 
partition larger software system (module) into smaller software system (clusters). We compare 
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our result with state of the art method and proposed method outperformed the state of the art. 
The result section demonstrated that our proposed method can effectively partition the module 
into clusters. 

We organize the rest of the paper as follows: Section 2 introduces the issues and 
challenges for software clustering. Section 3 presents four mostly important software clustering 
techniques. Section 4 includes proposed genetic algorithm based software modularization 
clustering. Section 5 contains the result and discussion section. Finally, Section 6 includes 
conclusion and add references. 
 
 
2. Issuesand Challenges of Clustering Algorithm 

In software clustering, attributes and relationships to be clustered. Attributes may be 
variables or procedures; Otherwise, attributes can be considered as modules or classes. Here, 
two important things are necessary to consider: 
a. What types of relationships exists between attributes? 

b. Are the relationships weighted or not? 
 
2.1. Similarity 

The degree of similarity between attributes is another important issue. There are many 
kinds of similarity measures: 
a. Association coefficient: Some common features exist or not between attributes. 

b. Distance measures: The degree of dissimilarity between attributes. 

 
2.2. Similarity measurement 

We can define the similarity measurement in terms of feature for each attribute as 
follows: 
a. Number of common features in attribute  and attribute . 

b. Number of features itself  . 

c. Number of features itself  . 
d. Number of features misses in both attribute  and attribute  . 

 
2.3. Association coefficient 

Association coefficients are defined in the following which is based on some values: 
 

Simple Matching Coefficient  
   

       
  

   

       
 

 

Jaccard Coefficient  
 

     
  

 

     
 

 

Sorensen Coefficient  
  

      
  

  

      
 

 
 
3. Software Clustering Techniques 

Clustering is the action of organizing data into groups of similar objects based only on 
information found in the data that describes the objects and their relationships. The most 
discussed clustering algorithms for software engineering include graph-theoretical algorithms, 
hierarchical algorithms, optimization algorithms, Information-theoretic algorithm. 

 
3.1. Graph Theoretical based Software Clustering 

Graph theoretic algorithms always try to find a subgraph that can be used for clustering. 
There are many kinds of subgraphs such as connected components, maximum cliques, and 
spanning trees are used for this purpose. Aggregation algorithms and minimal spanning tree 
algorithms are two most familiar graph-theoretical clustering algorithms in software engineering.  

In Aggregation algorithms, the number of nodes is reduced by converting them into few 
nodes or aggregate nodes. Then the aggregate nodes can be used as clusters or another level 
of aggregate nodes. Minimal spanning tree (MST) algorithms start with searching an MST in a 
graph. After that two or more neighbor nodes join in the cluster or the graph is juncture into 
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clusters by considering no “long” edges. Basically, the classical MST algorithm is not well 
enough for software clustering because of the algorithm tries to create large clusters. To solve 
this problem, Bauer and Trifu [8] suggest a two-pass MST algorithm. In the first pass, two 
neighbor nodes are iteratively joined in the cluster whereas the second pass accredits the left  
unknown clusters entities to the cluster who are the “closest” to. As an example, four-group 
clustering after removal of three successive longest edges. Figure 1 and 2 illustrates the graph-
theoretical algorithm. 
 
 

 
 

Figure 1. Aggregate Nodes 
 
 

 
 

Figure 2. Minimal Spanning Tree 
 
 

3.2. Hierarchical ClusteringAlgorithms 
Hierarchical Clustering algorithms can be categorized as either agglomerative algorithm 

or divisive algorithm. The agglomerative algorithm works in a bottom-up fashion while divisive is 
formed in atop-down fashion. The agglomerative algorithm begins by placing each object in its 
own cluster and then merges these clusters into larger. After that, it continues until all of the 
objects are in a single cluster or until certain termination conditions are satisfied. Actually, most 
of the hierarchical clustering algorithms work in this way. The divisive algorithm works just the 
reverse of agglomerative hierarchical clustering algorithm by beginning with all objects in one 
cluster. Then, it subdivides the clusters into smaller parts. After that, it continues until each 
object forms a cluster on its own or until it satisfies certain termination conditions. Figure 3 
illustrates that hierarchy of clustering algorithms for four entities. 

 
 

 
 

Figure 3. Hierarchical Clustering 

 
 

Algorithm: agglomerative hierarchical clustering 
Assign each object to a cluster 
Calculate the similarity distance matrix 
repeat 

Merge the two closest clusters 
Update the distance matrix to reflect the distance between the new cluster and the 

original clusters 
until only a single cluster remains 
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3.3. Optimization Algorithms 
An optimization algorithm starts with an initial solution and uses some heuristic to 

improve initial solution by iterating adaptions. For both hierarchical and non-hierarchical 
clustering, this algorithm can be used. The most common optimization algorithms are called 
„partitioning techniques‟ or simply „iterative partitioning‟ [9]. Iterative partitioning algorithms start 
with an initial partition in which entities are moved to other clusters in order to improve the 
partition according to some criterion. This relocating goes on until no further improvement of this 
criterion takes place. In such situation, aheuristic algorithm can be applied for improvement. 
Other optimization algorithms can be considered like genetic, hill-climbing, spectral, and 
clumping techniques. Genetic algorithm is the best optimization algorithm of them. So, we are 
interested in sketching the genetic algorithm in this work. Genetic algorithms are optimization 
search algorithms based on the concept of evolution observed in nature. Genetic algorithms use 
selection, crossover, and mutation operators for finding the best solution to a specific problem. 
These algorithms always try to search an optimal solution until a specific termination condition is 
satisfied. Genetic algorithms work on a population of potential solutions applying the principle of 
survival of the fittest to produce better and better approximations to a solution. 
Genetic algorithm work as follows: 
a. A GA search begins with an initial population of feasible solutions. 
b. Crossover is the basic search operator in a GA. Crossover is used to combine pairs of 

population members to create offspring. 
c. After the creation of new offspring, another operator called mutation is applied on the 

results. Mutation is a random change of parts of an offspring, which is more commonly 
based on a heuristic neighborhood search. The offspring are used to create a new 
generation of solutions. This can range from the new population consisting of just offspring 
to a heuristic to replace varying degrees of the old population members with the offspring.  

d. Repeat 3 until aproper termination condition is met. 
Selection: 

Selection is the process of choosing two parents from population pool. Theselection 
pressure is very important for GA to improve the fitness of population through successive 
generations. Superior individuals should be more attractive. But, it is needed to control the 
fitness values between superior and inferior individuals. In this work, we use theRoullete wheel 
for selecting two parents. 

Crossover and mutation are two basic operators of genetic algorithm. The performance 
of genetic algorithm is depending on two operators. 
Crossover:  
a. An operation to generate a new chromosome by combining partial characteristics of parent 

chromosomes 
b. Selected mates may have good properties to survive in next generations 
c. So, we can expect that exchanging features may produce other good individuals 
There are mostly common three types of crossover. 
1. Single point crossover 
2. Two-point crossover  
Single Crossover: Single point crossover – choose one crossover point, copy the binary string 
from beginning of chromosome to the crossover from one parent, and rest of the binary string of 
the chromosome is copied from the second parent. Single Crossover shown in Figure 4. 
 
 

 
 

Figure 4. Single Crossover 
 
 
Two-point crossover: 

Choose two crossover points, copy binary string from beginning of chromosome to the 
first crossover point from one parent, the part from the first to the second crossover point is 
copied from the second parent and the rest is copied from the first parent (Figure 5). 
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Figure 5. Two-Point Crossover 
 

 
Mutation: 

Mutation is an operation to partially modify a parent chromosome with a low probability. 
Mutation as shown in Figure 6. 
 
 

 
 

Figure 6. Mutation 
 
 
3.4. Mutual Information based Software Clustering 

Many studies for software clustering have shown how to decompose structural 
information into large software systems [10]. Mostly, the existing algorithm concentrates on all 
attributes of the software artifacts while we want suggest to use mutual information approach to 
concentrate on theimportance of a particular attribute for software clustering purposes. As a 
result, people can keep in mind several attributes are more important than others for the 
assurance of the clusters. Feature selection by using information theory like mutual information 
is an important step for software clustering. In fact, Software artifacts to be clustered and the 
corresponding features explain the artifacts. Mutual information measures the dependencies 
between software artifacts and features. It is important to introduce entropy for the knowledge of 
mutual information. 

Entropy is the measure of uncertainty of a random variable. The higher the entropy, the 
lower the certainty for predicting the random variable.  Let   be a discrete random variable 

taking its values from a set of artifacts. In this example,    is the set 

                                . If probability mass function is          then the entropy 

         can be defined as follows: 
 

( ) ( )log ( ) (1)
x X

H X P x P x



 

 
Now, let   denote a second discrete random variable taking values from the set   of all the 

features in the software system. In this is an example,    is the set 
                              . The conditional entropy can be defined as follows:  
 

( | ) ( ) ( | )

( ) ( | ) log ( | ) (2)

( , )log ( , )

x X

x X y Y

x X y Y

H Y X p x H Y X x
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p x y p x y



 

 

 

 
  

 

 



 


 

 
Basically, the mutual information of two discrete variables measures the amount of information 
that one variable contains the information of another one. In another word, we can define 
mutual information as the reduction in the uncertainty of one random variable due to the 
knowledge of the other. The mutual information              of random variables can be 
defined as follows: 
 

( ; ) ( ) ( | ) ( ) ( | ) ( ; ) (3)I X Y H X H X Y H Y H Y X I Y X      
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4. Proposed Genetic Algorithm based Software Modularization Clustering (GASMC) 

Clustering techniques group the software modules into different clusters that make well 
program structure. We consider modular dependency graph (MDG) [11] to represent the 
problem. MDG is a directed graph consist of nodes and edges; where the node represents the 
modules (e.g. source files, functions) and edges represent the relationship between modules. 
MDG can be classified into weighted and unweighted. In the weighted MDG, edges of MDG 
assign a weight that denotes the strong relationships between the modules. Otherwise, it is 
called the unweighted MDG.  

To find the best solution of modularization of software must be encoded in the 
chromosome. We use integer representation to encode a chromosome. The following figure 
illustrates that an MDG and its chromosome representation shown in Figure 7. 

 
 

 
 

Figure 7. Modular Dependency Graph and its Chromosome Representation in GASMC 
 
 

In this work, modularization quality (MQ) is appliedtoachieve better fitness scores for clusterings 
in the genetic algorithm [11]. MQ is the sum of all Modularization Factors (MF). The MF is sum 
of the ratio of inner edges and outer edges in each cluster, where theinner edge is connected 
between modules in the same cluster and the outer edge is connected between a module in a 
cluster and a module in another cluster. MF is demonstrated in the following: 
 

            
 

   
 

  
 
 
 
 

 
Where   is the sum of inner edge and   is the sum of theouter edge. 
The overall fitness MQ is calculated by: 

   ∑    

 

   
 

  
Where   is a cluster and   is the total number of clusters. 
We use the fitness proportionate selection that is called roulette wheel selection [11] operator to 
choose parents from the population pool and reproduce based on the fitness function. Calculate 
the cumulative fitness of the total population over the sum of the fitness of all individuals. Then, 
the probability of each individual is calculated for selection. The probability of an individual in the 
population is being selected as follows: 
 

      
        

∑         
 
   

 

 
Where,   is the number of individual in the population pool. 
We applied one-point crossover and uniform mutation to parents to find the better solution. The 
pseducode of GASMC is as follows: 
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Generate   initial chromosomes(solutions); // population size    
repeat {  
 

for  ← 1 to  { 

select two chromosomes   ,    ; 
           ← crossover   ,    ; 
          ← Mutation(           ; 
} 

replace k chromosomes in the population with            , …,           ; 
} until (stop condition is satisfied); 
return the best chromosome in the population; 

 
 

Table 1. Test Problems 
 

 
 
Table 2. Comparisons of MQ Values of the Best Solutions Obtained by the Proposed GASMC, 

Hill Climbing, and GGA Method 

MDG Name 
GASMC Hill Climbing GGA 

Mean Std Mean Std Mean Std 

mtunis 2.451 0.027 2.132 0.181 2.308 0.091 
ispell 2.547 0.085 2.245 0.119 2.369 0.110 
rcs 2.728 0.025 2.256 0.140 2.558 0.088 
bison 2.4978 0.089 2.387 0.102 2.241 0.061 
grappa 13.486 0.048 12.436 0.130 12.556 0.122 
bunch 12.390 0.067 10.031 0.202 11.853 0.126 
incl 13.528 0.016 13.011 0.150 13.273 0.143 

 
 

Table 3. GASMC Parameters and Values 
GASMC Parameters Values 

Population Size 100 
Probability of crossover 0.5 
Probability of mutation 0.01 
Number of Generations No improvement in several successive generations 
Fitness Function MQ 
Selection Method Roulette Wheel 
Types of crossover One-point 
Types of mutation Uniform 

 
 
5. Results and Discussion 

In this section, the result is obtained by proposed method are explained. In order to 
evaluate the effectiveness of proposed Genetic Algorithmbased software modularization 
clustering (GASMC) to software clustering problem, we applied it to seven real-world software 
module clustering problems [12], and compared its output to that of other state-of-art-algorithms 
software clustering algorithms such as, Hill Climbing [13], and group genetic clustering (GGA) 
[14]. Table 1 illustrate that the test problem sand the parameters that are selected for 
performance evaluation. The number of modules varies from 20 to 174 and their edges differ 
from 57 to 365. In this work, we have considered only unweightedmoduledepengy graphs 
(MDGs). The description of the test problems is given table 1.We applied our proposed GA to 
each of the 7 test problems independently and performed 30 runs respectively. In each run, we 
also calculated the mean and standard deviation of MQ and the achieved highest MQ value 
represent the best solutions. Table 2 illustrates that comparison of MQ Values of the best 

Name Modules Edges Description 

mtunis 20 57 An operating system developed in Turing language for educational purposes 
ispell 24 103 Software for spelling and typographical errors correction 
rcs 29 163 Revision control system used to manage multiple revisions of files 
bison 37 179 A Parser that converts grammar description into C programs 
grappa 86 295 Genome rearrangements analyzer 
bunch 116 365 Software clustering tool 
incl 174 360 Graph drawing tool 
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solutions obtained by the proposed method and state of the art method. Compared with hill 
climbing, the mean valuesof MQ obtained by GGA are better than that of hill climbing, and the 
standard deviations obtained by GGA are also better, which indicates that GGA is more stable 
than hill climbing. On the other hand, the mean values obtained by GASMC are better than 
those of hill climbing and GGA, and the standard deviations are obtained by proposed GASMC 
are very low than those of hill climbing and GGA. The GASMC produced higher MQ value that 
indicates that it can find a better partition of modules into clusters and standard deviation also 
indicate the consistency performance. Table 3 illustrates the GASMC parameters and values 
that are used in the simulation results. 
 
 
6. Conclusion 

To improve the program structure and maintenance of larger software system is a 
difficult task in software engineering. Efficient clustering techniques are abetter solution for 
decomposing a larger software system into a smaller system. This work presented most recent 
clustering techniques and demonstrated how it can be applied to software engineering. This 
paper also proposed a genetic algorithm based software modularization method for software 
module clustering. The result section strengthen that proposed method is able to produce better 
module p and it outperforms the state of the art. In future, we will focus on designing more 
effective software modularization clustering using hybrid algorithms. 
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