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Abstract 
Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. 

Much information can be extracted from as little as possible of the data by applying CS, and this method is 
the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the 
sampling rate is no longer decided in the bandwidth of the signal, but it depends on the structure and 
content of the information in the signal. In this paper, the signal is the sparse in the Fourier transform and 
random sparse sampling is advanced by programing random observation matrix for peak random base. 
The signal is successfully restored by Bregman algorithm. The signal is described in the transform space, 
and a theoretical framework is established with new signal descriptions and processing. The case is 
maked to ensure that the information loss, signal is sampled at much lower than the Nyquist sampling 
theorem requiring rate, but also the signal is completely restored in high probability. The random sampling 

has following advantages：alias-free, sampling frequency need not obey the Nyquist limit, and there is 

higher frequency resolution．The random sampling can measure the signals which their frequencies 

component are close，and it can implement the higher frequencies measurement with lower sampling 

frequency. 
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1. Introduction 
Compressive Sensing (Compressed Sensing, CS) literally looks as if the data 

compression means, and it is indeed for a completely different considerations. Classic data 
compression technology, whether it is audio compression (such as mp3), image compression 
(for example, jpeg), video compression (mpeg), or general coding compression (zip), is all from 
the characteristics of the data itself, to find and eliminate the implied redundancy in data, so as 
to achieve the purpose of compression. There are two characteristics in such compression : 
First, it occurs after the data has been collected completely; second, which itself requires a 
complex algorithm to be completed. In contrast, the decoding process  is relatively simple in 
computation in general, for example, in the audio compression, the calculation amount  of 
compression is much larger than the calculation amount  of an mp3 file playback (ie 
decompress) . 

This asymmetry of the compression and decompression is just the opposite  with the 
people's needs. This asymmetry of the compression and decompression is just the opposite  
with the people's needs. In most cases, data acquisition and processing equipment often be 
low-cost, low power, low capacity portable computing devices, such as shoot camera or voice 
recorder, the remote control monitors. The process of dealing with (and decompression) 
information often be on large computers , it has more computing power, and there are often not 
portable and power requirements. In other words,  low-cost energy-saving equipment are used 
to handle complex computing tasks, but a large and efficient equipment is used to process 
relatively simple computing tasks. This contradiction is even more acute in some cases, for 
example, work in the field or in the case of military operations, data acquisition devices are often 
exposed to the natural environment, energy supply may be lost at any time or there even be 
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partial loss of performance, in which case, the traditional data acquisition - compression - 
transmission - decompression mode is basically ineffective. 

Compressed sensing is to resolve such conflicts arising. After collecting the data 
anyway, you want to compress them out redundancy, and this compression process is relatively 
difficult, why do not we direct "acquisition" compressed data? How much lighter collection tasks, 
but  the need is also eliminated for compression trouble. This is called "compressed sensing", 
that is, direct perception of compressed information. 

Traditional Nyquist sampling theorem requires a sampling rate of not less than twice the 
highest frequency signal, with the development of signal processing technology and the surge in 
the amount of processed data. This sampling method has been far can not keep up the high-
speed signal processing requirements. In 2006, Donoho put forward compressed sensing 
(Compressed sensing, CS) theory [1,2], if the signal has a sparse nature, it can take advantage 
of its sparse features, based on  the points less than the number of signal sampling point, it can 
be approximated to restore the original signal[3]. This theory has greatly promoted the process 
of signal processing theory, and there are broad application prospects. Currently, compressive 
sensing theory have a very good application in image compression, converting analog 
information, bio-sensing, signal detection and classification, wireless sensor networks, data 
communications and geophysical data analysis and other fields[4]. If you want to capture a 
small part of the data and expect to decompres a lot of information from these few data , it is 
necessary to ensure that: First, the amount of collected data contains global information of the 
original signal, and the second, there is an algorithm which is able to restore the original 
information from the amount of data. 

In this study, a compressed sensing random sampling and high resolution signal 
reconstruction is researched. The method utilizes non-uniform sampling from the sampling 
frequency limits, there are the advantages of high frequency resolution and anti-aliasing [5], at a 
low sampling frequency, the signal spectrum is obtained based on non-uniform sampling of the 
Fourier transform, and then split Bregman method  is used to reconstruct signal and to reduce 
the noise spectrum of the non-uniform sampling[6,7]. 

 
 

2. Random Sampling and Analysis 
2.1. Uniform Sampling Drawbacks 

Uniformly sampled time function is a linear function of the standard; it is equally spaced 

sampling time. The sample signal is defined as )(tx , the sampling interval is t , the sampling 

function of time is tntn  , and the sampling frequency is 
t

f s



1

 and it is to satisfy the 

sampling theorem, it is greater  double. Than the highest frequency of signal. For the sampled 

signal discrete finite length, ie )]:1([][ tNxnx  , N is the number of sampling points, the 

sampling duration tNT  . 

Fourier transform is used to analyze the sampled signal

)256,256,185(),2sin()( HzfNHzffttx s   . The analysis result of signal Spectrum 

shows Figure 1. 
 
 

  
 

Figure 1. Signal Spectrum Analysis of 
Uniformly Sampling (fs=256Hz) 

 
Figure 2. Signal Spectrum Analysis of 

Uniformly Sampling(fs=512Hz) 
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As can be seen from Figure 1, since the sampling frequency is less than twice the 
frequency value of the sampling signal, there has been 71Hz frequency aliasing signal. Since 
the spectrum of the real signal are equal with the spectrum of aliasing signals, the true signal 
can be not distinguished. Note also that there is 1Hz frequency resolution in this case, signal 
frequency is an integer multiple of the frequency resolution, it is possible to accurately measure 
the frequency value. 

Of the cases, the other parameters are constant; the sampling frequency is changed for   
to meet the limit of the sampling theorem. Analysis results of signal spectral are shown in Figure 
2.  

Figure 2 shows, there is no aliasing signal in the (0, 2/sf ) band, but due to a change of 

the sampling frequency, the frequency resolution becomes 2Hz, the true frequency of signal is 
185 Hz, it is not an integer multiple of the frequency resolution, and thus it leads to a spectrum 

leakage and barrier phenomenon, so that the measured frequency is Hzf 188 , it is deviated 

from the correct value.  
As can be seen from the above analysis, uniform sampling is subject to the limitations 

of sampling frequency; there is aliasing frequency; frequency resolution is not high; there 
spectrum leakage and fence phenomena and other issues. 

 
2.2. Random Sampling and its Fourier Transform 

Random sampling is sometimes known as non-uniform sampling, as opposed to evenly 
sampling, it os a sampling mode. The sampling interval of random sampling is random, the time 
interval is generally set at an unequal interval, and number of samples is not a linear function 
with the sampling time. Random sampling is not limited by the sampling theorem, it increases 
the detection range of the frequency, and it can be achieved in the short data length and a low 
sampling frequency to detect the frequency of the higher order, which can meet fast the 
requirements of real-time specific occasions. Most importantly, due to random sampling, non-
uniform sampling is used to eliminate aliasing problems which are caused by uniform sampling; 
there are also the advantages of high frequency resolution, and it can reduce the spectrum 
leakage, eliminating the phenomenon of fences and other issues. 

In the example above, the other parameters are constant, it is instead of random 

sampling, )()(),()1,0( nn txnxngTrandt  , Where rand (0,1) is random value between 

(0,1) , Nn ,,2,1   , g(n) is a nonlinear function of n. Its Fourier transform is equation (1): 

 





N

n
ntjnxX

1

)exp()()(         (1) 

 

 
 

Figure. 3. Signal Spectrum Analysis of Random Sampling (Average fs=256Hz) 
 

 
The Fourier transform spectral analysis results of random samples (N = 256) are shown 

in Figure 3. Random sampling time is used to increase the sampling interval, frequency 
resolution is improved, the phenomenon of the fence is eliminated. Due to random sampling, 
aliasing will no longer concentrate on a few specific points and sampling frequency-dependent, 
butit is evenly distributed to all the signal frequencies. In addition, the spectrum leakage can 
also cause noise spectrum. The spectral noise may is reduced with the increase number of 
sampling points. 
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3. Compressed Sensing Principle 
3.1. Compressed Sensing Statements  

The main idea of compressive Sensing (Compressive Sensing CS) theory is that: 
Suppose the coefficients of a signal x  with length N are sparse (that is, only a small number of 

non-zero coefficient) on orthogonal basis or on a tight frame  ,  if the  coefficients are 

projected to another observation group NM  : ， NM  , which is not related to the 

transform group  , the observation set 1y:M  is obtained.  Then the signal x can rely on 

these observations to solve an optimization problem and accurate recovery. CS theory is the 
theoretical framework with a new sampling while achieving the compression purpose, its 
compressive sampling procedure is shown in Figure 4. 

 
 

 
 

Figure 4. Compression Sampling Process 
 
 

First, if the signal 
NRx  is compressible on an orthogonal base or  tight frame  , the 

transform coefficients xT are obtained,   is equivalent x  or approximation sparse 

representation; The second step, a smooth measurement matrix   is designed, which is 

irrelevant to the transform base   with NM   dimension, the observation x  is projected to 

M-dimensional space to give the set of observations xy  , the sampling process is 

compressed, i.e. drawing sample [8]. Finally, the optimization problem solving x̂  approach x
exactly or approximately. 

When the observations with noise z, 
 

xy  +z         (2) 

 
It can be converted for the sake: 

 

 21 ||||..||||min xytsxT

x
            (3) 

  
or     
   

12 ||||||||
2

1
minargˆ xxyx T

x
              (4) 

 
3.2. Recovery signals separable Bregman iterative algorithm 

Equestion (4)  solving is first converted to sparse vector (5) solving, A , then 
 

1
2
2 ||||||||

2
minargˆ 





 Ay           (5) 

 
Specific steps of Bregman algorithm are as follows [9, 10]: 
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Step 1:  to calculate 
1)(  N

T IAAB  ， NI  is the N-order unit matrix, yAF T ; 00 ,db are N-

dimensional zero vector; 

Step 2: )10(  is given, the iteration terminated conditions )001.0( ，the number of 

iterations 1n ; 

Step 3:  to calculate )( 11   nnn bdFB ,  

)0,1|max(|)( 11   nnnnn bbsignd  ， 

nnnn dbb   1 ; 

Step 4:  i f     |||| 1nn ， 1n n  , go to step 3; otherwise, the iteration stops, n ˆ ; 

Step 5:  ̂ˆ x . 

 
 
4. Sparse Random Sampling Design 
4.1. Signal Sparse Representation  

Transform based of adaptive signal is  , the signal expression should be sparse at the 

base[11]. Transform coefficient vector of signal X is under the transform base , if 0 <P <2 and 

R> 0, these coefficients satisfy:  
i

pp
ip R

1

)||(||||  , the coefficient vector is sparse[12]. 

If the support domain }0:{ ii   of the transform coefficients  ii X  ,  is equal or less 

K, namely there is K nonzero entries only in 
NR .  The number K of non-zero entries reflect 

the signal inherent freedom. Or sparseness is a measure of non-zero coefficients, and it 
constitutes a number of scales of the signal component. Typically, sparse representation of the 
signal can be measured by the 0-norm of the representing vector. A vector 0-norm is the 
number of non-zero elements in the vector. Fourier transform is our common one [13-14]. 

 
4.2. Irrelevant and Isometric Properties 

The adaptive NM  -dimensional measurement matrix  is designed which is not 

related to transformation base .  Observation matrix   design goal is to restore the original 

signal as little as possible from the observation values. In the specific design, it is need to 
consider the following two aspects: 

1) The relationship between the observation matrix   and the base matrix ; 

2) The relationship between the matrix A  and K- sparse signals . 

First, the observation matrix   and the base matrix   have incoherence. Coherent 

between observation matrix   and the base matrix   is defined as formula (6): 

 

|,|max),(
1
1 


 jk

Nj
mkN              (6) 

 
The degree of coherence   gives the maximum coherence between any two vectors in 

  and  . When   and   contain coherent vectors, their coherence degree is coherence. 

The compressed sampling of the signal makes for each observation contains the different 
information of the original signal as much as possible, which requires  orthogonal between the 

vectors of   and  , that degree of coherence   is as small as possible, which is the reason 

of incoherence between the measurement matrix and base matrix [15]. Just to satisfy the 
following formula, signal can be reconstructed high probability [16]. 
 

NKCM log),(2                 (7) 
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Second, the relationship between the matrix A  and the K- sparse signals is 

about  Restricted Isometry Property (RIP) [17], the matrix  "equidistance constant": any K = 1, 2, 

⋯,  the matrix A isometric constant K  is defined to satisfy the minimum value of the following 

formula (8), which   is optionally K- sparse vector: 

 
2

2

2

2

2

2 ||||)1(||||||||)1(  KK A             (8) 

 

If K <1, Matrix A is called to satisfy the K-order RIP,  matrix A is approximately to 

ensure in this time that the Euclidean distance of  K- sparse signal   remains unchanged, 

which means that   is impossible in null space of A (otherwise there will be infinitely many 

solutions for  ).  In practice, random matrix is commonly used as observation; common are 

Gaussian measurement matrix, binary measurement matrix, Fourier observation matrix and 
irrelevant observation matrix. Random observations provide an effective way to achieve the 
compressed samples [18-19]. 

 
4.3. Low-rate Signal Sampling Design 

In fact, the design of the observation partis is to design an efficient observation matrix, 
which is to design efficient observation (ie, sampling) agreement of useful information to capture 
a sparse signals, whereby the signal is compressed into a small number of sparse data. The 
agreement is non-adaptive, it requires only a small amount of link between the fixed waveform 
and the original signal, the fixed waveform is irrelevant to signal compact represented base.  In 
addition, the observation process is independent of the signal itself. The reconstructed signal 
can be collected by optimization methods in a small number of observations. 

Sampling interval is [0, T], M points  were collected randomly in this interval, 

MiTrandti ,,2,1,)1,0(  ， )1,0(rand  is random point in interval (0,1);  

,)](,),(),([ 21
T

Mtxtxtxx  xy  , random measurement matrix   design is quite random 

spike base )()( kttk  ,  k is one of the M which are randomly selected in [1,2, ..., N] ,    

is Fourier base, NnjeNt njti

nj ,,2,1,,)( 22/1    ， nt  belongs to domain collections of 

the reconstructed signal including a random collection. Such design of   and   meet 

incoherence in formula (6) and Restricted Isometry Property (RIP) in formula (8). A is composed 
of the M (M> K) row vectors which are randomly selected from the Fourier basis matrix . A 

sampling method of the part Fourier transform is presented, the signal Fourier transform is first 
done, then the transform coefficients are randomly selected, the random selection makes each 
observation with random uncorrelated characteristics. A random related feature of observation 
Matrix is a sufficient condition for proper signal recovery, there is highly irrelevant between 
observation matrix and the signal; these can restore and ensure the effective signal. 

 
 

5. Experimental Testing and Evaluation 
Experimental select signal function is: 

 

)300sin()140sin()40sin()( ttttf              (9) 

 

Sampling frequency Hzfs 256 . The highest frequency of signal, 

HzfHzfHzf s 3002256,150 maxmax  , The sampling frequency is less than twice the 

highest frequency of signal, it does not meet the Nyquist sampling theorem, it is referring to 
Figure 5, Fourier transform exist spectrum aliasing and disclosure; With the same sampling 
frequency,  the random sampling of discrete Fourier transform (see Figure 5) is used to 
overcome both aliasing and disclosure; The random sampling and reconstruction of 
compressed sensing  are proposed in this study, reconstruction is very consistentin either the 
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frequency domain or the time domain. Figure 5 is compared to a signal compressed sensing 
sparse sampling and high resolution reconstruction results. 

 
 

 
 

Figure 5. Compressed Sensing Sparse Sampling and Signal Reconstruction 
 
 

The above picture of figure 5 shows the original signal and the random sampling 
reconstructed signal in time domain , the middle picture of figure 5 shows the Fourier transform 
of the uniform sampling,  the below picture of figure 5 shows the original signal and its random 
sampling reconstructed signal recovery in the frequency-domain; the relative error of time 
domain reconstructed signal is Relative error = 0.1787. 

 
 

6. Conclusions 
Random sampling technique is as a non-uniform sampling method, it can effectively 

improve the sampling rate in sampling system [20-21]. In a random sampling, the non-uniform 
distribution characteristics of the sampling interval are not need to collect enough samples to 
signal reconstruction. In this study,  the sparsity of signal is used in the Fourier transform,  
random observation matrix is designed as spikes random base,  namely it is random sparse 
sampling; Bregman iterative algorithm is used successfully to restored signal. This method does 
not increase the costs on the basis of any hardware, and it is able to reconstruct the original 
signal by the limited random samples. Experimental results show that the frequency domain 
sparse signals are sampling far below the Nyquist frequency signal sampling rate, the original 
signal is accurately reconstructed by compressing the sensor signal reconstruction algorithms. 

Compression sensing basic idea is to extract much information as little as possible from 
the data [22], there is no doubt that it has a great theory and promising idea. Compressed 
sensing is an extension of the traditional information theory, but it is beyond the traditional 
compression theory, it has become a new sub-branch. When the signal has a sparse feature, 
compressed sensing can accurately reconstruct the source signal by a small number of 
observations which is much smaller than the length of signal. Compressed sensing theory is 
that sampling and compressed signal are combined into a single step, the signal is encoded,  it 
breaks the traditional Nyquist sampling theorem limit in a certain extent,  the burden is reduced 
on the hardware processing. 

In the framework of the compressed sensing theory, the sampling rate is no longer 
determined by the bandwidth of the signal, but depending on the structure and content of the 
information in the signal. It uses  transform space to describe signal, a new theoretical 
framework is established for describing and signal processing, so that in the case to ensure that 
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information is not lost, with far lower than signal sampling rate which the Nyquist sampling 
theorem requires, but also recovery signal is completed in high probability. 
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