
Indonesian Journal of Electrical Engineering and Computer Science 
Vol. 4, No. 1, October 2016, pp. 65 ~ 72 
DOI: 10.11591/ijeecs.v4.i1.pp65-72      65 

  

Received May 15, 2016; Revised July 26, 2016; Accepted September 1, 2016 

An Improved Criterion for Induced 
l  Stability of Fixed-

Point Digital Filters with Saturation Arithmetic  
 
 

Priyanka Kokil*, Xavier Arockiaraj S 
Department of Electronics Engineering,  

Indian Institute of Information Technology, Design and Manufacturing,  
Kancheepuram, Chennai-600 127, India 

*Corresponding author, e-mail: kokilnit@gmail.com 

 
 

Abstract 

This paper establishes a criterion for the induced l  stability of fixed-point state-space digital 

filters with saturation nonlinearities and external interference. The criterion is established in a linear matrix 
inequality (LMI) setting, and therefore, computationally tractable. The criterion turns out to be an 
improvement over a previously reported criterion. A comparison of the presented criterion with existing 
criterion is made. Numerical examples are given to demonstrate the usefulness of the proposed approach. 

 
Keywords: External interference, 

l  criterion, Finite wordlength effect, Linear matrix inequality, Digital 

filter  

    
Copyright © 2016 Institute of Advanced Engineering and Science. All rights reserved. 

 
 

1. Introduction 
When a recursive digital filter is implemented using fixed-point digital signal processors, 

one commonly come across with accumulator overflow and quantization of a product. 
Saturation, zeroing, two’s complement and triangular are the common types of overflow 
nonlinearities [1, 2]. The possible occurrence of zero-input limit cycles in digital filters owing to 
the presence of such nonlinearities (e.g., quantization and overflow) corresponds to an unstable 
behavior and is undesirable [1-4]. In order to design a digital filter, an important need is to select 
the filter coefficients so that the designed filter is limit cycle-free. The global asymptotic stability 
of the zero solution of the system ensures nonexistence of zero input limit cycles. Therefore, the 
study of stability properties of digital filters has attracted the attention of many researchers [3-
19]. 

The implementation of high-order digital filters is usually achieved by splitting high-order 
filters into several low-order digital filters. External interferences among these low-order digital 
filters are unavoidable while implementation. Such external interferences or disturbances may 
lead to malfunction and destruction phenomenon in the realized filter [20, 21]. In recent years, 
many results have been appeared for the stability of digital filters by considering the effect of 
external disturbance [11-15]. In [11, 12], conditions for 


H  stability of digital filter under the 

effect of finite wordlength nonlinearities and external disturbance have been developed. The 
stability properties of fixed-point state-space digital filters with external disturbance by using 

2 
l l  approach [13] and input-output state stability approach [14, 15] has been studied. The 

induced 
l  norm which is also known as peak-to-peak gain is carried by magnitude bounded 

signal. This concept of induced 
l  norm was given by [16] and has received significant attention 

in recent years [17-19].  Refs. [18, 19] deal with the stability analysis of digital filters employing 
saturation nonlinearities and external disturbance by using induced 

l  stability approach. 

However, there still remains scope to reduce the conservatism of the stability criterion available.  
Motivated by the preceding discussion, we revisited the problem of induced 

l  stability 

of state-space digital filters using saturation nonlinearities and external disturbances. It is 
desirable to reduce the conservatism of the existing stability criterion for the state-space digital 
filters as much as possible. Therefore, we focused on developing a criterion which may lead to 
less conservative results than [18]. The organization of this paper is as follows. Section 2 
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provides the notation used and introduces the system under consideration. In Section 3, a 
criterion for the induced 

l  stability of fixed-point digital filters with saturation nonlinearities and 

external interference is established. Numerical examples are given in Section 4 to show the 
usefulness of the proposed result. Finally, Section 5 provides concluding remarks.  

 
 

2. System Description 

Notations: p
R  and p q

R  indicate set of 1p  real vectors and p q  real matrices, 

respectively. T
B  denotes the transpose of the real matrix B . For a given real matrix B , 0B >  

( )0B <  stands for the matrix B  which is symmetric positive (negative) definite. 
min

( )  B is the 

minimum eigenvalue of the matrix B ; max
( ) B represents the maximum eigenvalue of matrix the 

B . The null matrix or null vector of appropriate dimension is denoted as 0 . The notation used 

to represent identity matrix of appropriate dimension is I . sup{.}  stands for supremum or least 

upper bound of a set. Any vector or matrix norm is indicated by . .  

The system under consideration is given by: 
  

( 1) ( ( )) ( )r r r  x f y w   

 1 1 2 2( ( )) ( ( )) ( ( ))
T

n nf y r f y r f y r  

 1 2( ) ( ) ( )
T

nw r w r w r ,  (1) 

 

 1 2( ) ( ) ( ) ( )
T

nr y r y r y ry ( )r A x , (2) 

 

1 2( ) ( ) ( ) ( )
T

pr z r z r z r 
 z = ( )r H x ,  (3) 

 

Where ( ) nr x R  denotes the state vector, ( ) pr z R  represents the linear combination of the 

states, ( ) nr w R  is the external interference, A  n n
R  the known coefficient matrix, and 

p nH R  is a known constant matrix. The function ( ( ))i if y r  represents the saturation 

nonlinearities given by:  
 

1, ( ) 1

( ( )) ( ), 1 ( ) 1

1, ( ) 1

i

i i i i

i

y r

f y r y r y r

y r




   
   

,           1 2i , , ,n , (4) 

 
Are under consideration. 

Note that the saturation nonlinearities are restricted to sector  0, 1 , i.e., 

 

(0) 0if  ,     
( ( ))

0 1
( )

i i

i

f y r

y r
  ,     1 2i , , ,n . (5) 

 

For a given 0  , the paper intends to establish an induced 
l  based stability criterion 

such that the system (1)-(3) with ( )r  0w  is exponentially stable and under zero-initial 

conditions for all nonzero ( )rw . The parameter   is known as induced 
l  norm bound or the 

interference attenuation level. In this case, the digital filter (1)-(3) is known to be exponentially 
stable with induced 

l  performance  . 

 
2

0 0

sup{ ( ) ( )} sup{ ( ) ( )}T T

r r

r r r r
 

z z w w , (6) 
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The following lemma is needed in the proof of main result.  

Lemma 1 (see [9]) Let the matrix [ ] n n

i jd  D R  is characterized by the following form: 

 

1,

( )
n

i i i i j i j

j j i

d g  
 

   ,              1 2i , , ,n ,   (7a) 

 

( )i j j i i j i jd d     ,                     , 1, 2, ,i j n , ( )i j , (7b) 

 

0i j j i   ,   0i j j i   ,          , 1, 2, ,i j n , ( )i j , (7c) 

 

0,ig                                             1 2i , , ,n . (7d) 

 
It is implicit that for 1n  , D  corresponds to a positive scalar. Then: 

 

( ( )) ( ( )) ( ( )) ( ( )) 0T Tr r r r y D y f Ax D f Ax , (8) 

 
Where ( ( ))rf y is given by (4). 

 
 
3. Improved Criterion 

We now prove the following result. 
Theorem 1. For a given 0  , the system (1)-(3) is exponentially stable with induced 

l  performance  , if there exist n n  matrices T  0P P , [ ]T

i jd   0D D , n n  positive 

definite diagonal matrix M , n n  matrices 
1Q , 

2Q   and  positive scalars 
 
and 0 1   such 

that  
   

1 1 1

1 2

1 2 2 2 2

1 2

2

T T

T T

T T

T T





    
 

    
   
 

  

0

A DA P P A M Q Q Q

MA Q P D M Q P
Γ

Q Q Q Q Q

Q P Q P I

,  (9) 

 

( )

T

 



 
 

  
 
 

0

0 0 0

0

P H

I

H I

, (10) 

 
Where, 
 

 
1

n

i i i j

j j i

d d
 

  ,                        1 2i , , ,n . (11) 

  
Proof. Consider a Lyapunov function as:  
 

( ( )) ( ) ( )Tr r rV x x P x .  (12) 

 
Calculating the difference of ( ( ))rV x  along the trajectory of (1) gives:  

 
( ( )) ( ( 1)) ( ( ))r r r   V x V x V x  

[ ( ( )) ( )] [ ( ( )) ( )]Tr r r r  f Ax w P f Ax w ( ) ( )T r rx P x  

( ( )) ( ( ))T r r f Ax P f Ax ( ( )) ( )T r r f Ax P w   
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( ) ( ( ))T r rw P f Ax ( ) ( )T r rw P w ( ) ( )T r rx P x   

( ( )) ( ( ))T r r f Ax P f Ax ( ( )) ( )T r r f Ax P w     

( ) ( ( ))T r rw P f Ax ( ) ( )T r rw P w ( ) ( )T r rx P x  

ˆ ( )Φ r ˆ ( )Φ r .  (13) 

 
Where, 
    

 ˆ ( ) 2 ( ( )) ( ) ( ( ))TΦ r r r r  f y M y f y , (14) 

 
By adding (8) in (13), ( ( ))rV x  can be rewritten as: 

 

( ( ))r V x ( ( )) ( ( ))T r rf Ax P f Ax ( ( )) ( )T r r f Ax P w   

( ) ( ( ))T r rw P f Ax ( ) ( )T r rw P w ( ) ( )T r rx P x  

 2 ( ( )) ( ) ( ( ))T r r r f Ax M Ax f Ax  

 2 ( ( )) ( ) ( ( ))T r r r f y M y f y  

[( ( )) ( ( )) ( ( )) ( ( ))]T Tr r r r Ax D Ax f Ax D f Ax . (15) 

 
Furthermore, consider: 
  

 1 22 ( ) ( 1) ( ( )) ( ) ( 1)T Tr r r r r        0x Q x Q f Ax w x . (16) 

 
Together with (16), we obtain: 
 

( ( ))r V x ( ( )) ( ( ))T r rf Ax P f Ax ( ( )) ( )T r r f Ax P w   

( ) ( ( ))T r rw P f Ax ( ) ( )T r rw P w ( ) ( )T r rx P x  

 2 ( ( )) ( ) ( ( ))T r r r f Ax M Ax f Ax  

 2 ( ( )) ( ) ( ( ))T r r r f y M y f y  

[( ( )) ( ( )) ( ( )) ( ( ))]T Tr r r r Ax D Ax f Ax D f Ax  

 1 22 ( ) ( 1) ( ( )) ( ) ( 1)T Tr r r r r       x Q x Q f Ax w x  (17) 

 

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )T T Tr r r r r r Φ r    Ω Γ Ω x P x w w , (18) 

 

( ) ( ) ( ( )) ( 1) ( )
T

T T T Tr r r r r   Ω x f Ax x w . (19) 

 
If  0Γ , we get: 

 

( ( ))r V x  ( ) ( )T r r x P x ( ) ( )T r r w w  

( ( )) ( ) ( )TV r r r   x w w . (20) 

 

Accordingly, ( ( )) 0r V x  will be true, if ( ( ))rV x  ( ) ( )T r r w w . Since ( (0)) 0V x  

under the zero-initial condition, this implies that ( ( ))rV x  cannot exceed 
1

[ ( ) ( )]T r r


w w . 

 

( )( ) ( ) ( ( )) ( ) ( )T Tr r r r r   x P x V x w w , (21) 

 
For 0r  . From (21), it gives: 



IJEECS  ISSN: 2502-4752  

An Improved Criterion for Induced l  Stability of Fixed-Point Digital Filters… (Priyanka Kokil) 

69 

1
( ) ( ) ( ) ( )T T Tr r r r


x H H x w w  

1
( ) ( ) ( ) ( ) ( ) ( ) ( )T T T Tr r r r r r  


   x H H x w w w w   

1
( ) ( ) ( ) ( ) ( ) ( ) ( )T T T Tr r r r r r  


   x H H x w w x P x . (22) 

 
From (10), one gets: 

 

 
1

( )

T 

 

   
   

  

0
0

00

PH
H

I
. (23) 

 

Pre- and post-multiplying (23) by ( ) ( )T Tr r  x w  and ( ) ( )
T

T Tr r  x w , respectively, gives: 

 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T T Tr r r r r r  


   x H H x w w x P x , (24) 

 
Which ensures: 
 

1
( ) ( ) ( ) ( ) 0T T Tr r r r


 x H H x w w . (25) 

 
Therefore, it is straightforward to see that: 

 

( ) ( ) ( ) ( )T T Tr r r rz z x H H x  

2 ( ) ( )T r r w w ,  (26) 

 
And taking the supremum of (26) over 0r   yields (6). 

Note that ( ( ))rV x  satisfies the following Rayleigh inequality [22]: 

 
2 2

min max( ) ( ) ( ( )) ( ) ( )r r r  P x V x P x . (27) 

 
When ( )  0rw , it follows from (20) that: 

 
2

min( ( )) ( ) ( ) ( ) ( )Tr r r r      V x x P x P x . (28) 

 
Therefore, (27) and (28) ensure the exponential stability of the system under 

consideration. This completes the proof of Theorem 1. 

Corollary 1. If ( )rw  is bounded as ( ) ( )T r r w w , the conditions (9) and (10) confirm 

that ( )rx  is bounded as:  

 

min

( )
( )

r


 
x

P
,   0r  . (29) 

 
Proof. From (21), gives:  
 

2

min ( ) ( ) ( ) ( ) ( )Tr r r    P x x P x . (30) 
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Thus, one can conclude that ( )rx  is bounded. This completes the proof of Corollary 1. 

Remark 1. It is interesting to note that by substituting D I , 
1  0Q  and 

2  0Q  in 

Theorem 1, it reduces to a Theorem 2 in [19]. Therefore, Theorem 2 in [19] may be considered 
as a special case of Theorem 1. 

Remark 2. Theorem 1 is given in terms of LMIs for a fixed scalar 0 1  .  Thus, 

Theorem 1 can be easily tested using MATLAB LMI toolbox [23, 24]. 
Remark 3. The induced 

l  norm which is also known as peak-to-peak gain is 

appropriate for the worst-case peak value of the state vector for all bounded peak values of the 
external disturbance signals. 

Remark 4. The induced 
l  norm [25, 26] is defined as: 

 

0

0

sup { ( ) ( )}

sup { ( ) ( )}

T

r

zw l T

r

r r
T

r r







z z

w w
, (31) 

 

Where 
zwT  is a transfer function matrix from ( )rw  to ( )rz . For a given level 0  , 

zw l
T 



  

can be given in the equivalent form (6). Consider: 
 

0

0

sup { ( ) ( )}
( )

sup { ( ) ( )}

T

k r

T

k r

k k
L r

k k

 

 


z z

w w
,    (32) 

 

The relation (6) can be characterized by 
2( )L   , which is supported by the plot of ( )L r  

(Please refer Figure 1).  
 
 
4. Numerical Results 

To illustrate the usefulness of Theorem 1, we now consider the following examples. 
 

Example 1. Consider a second-order system (1)-(3) with: 
 

 
1.05 0.6

0.5 0.01

 
  

 
A , 

0.01 0

0 0.01

 
  
 

H , 
cos(2 )

( ) 0.5
2sin( )

r
r

r

 
  

 
w . (33) 

 
For the design objective (6), assume 

l  performance be 0.75   and 0.5  . By using 

MATLAB LMI toolbox [23, 24] one can easily check the present example falls outside the 
application scope of Theorem 2 in [19]. However, it is found that (9) and (10) are feasible for the 
following values of unknown parameters: 

 

0.0828 0.0781

0.0781 0.0909

 
  
 

P , 
0.0015 0

0 0.0079

 
  
 

M , 
1

0.0019 0.0036

0.0008 0.0001

 
  

 
Q , 

2

0.0039 0.0004

0.0006 0.0145

 
  
 

Q , 
0.1107 0.1075

0.1075 0.1181

 
  
 

D  

(
4

1 2 12 120.0016 , 0.0090, 0.1083, 7.8831 10g g        ), 0.6745  . (34) 

 
Thus, Theorem 1 succeeds to determine the exponential stability of the present system 

with induced 
l  performance 0.75  .   

Figure 1 shows the plot of ( )L r  for the present example. From Figure 1, one can see 

that 
2( ) 0.5625L    , which shows that the induced 

l  norm from ( )rw  to ( )rz  is reduced 

within the induced 
l  norm bound 


. The state trajectories for the present example with initial 

conditions 
1 2( (0), (0)) (20, 15.8)x x    are shown in Figure 1. 
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Figure 1. The plot of ( )L r  

 
 
The criteria reported in [3-10] cannot be utilized to determine the stability of the system 

under consideration for the present example since they do not study the effect of external 
interference. 

Example 2. Consider the system described by (1)-(3) with: 
 

0.5 0.1

0.1 0

 
  

 
A ,  

0.1 2

0.12 0.1

 
  
 

H ,  
cos(2 )

( ) 0.5
2sin( )

r
r

r

 
  

 
w ,  0.025  . (35) 

 
The minimum lower bound of   for present example achieved by using Theorem 1 is 

13.6502 . In contrast, Theorem 2 in [19] gives the minimum lower bound of   as 12.8651. Since 

the minimum lower bound of   found by using Theorem 1 is smaller than that obtained by 

Theorem 2 in [19], therefore, it is clear that Theorem 1 provides the less conservative results 
than Theorem 2 in [19] for the present example.  

 
 

5. Conclusion 
An LMI based criterion for the induced 

l  stability of fixed-point digital filters employing 

saturation nonlinearities and external interference is established. The criterion turns out to be 
less conservative than an existing criterion. Two numerical examples to support the usefulness 
of the proposed approach are arranged.  

The promising extension of the proposed idea to the problems of optimal non-static 
error compensation controller design [27], state delayed systems [28, 29], uncertain non 
stationary continuous systems [30] and to other such situations appears to be interesting for 
future investigation.  
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