
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 4, No. 1, October 2016, pp. 184 ~ 194
DOI: 10.11591/ijeecs.v4.i1.pp184-194 184

Received April 1, 2016; Revised July 16, 2016; Accepted August 19, 2016

Hybridation of Labeling Schemes for Efficient Dynamic
Updates

Su-Cheng Haw*, Samini Subramaniam, Wei-Siang Lim, Fang-Fang Chua
Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Malaysia

*Corresponding author, e-mail: sucheng@mmu.edu.my

Abstract
With XML as the leading standard for data representation over the Web, it is crucial to store and

query XML data. However, relational databases are the dominant database technology in most
organizations. Thus, replacing relational database with a pure XML database is not a wise choice. One
most prominent solution is to map XML into relational database. This paper introduces a robust labeling
scheme which is a hybrid labeling scheme combining the beauty features of extended range and
ORDPATH schemes to supports dynamic updates. In addition, we also proposed a mapping scheme
based on the hybrid labeling scheme. Our proposed approach is evaluated in terms of (i) loading time, (ii)
storage size, (iii) query retrieval time, and (iv) dynamic updates time, as compared to ORDPATH and ME
schemes. The experimental evaluation results show that our proposed approach is scalable to support
huge datasets and dynamic updates.

Keywords: Query processing, XML database, labeling scheme, indexing, dynamic updates

Copyright © 2016 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
XML is a markup language for documents containing structured information for data

exchange due to its simple and flexibility characteristic in nature [1, 2]. It can be used in many
aspects, and is already widely used in most application domains such as e-Commerce, digital
libraries, and so on. Nevertheless, storing and retrieving XML data still remains as a challenging
problem.

Generally, XML can be stored using traditional databases (relational database, object-
oriented database) or building a specialized native storage. Relational Database Management
System (RDBMS) has been dominant in the market since several decades ago, and it is
believed that it will stay on for the next couples of years. It is hard for enterprise to switch to a
XML database purely, as they have already invested trillions of dollars in relational database.
Besides, people still chooses RDBMS over other databases due to its stability, portability,
scalability, maturity, and rich functionality (including support over XML data) [3]. Thus, it is
crucial to have a mapper to store and retrieve XML data via relational database.

As XML data are semi-structured content, its nodes consist of basic relationships such
as ancestor-descendant (A-D), parent-child (P-C), and sibling. Labeling scheme plays an
important role to provide quick identification of the relationships among nodes. Many existing
labeling approaches merely support static query processing, i.e., it is assumed that the
structural information will not be changed over time. However, with the rapid growth of
technology, application data are subject to frequent changes. In order to make XML into a full-
featured format, it is essential to support dynamic updates such as inserting, updating and
delete operations, over XML content [4]. By having these updates, it could cause the entire XML
tree to be re-labeled, and henceforth, the performance will definitely be affected especially on
the huge size of XML database [5]. Thus, a persistent, robust and durable labeling scheme
which avoids re-labeling is very much desirable.

In this paper, we propose an approach for storing large XML data into relational
database, which also supports dynamic updates with least needs to re-label the nodes. Our
proposed approach is evaluated by comparing with other existing schemes, in terms of query
response time (insertion and retrieval) and database storage, using various types of datasets.

IJEECS ISSN: 2502-4752

Hybridation of Labeling Schemes for Efficient Dynamic Updates (Su-Cheng Haw)

185

2. Related Works
Some existing labeling schemes are reviewed in this section using the XML example as

shown in Figure 1.

Figure 1. Example of XML data

2.1. ORDPATH
ORDPATH represents a compressed binary scheme, which compares byte-by-byte to

discover relations between nodes. Besides, it also supports insertion of new nodes in any
positions. For any new nodes that are to be added in-between of sibling nodes, ORDPATH
extends the parent’s ORDPATH label with a component for the child, without re-labeling any
existing nodes [6]. The even and negative integers are reserved for later insertions. However,
ORDPATH suffers from two major drawbacks. Firstly, when the data is huge, the size of
ORDPATH label increases as well. Secondly, there is a need of re-labeling since they only
reserved the odd and negative number for any new node inserted. Figure 2 shows the tree
representation of the XML data, with the ORDPATH labeling. From Figure 2, it shows that for
each child node, it contains the label of the parent node with the odd increment starting from 1.
Thus, as the depth of the tree goes, so does the labeling size.

Figure 2. ORDPath labeling scheme

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 1, October 2016 : 184 – 194

186

As mentioned earlier, ORDPATH support dynamic insertion by using even-numbered
and negative integer components. Insertion between any two siblings (also known as careting
in), is done by creating a component with an even ordinal falling between the odd labeling of the
two siblings, then following with a new odd component, starting by 1. Figure 3 shows insertion
between node 1.1.1 and 1.1.3.

To insert a node “page” between the siblings, a child of node “1.1.2” needs to be
inserted between the two siblings. This virtual node acts as a caret for inserting new nodes. The
new node “page” will then be inserted as its child node with the label of “1.1.2.1”. Both of these
nodes represent a complete careting procedure. After inserting node “page”, we insert another
node, “sub author” between “1.1.2.1” and “1.1.3”. Since we already have a virtual node, we can
insert the node with label “1.1.2.3” using a simple rightmost insertion [6]. These insertions
require no re-labeling of old nodes as the label is always unique and the relations between each
nodes is still maintained [7].

Figure 3. Handling insertion of nodes based on ORDPath labeling scheme

2.2. Multiplicative-Efficient (ME)
Multiplicative-Efficient (ME) labeling scheme uses a combination of odd numbers and

multiplication techniques. It is able to maintain and determine the structural relationships. The
labeling of ME is defined as (level,[selfLabel, ordinal]), where “level defines the level of the
node; selfLabel is the multiplication of parent label and ordinal; and ordinal is the order of the
current node using unique odd number starting from 3” [8].

Figure 4 shows the XML tree labeled with ME scheme. The root node of the XML tree
will be labeled as 1. Then, the children of the root node will have an odd-numbered ordinal
using 2n+1, where n denotes the position of a node in the level. After that, a multiplication of the
parent’s label with the ordinal will be added to the node’s label.

In order to determine the P-C relationship, there are two conditions. First, by using the
node’s self-label and divide by the ordinal, it should be equals to equals to the parent node
label. As for the second requirement, the parent node’s level must be one level below the child
node. If these two requirements are fulfilled, then it is a P-C relation. For example, from Fig. 4,
using the node “mastersthesis” with the label {1,[3,3]} and “title” with label {2,[15,5]}, P-C can be
determined by using “title”’s self-label which is 15, divide by its ordinal(5), yields 3, which is also
“mastersthesis” self-label. As for A-D relation, there are 4 conditions. First of all, nodeA’s self-
label must be smaller than nodeD’s self-label. Besides, the self-label of nodeD is dividable by
the self-label of nodeA and there are no remainders. The third condition is that the self-label of
the parent node of nodeD is dividable by the self-label of nodeA, with no remainder. Lastly, the
self-label of the sibling node of nodeD is dividable by the self-label of nodeA. For example, node
mastersthesis self-label, 3 is lesser than the leaf node “Kurt P.Brown” which is 27. It also can be
dividable with a remainder of 0. The self-label of the parent of the leaf node, author, which is 9
can also be dividable by the self-label of mastersthesis. As for the last condition, the sibling
nodes self-label, 15, can also be divided by 3 with the remainder 0.

IJEECS ISSN: 2502-4752

Hybridation of Labeling Schemes for Efficient Dynamic Updates (Su-Cheng Haw)

187

Figure 4. ME Labeling Scheme

ME labeling scheme not only able to maintain the relation among nodes, it also
supports dynamic updates. However, this method uses multiplication algorithm, and thus, the
size of the ME scheme increases dramatically when the data is huge.

Once all the data are labeled, s-XML [9] is introduced as the mapping technique to store
the data. The s-XML is created based on Persistant Labeling Scheme [10]. The s-XML has two
tables, namely ParentTable and ChildTable. ParentTable stores the internal nodes whereas
ChildTable stores the leaf nodes. The following schemas show the relation representation of
both tables: (i) ParentTable (IdNode, pName, cName, Level, LParent, SelfLabel) where
“IdNode is the unique Id for the node, pName is the Parent’s Node Name, cName is the Child
Name, Level is the level of the node, LParent is the Parent Label of the node which stores the
reference of the parent label, and SelfLabel is the self-label or local label of the node which is
[n,d] in Persistent Labeling”; (ii) ChildTable (IdNode, pName, Value, Level, LParent, SelfLabel)
with the IdNode, pName, Level, LParent, and SelfLabel represent the same meaning as the
attributes in ParentTable, while Value represent the leaf node’s value.

2.3. Summary of the Reviewed Labeling Schemes

To summarize the existing labeling schemes that have been reviewed earlier, we
analyze them based on four categories, i.e., storage requirement, supported axes, efficiency of
extracting relation and dynamic updates efficiency. Storage requirements are the cost of storing
the label of each node that was parsed from XML document, processed by each labeling
scheme. Support axes defines whether the labeling scheme is able to identify relations
between nodes, such as P-C, A-D or siblings. The efficiency of extracting relation are to
measure the cost of identifying the relations mentioned, whether they are easily extractable or it
comes with a complex process. Dynamic updates efficiency defines whether the labeling
scheme supports any update operation such as inserting, deleting and editing, and if re-labeling
are needed [11-13]. Table 1 shows the comparison of the reviewed labeling schemes.

Table 1. Labeling schemes and its supported features

Labeling Scheme
Storage
Requirement Supported Axes

Efficiency of Relationship
Retrieval Update Efficiency

ORDPATH High A-D, P-C, Siblings Simply retrieved Non re-labeling required
ME Labeling High A-D, P-C, Siblings Calculation required Non re-labeling required

3. Proposed Approach

The proposed approach consists of both labeling and mapping scheme, as they works
dependently for inserting XML data to RDBMS. The labeling scheme of our proposed approach
is assigned based on depth-first traversal in a form of a (s-e)l, where s represents the start of
the range, e represents the end of the range and l represents the level of the node.

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 1, October 2016 : 184 – 194

188

Nevertheless, s and e are computed based on the gap, which is the Σ(maxfan-out+maxdepth).
Figure 5 shows the snippet of DBLP dataset annotated with our proposed approach. Firstly, the
gap must be computed. In this example, the tree has the largest fan-out of 4 and deepest level
is 3. As such, the gap is 7. Based on the depth-first traversal, the root node will begin with 1 (for
the s). The s for the next node, “mastersthesis”, will be assigned with the previous node’s s
added with the gap (in this case, it is 1+7), followed by author, with 15 as the s. Upon returning
once a leaf has been reached, the e will then be generated by adding the previous running
number with the gap. For instance if the node is a leaf node with a s label of 22, it will have a e
label of 29, whereas if the node is not a leaf node, it’s e label will then generated by adding the
last child’s e label with the gap.

Figure 5. Labeling scheme of our proposed approach

Figure 6 shows the pseudocode for the proposed labeling. Figure 6(a) shows how the
helper “gap” is calculated based on the maximum fan out and maximum depth of the tree. The
algorithm takes as input a parent node and the next level of the current position. By traversing
the parents child node, it will the maximum number of child as the maximum fan out, and as it
goes deeper, the maximum level would be assigned as the maximum depth of the tree. As for
Figure 6(b), it shows the algorithm for the proposed labeling, where it uses the “gap” calculated
from (a) the label. The algorithm runs recursively, by first receive parent node, the current range
(the number where the range has reached), and the current level. Then it will assign the Start of
the label as the current range, as well as the current level. As stated that the proposed labeling
uses depth-first search, it will first traverse the child nodes, and assign each the Start and Level,
by using recursive method in Line 10. When the algorithm has reached a leaf node, it will then
assign the End as the addition of its Start and Gap, for each of the nodes it passed.

(a) (b)

Figure 6. Algorithm for (a) Function GetGap (b) Function AssignLabel

IJEECS ISSN: 2502-4752

Hybridation of Labeling Schemes for Efficient Dynamic Updates (Su-Cheng Haw)

189

As for the mapping scheme, there are two tables, namely iTable (internal table) and
tTable (text table). iTable is for storing internal nodes which does not have a text value and
tTable is for storing nodes that are leaf nodes. Both tables have the following attributes: (Start,
End, Level, PStart, Value) where Start store s Value of the node, End stores e Value of the
node, Level stores level of the node, Pstart stores s Value of the parent node,and Value stores
element name/text value. Table 2 and Table 3 are the example of sample data on iTable and
tTable respectively.

Table 2. iTable (Parent table)
Start End Level Pstart Value

22 29 3 15 Kurt P. Brown
50 57 3 43 PRPL: A Database Workload Specification Language
78 85 3 71 1992
106 113 3 99 Univ. of Wisconsin-Madison
148 155 3 141 FarshadNayeri
162 169 3 141 Benjamin Hurwitz
190 197 3 183 Experiments with Dispatching in a Distributed Object System
218 225 3 211 GTE Laboratories Incorporated
246 253 3 239 1993

Table 3. tTable (Child table)
Start End Level Pstart Value

1 274 0 - Dblp
8 127 1 1 Mastersthesis
15 37 2 8 Author
43 64 2 8 Title
71 92 2 8 Year
99 120 2 8 School
134 267 1 1 Article
141 176 2 134 Author
183 204 2 134 title
211 232 2 134 Journal
239 260 2 134 Year

The proposed approach supports all structural relationships which are P-C relation, A-D

relation and sibling. A-D relation is determined with the following formula:
1. if(A(s) < D(s) < A(e)) and (D(level) – A(level) > 1).
Example: Let node1 be journal (211-232)2 and node2 be dblp (1-274)0, (dblp(1) <

journal(211) <dblp(274) and journal(2) – dblp(0) > 1). As such, node1 and node2 has A-D
relationship.

For P-C relationship, it is determined with the following formula:
2. if (P(s) < C(s) < P(e)) and (C(level) – P(level) = 1)
3. Pstart for C == Start for P (Mapping Scheme)
It is basically similar with the formula for determining A-D, but instead of deducted level

is larger than 1, it would be equals 1 since parent would be only 1 level higher than the child. It
can also be determined easily from the table by using PStart value.

Example: Let node1 be journal (211-232)2 and node2 be article (134-267)1,
(article(134) < journal(211) <article(267) and journal(2) – article(1)=1). As such, node1 and
node2 has P-C relationship.

Lastly for Siblings, if the nodes have the same PStart from the table, they are siblings.
Example: Let node1 be author (141-176)2 and node2 be title(183-204)2. From iTable,

both have PStart ‘8’. As such, node1 is a sibling of node2.

3.1. Dynamic Updates
The proposed approach supports dynamic updates such as inserting new nodes or

updating values for existing ones, without re-labeling required. For node insertion, we adopted
ORDPATH [4] labeling scheme. For insertion between nodes and right most insertion, the e
value on the left sibling will be used, but with an addition of byte. As for leftmost insertion, it
uses start value instead. Figure 7 illustrates an example of insertion for leftmost, rightmost and

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 1, October 2016 : 184 – 194

190

insertion between nodes. The dotted circles and lines represent where the insertion took place.
As you can see, a leftmost insertion of “language”, creates a medium node with the leftmost
node’s start value with an addition of a byte number “15.1”, then inserts the new node below it
with the increase of the byte number along with the level(ignoring the medium node’s level),
which the label will be “(15.1)2”. Meanwhile for insertion between nodes, it uses the end value of
the left node “36.1”. In a way, the structure of the label remains, and the retrieval of relation
between nodes still works with the insertion node.

Figure 7. Handling insertion in our proposed labeling scheme

4. Experimental Design
To evaluate the performance, we compare our proposed approach with MELabeling

and ORDPATH. The evaluation is divided into three parts: (i) to measure the time to label and
store the XML nodes, (ii) to measure the query response time for retrieving data, and (iii) to
measure the dynamic updates efficiency response time.

We have selected two datasets with different sizes and characteristics for the
evaluation. These datasets are DBLP dataset, and Extended Protein datasets obtained from the
University of Washington. The Extended Protein is derived from the original Protein dataset,
with duplication on its size, so that we could test on a larger scale. Table 4 shows the
characteristics of these datasets.

Table 4. Selected Dataset for Experimental Evaluation
Dataset File (MB) Characteristic Description

DBLP 130MB Max. tree level: 3, structured data

Extended Protein 1.4GB Max. tree level: 5, unstructured and recursive data

This experiment is performed on a 3.20 GHz AMD Phenom™ II X4 955 Processor, with
12.0 GB Ram on a Windows 8.1 Pro. In order to obtain a better accuracy for the experiment, we
run the evaluation three times for each test. The results obtained are the average of these three
consecutive runs.

4.1. Labeling and Storing Evaluation

We first evaluate the performance for labeling the XML nodes for the three approaches.
Each of the dataset will first parse to nodes using the DocBuilder library, then each of the nodes
will be labelled accordingly. After the XML file is being parsed and labelled, we will then store
them into RDBMS using the three approaches. As the result, two databases will be created
based on the approaches. For comparison, we will measure the (i) time taken for labeling and
loading the data, and the (ii) database size. Table 5 shows the evaluation for the approaches in
terms of time taken for the loading process, while Table 6 shows the database size for each
mapped dataset in RDBMS.

IJEECS ISSN: 2502-4752

Hybridation of Labeling Schemes for Efficient Dynamic Updates (Su-Cheng Haw)

191

Table 5. Comparison of Various Approaches on Database Loading Time
Dataset Proposed Approach(min) MELabeling(min) OrdPath(min)

DBLP 35 44 34
Extended Protein 728 551 489

Table 6. Comparison of Various Approaches on Mapped Database Size
Dataset Proposed Approach(MB) MELabeling(MB) OrdPath(MB)

DBLP 666.25 673.75 526.493
Extended Protein 7596.20 6711.81 5481.68

From the result, it can be seen that the proposed approach uses lesser time to label the
nodes and has smaller size of storage for smaller dataset (DBLP), but uses more time and more
storage for large datasets. The is due to the reason that it requires a larger “gap”, which was
derived from the maximum of the depth of the tree and the maximum of the fan out of the tree.
This requires parsing to be done once before the labeling of each nodes start processing. Thus,
it uses more time as compared to the other approaches. Nevertheless, since loading is usually
only done one time, this may not affect the operation performance.

4.2. Retrieval Evaluation

For this evaluation, we use two types of queries, which are Path Query and Twig Query.
For each type of the query, we have three different SELECT statements. First statement is a P-
C query, second statement is a A-D query, and the third is a combination of both. The SELECT
statements for Path Query are identified as P1, P2 and P3, whereas Twig Query will be T1, T2
and T3 respectively.

4.2.1. Using DBLP Dataset

Table 7 shows the query description on DBLP dataset. The evaluation results are
shown in Figure 8.

Table 7. List of query on DBLP dataset
Query Query Description

P1 List out all the mastersthesis in year 1991
P2 List out number of the articles that has a sub entity of '1'
P3 List out the title of an article that has a ‘i' entity of 'm'
T1 List out all the title of the phdthesis that are in year 1992 and title consist

of 'code'
T2 List out all the articles that has a sub entity of "aleph" and sup entity of "2"
T3 List out all the authors in inproceedings that has a sup entity of "n"

Figure 8. Retrieval evaluation result on DBLP dataset

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 1, October 2016 : 184 – 194

192

From the result obtained, we notice the following:
1. For both Path and Twig Queries, the proposed approach uses lesser time compared

to the other approaches.
2. For Twig Query 1, it uses more time compared to the other queries. The reason is

because the query searches for a specified pattern, which takes more time to process. In this
case, it matches values that consist of “code”.

3. Overall, the times taken to retrieve the queries are faster for the proposed approach
compared to the others, up to 2.14% faster. This is due to several factors:

a. The DBLP dataset has only three levels. This causes lesser relations to be created,
and thus lesser number of joins.

b. All approaches has rather similar mapping scheme, i.e., uses two tables for storage,
thus for smaller dataset, result shown would not be significant.

4.2.2. Using Extended Protein Dataset

The Protein dataset is 700MB in size, unstructured, contains recursive elements, with
five levels of depths. We extended the Protein dataset into 1.2GB and name it as Extended
Protein dataset. Table 8 shows the evaluation for the three approaches using Extended Protein
dataset. Similar to the test cases in DBLP, six queries (three path query and three twig query)
were used to evaluate the performance in using Protein dataset. Figure 9 shows the result of
the performance of the three approaches using Extended Protein dataset.

Table 8. List of query on Extended Protein dataset
Query Query Description

P1 List out all the title of the ref info tat consist of "cytochrome"
P2 List out the number of Protein Entry that consists of note
P3 List out all the Uid from genetics in ProteinEntry.
T1 List out all the length of the summary that has a 'complete' type
T2 List out all the db that are from reference that consist of UID 1748
T3 List out all the description from protein entry that has the keyword that consists of amino

Figure 9. Retrieval evaluation result on Protein Extended dataset

From the result obtained, we notice the following:
1. The proposed approach performs the best for all queries, compared to the

ORDPATH and ME.
2. As the dataset size increases, the label of ORDPATH and ME becomes longer and

the size of the data increased dramatically. As for the proposed approach, although the gap
increases along the size of the XML, retrieval is done by only matching the parent’s node “Start”
value with the child node’s “PStart”. Thus this reduces the time of retrieval for the proposed
approach.

IJEECS ISSN: 2502-4752

Hybridation of Labeling Schemes for Efficient Dynamic Updates (Su-Cheng Haw)

193

4.3. Dynamic Updates Evaluation
Dynamic update evaluation is measured by two categories: nodes insertion and node

update. This is done by first inserting the existing XML dataset into RDBMS. Then, we will insert
a subtree of new nodes into the XML document and parse again. The system will then match
the updated XML document with the existing parsed data, to get the new nodes and label them
accordingly, then store them. Node update uses the same technique; just that it updates the
value of a node instead of inserting new nodes. Table 9 depicts the evaluation results.

Table 9. Dynamic Updates Evaluations on Various Datasets.
Dynamic Update Evaluation Dataset Proposed Approach (ms) MELabeling (ms) OrdPath(ms)

Insertion
DBLP 184 472 374
Protein 4,719 8,310 5,155
Extended Protein 9564 17307 12615

Update

DBLP 2,940 3,144 3,205
Protein 260,949 264,198 272,231
Extended Protein 462020 473030 469249

From the result obtained, we observed the following:
1. Our proposed approach perform better (about 51%) for node insertion compared to

the other two approaches. ME labeling uses more time as multiplication calculations is needed
to generate label for new node.

2. As for ORDPATH insertion, more time is needed, probably due to its large size of
label which cause more time for comparison.

3. For node update, since no labeling process is involved, as it only matches the
updated nodes label with the existing and overwrites the value.

5. Conclusion

From the evaluations done in this paper, it would seem that the proposed approach has
more advantages compared to the other approach. There are several points to support that
statement.

First, although the proposed approach has lesser time performance in insertion
compared to the others, but it has better retrieval time evaluation As major insertion is usually
done only one time, constantly retrieving data have advantage from using the proposed
approach. Thus, the proposed approach is a better option for XML data that are constantly
being retrieved or updated.

Second, it has better time performance for node insertion compared to the others. Once
the original XML document is inserted, users could always insert new nodes efficiently by using
the proposed approach. Although other approaches are faster for inserting the huge XML
document, it would be inconvenience to insert new nodes afterwards.

Last, but not least, not only it has better retrieval time and node insertion time, the
proposed approach doesn’t need re-labeling, which could cost a huge impact towards the data.
This also means that it supports a larger dataset without the need to relabel them under any
circumstances.

Acknowledgements

This work was partially supported by funding from FRGS, Ministry of Education,
Malaysia.

References
[1] Haw SC, Lee CS. Node Labeling Schemes in XML Query Optimization: A Survey and Open

Discussion. IETE Technical Review. 2009; 26(2): 89-101.
[2] Moradi M, Keyvanpour MR. XML and Semantics. International Journal of Electrical and Computer

Engineering. 2015; 5(5): 1174-1179.

 ISSN: 2502-4752

 IJEECS Vol. 4, No. 1, October 2016 : 184 – 194

194

[3] Mayr C, Zdun U, Dustdar S. Reusable Architectural Decision Model for Model and Metadata
Repositories Formal Methods for Components and Objects. Lecture Notes in Computer Science.
2008; 5751: 1-20.

[4] Sonawane V, Rao DR. A Comparative Study: Change Detection and Querying Dynamic XML
Documents. International Journal of Electrical and Computer Engineering. 2015; 5(4): 840-848.

[5] Liang X, Ling TW, Wu H. Labeling Dynamic XML Documents: An Order-Centric Approach. IEEE
Transactions on Knowledge and Data Engineering. 2012; 24(1): 100-113.

[6] Muller S. Indexing XML Data in a RDBMS using ORDPATH. http://www-
db.in.tum.de/~teubnerj/teaching/ss06/xml-proc/ordpath-slides.pdf.

[7] O’Neil P, O’Neil E, Pal S, Cseri I, Schaller G, Westbury N. ORDPATHS: Insert-Friendly XML Node
Labels. Proceedings of the ACM SIGMOD. 2004: 903-908.

[8] Samini S, Haw SC. ME Labeling: A Robust Hybrid Scheme for Dynamic Update in XML Databases.

Proceedings of IEEE International Symposium on Telecommunication Technologies. 2014: 126-131.
[9] Samini S, Haw SC, Poo KH. s-XML: An efficient mapping scheme to bridge XML and relational

database. Knowledge-Based Systems. 2012; 27: 369-380.
[10] Gabillon A, Fansi M. A New Persistent Labelling Scheme for XML. Journal of Digital Information

Management. 2006; 4(2): 112-116.
[11] Al-Jamimi HA, Barradah A, Mohammed S. Siblings Labeling Scheme for Updating XML Trees

Dynamically. Proceedings of International Conference on Computer Engineering and Technology.
2012: 21-25.

[12] Al-Shaikh R, Hashim G, BinHuraib A, Mohammed S. A modulo-based Labeling Scheme for
Dynamically Ordered XML tree. Proceedings of International Conference on Digital Information
Management. 2010: 213-221.

[13] Bashir MB, Latiff MS, Ahmed AA, Yousif A, Eltayeeb ME. Content-based Information Retrieval
Techniques Based on Grid Computing: A Review. IETE Technical Review. 2013; 30(3): 223-232.

