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Smart-city applications demand ultra-low latency, high reliability, and
sustainable operation, which are difficult to achieve using cloud-only or
edge-only computing paradigms. This study suggests a carbon-conscious
architecture for managing smart cities’ intelligent job offloading between the
edge and the cloud. This is made possible by the Internet of Things and
driven by reinforcement learning (RL). A deep Q-network (DQN) is used to
dynamically assign tasks to cloud servers and edge nodes based on how
much energy they use, how long it takes to send data over the network, and
how much bandwidth they have. A lightweight permissioned blockchain
layer makes sure that data is correct across all of its parts, and carbon-aware
scheduling puts low-carbon resources first. EdgeCloudSim is used to test the
system with real-world smart city workloads. When compared to systems
that simply use the cloud, the proposed solution showed a 64.6% drop in
average latency, a 24.2% drop in energy use, and a 15% drop in carbon

emissions. Combining artificial intelligence (Al)-driven orchestration with
scheduling that takes sustainability into account in a hybrid edge-cloud
environment yields positive outcomes.
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1. INTRODUCTION

As more people move to cities and digital infrastructure gets better, smart cities are becoming more
common. These cities use internet of things (1oT) sensors to keep an eye on things like traffic, the weather,
healthcare, and energy use, among other things [1], [2]. Standard cloud-based computing architectures offer
centralized analytics and scalable resources; nevertheless, they are insufficient for providing smart-city
services susceptible to delays from high latency, bandwidth congestion, and excessive energy usage [3]-[5].

Edge computing moves processing closer to data sources, which reduces end-to-end latency and
network overhead. This makes these problems easier to deal with [6], [7]. Edge nodes are not suitable for
analytics that require a lot of processing and storage power because they don’t have enough of either [8].
Because of this, hybrid edge-cloud architectures have emerged, with time-sensitive operations done at the
edge and more complicated analytics done in the cloud [9]-[11].

Figure 1 shows how smart city apps are moving from centralized cloud systems to collaborative
hybrid edge-cloud models that make them more scalable and responsive. The ever-changing nature of
networks and workloads makes it very hard to properly coordinate different cloud and edge resources.
Reinforcement learning (RL) has been suggested for adaptive task offloading due to its improved latency and
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energy efficiency compared to heuristic approaches [12]. At the same time, decentralized smart-city
infrastructures create worries about data privacy, integrity, and trust [13], [14]. Blockchain technology has
shown promise as a clear and secure way to move data across edge—cloud systems [15]-[17]. Also, carbon-
aware scheduling solutions are necessary for making smart-city computing more sustainable because the

carbon footprint of large data centers and the 10T is growing [18], [19].

Cloud Computing Edge Computing Hybrid Edge—Cloud
Centralized _| * Local Processing _| * Real-Time
Processing * Reduced Latency Processing at Edge
High Latency « Limited Resources + Scalable Analytics
in Cloud
Latency & Need for Need for
Scalability Issues Scalability Performance
\ , J

Figure 1. Evolution of computing paradigms from cloud-centric to hybrid edge—cloud architectures.

Prior research on smart-city computing has focused on four major directions: (i) edge and fog
computing for low-latency processing [20]-[22]; (ii) hybrid edge—cloud frameworks enabling collaborative
workload allocation [23]; (iii) RL-based task offloading to dynamically optimize delay and energy
consumption [24]; and (iv) blockchain-enabled security mechanisms to protect distributed loT
infrastructures. More recently, green and carbon-aware computing has received attention as a means of
minimizing the environmental impact of computing infrastructures through carbon-sensitive scheduling
policies. Despite these advances, most existing works address performance optimization, security, or
sustainability in isolation and do not provide a unified framework combining RL-based orchestration,
blockchain-based trust, and carbon-aware scheduling. Recent studies have demonstrated the effectiveness of
machine learning for robust intrusion detection and cybercrime classification in distributed computing
environments [25]-[27]. Several recent works have explored security and privacy in cloud computing
environments and hybrid systems, such as optimized homomaorphic encryption to protect image data in the
cloud [28] and privacy preservation models for secure cloud data sharing [29]. Comprehensive treatments of
cloud infrastructure and related technologies are also discussed in foundational texts on cloud computing
advancements [30]. To provide a clearer comparison of existing smart-city computing architectures and their
limitations, Table 1 summarizes representative approaches across different application domains, data sources,
and architectural designs.

Table 1. Comparative summary of existing computing architectures and their limitations

Reference Application Dataset / data Computing Key focus Limitations
domain source architecture
[1] 10T monitoring Sensor data Cloud-only Centralized High latency, high bandwidth
analytics overhead, no sustainability
metrics
[2] Smart cities Heterogeneous 10T Edge-only Local processing Limited scalability, no global
optimization
[3] Healthcare loT Wearable data Fog/Edge Reduced latency ~ Resource constraints, no carbon-
awareness
[4] Industrial loT Machine data Edge—cloud Task offloading Partial energy optimization, no
security modeling
[5] Smart Mixed sensors Hybrid edge—cloud Performance Sustainability and carbon impact
environments efficiency ignored
Proposed Smart city CPS 10T sensor streams Hybrid edge—cloud Latency, energy Simulation-based only,

and sustainability blockchain overhead assumed

Although hybrid edge—cloud systems, Al-based orchestration, blockchain security, and green
computing have been individually studied, a comprehensive framework that jointly addresses performance,
security, and environmental sustainability is still lacking, particularly for developing smart-city regions. The
main contributions of this paper are as follows:
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i) A hybrid edge—cloud architecture balancing low-latency edge processing with scalable cloud analytics.

ii) A deep Q network (DQN)-based RL task offloading strategy optimizing latency, bandwidth, and energy
consumption.

iii) A lightweight blockchain-enabled security layer ensuring data integrity across distributed nodes.

iv) A carbon-aware scheduling mechanism reducing energy usage and carbon emissions.

v) A simulation-based evaluation using EdgeCloudSim demonstrating significant performance improvements
over cloud-only systems.

The next parts of the paper are set up like this. Section 2 describes the suggested hybrid edge-cloud
architecture that uses RL. In section 3, we explain how to set up the simulation and what steps to take.
Section 4 shows the outcomes of the experiments and how well they worked, and section 5 finishes the work
by talking about its flaws and possible directions for further research.

2.  PROPOSED RL-DRIVEN HYBRID EDGE-CLOUD FRAMEWORK
This section outlines the proposed hybrid edge-cloud architecture for smart-city applications,
detailing its functional components and architectural characteristics.

2.1. System overview

Data streams from 10T devices spread out across cities are either processed at edge nodes or sent to
cloud servers, depending on the application’s latency needs, the state of the network, and the resources
available. Figure 2 shows the whole design of the framework.

Cloud Layer
Edge Layer

loT Layer
((A)) BP

Figure 2. Three-tier hybrid edge—cloud architecture for smart-city loT applications

2.2. Hybrid edge—cloud architecture

The proposed architecture has three layers: the 10T, the edge, and the cloud. The IoT layer is made
up of different sensors and gadgets that gather data about cities in real time. Gateways, fog nodes, and MEC
servers make up the edge layer. These are the parts that handle data that needs to be processed quickly.
The cloud layer makes it easier to store data and run complex analytics. The Al-powered orchestration engine
decides on the fly how to split up work between the edge and the cloud.

2.3. RL-based task orchestration
The task offloading problem is modeled as a Markov decision process.

S¢ = {Le,Le, B, Eg, Ec} (1)
a, € {process_edge;,of fload_cloud} 2)
R, = —(aD; + BE; + YB,) €))

Where Dy, E;, and B; denote latency, energy consumption, and bandwidth usage, respectively. The
key hyperparameters of the DQN model employed in the RL-based task orchestration are listed in Table 2.
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The RL workflow is shown in Figure 3, illustrating state observation, action selection, reward evaluation, and
policy update.

Table 2. Hyperparameters of the DQN model

Parameter Symbol Value
Learning rate o 0.001
Discount factor Y 0.95
Exploration strategy  e-greedy &=1—0.01
Batch size — 64

Replay buffer size — 10,000

Training episodes — 2000

Training episodes 2000
State | DON Agent _ | Task Execution
Observation "| Action Selection "| (Edge / Cloud)

/

Reward
Evaluation

Policy Update
Replay Buffer

Figure 3. RL-based task offloading workflow illustrating state observation, action selection, reward
evaluation, and DQN policy update cycle

2.4, Blockchain-enabled secure transmission

As shown in Figure 4, a lightweight permissioned blockchain is used between the edge and cloud
levels to make sure that data is sent securely and can’t be changed. The SHA-256 hashing and PBFT
consensus add three to five milliseconds of latency to each transaction.

Cloud Layer
é Data
Collection

Edge Layer

é Secure
Data

Transfer

.

loT Layer

Data
Storage &
Analysis

Figure 4. Secure data flow
2.5. Carbon-aware scheduling
The carbon-aware scheduler assigns tasks to nodes minimizing carbon emissions:
Ci = Ei X CIlCl = Ei X CIiCi = Ei X Cll

where EIE_IEi is the energy consumption and CIiCL_iCli is the carbon-intensity factor of node iii.
The workflow is illustrated in Figure 5.
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Energy Carbon Carbon-aware
Tasks Demand Intensity Scheduling
Estimation Forecasting

Figure 5. Conceptual workflow of carbon aware task scheduling

3. RESEARCH METHOD
3.1. Simulation setup

Experiments are conducted using EdgeCloudSim. The simulation parameters are summarized in
Table 3.

Table 3. Simulation parameters

Parameter Value
Simulation tool EdgeCloudSim
Number of 10T devices 50-200
Number of edge nodes 5
Cloud data centers 1
Application type Latency-sensitive 10T tasks
Task data size 300-800 KB
Edge—cloud network latency ~ 50-100 ms
Simulation duration 1000 s
Scheduling strategy Dynamic hybrid offloading
Evaluation metrics Latency, bandwidth, energy, carbon emission

3.2. Performance metrics
We compare the framework against both cloud-only and edge-only benchmarks, looking at things
like average latency, bandwidth use, energy use, and carbon emissions.

4. RESULTS AND DISCUSSION
4.1. Experimental results overview

The proposed hybrid edge-cloud framework is tested against two baselines: cloud-only and edge-
only. Average latency, bandwidth use, energy use, and carbon emissions are all parts of the total performance
indicators. The overall performance comparison of the three computing architectures is presented in Table 4.

Table 4. Performance comparison of computing architectures
Average latency Bandwidth usage Energy consumption Carbon emission

Configuration

(ms) (MB/min) (kJ) (CO2¢)
Cloud-only 480 95 9.1 1
Edge-only 210 58 7.8 0.88
Hybrid edge—cloud (proposed) 170 62 6.9 0.85

4.2. Latency analysis

The most centralized processing causes the highest delay for cloud-only, as seen in Figure 6.
Edge-only reduces latency by running things locally, however the suggested hybrid design has the lowest
latency of 170 ms, which is 64.6% lower than cloud-only.

4.3. Bandwidth utilization
Figure 7 shows that cloud-only uses the most bandwidth. The suggested architecture cuts bandwidth
uses by 34.7% compared to cloud-only by smartly sending compute-intensive tasks to the cloud.

4.4. Energy consumption
As shown in Figure 8, the hybrid model achieves the lowest energy usage of 6.9 kJ, corresponding
to a 24.2% reduction over cloud-only, demonstrating the effectiveness of adaptive offloading.

4.5. Carbon emission impact
Figure 9 illustrates that the proposed framework reduces carbon emissions to 0.85 COze,
outperforming both cloud-only and edge-only, validating the benefits of carbon-aware scheduling.

A hybrid edge—cloud computing framework for low-latency, energy-efficient, ... (Kamal Saluja)



796 a ISSN: 2502-4752

95 4

450 1
90

400 854
350 807

75 4

Average Latency (ms)

704

Bandwidth Usage (MB/min)

250 1
65

200+
60

C\oud‘-omy Edgelomy Hybrid Ecige—cloud CIoudIfDn\y Edgelomy Hybrid Edlgefcloud
Architecture Type Architecture Type
Figure 6. Average latency comparison across Figure 7. Bandwidth usage comparison for cloud,
different computing architectures edge, and hybrid architectures

9.0

e

e e [
w o o
o @ =)

@
n
L

4
o
=

Energy Consumption (kJ)
=]
[=]
o
w0
o

Carbon Emission (CO2e)
=)
o
]

~
n
L
e
©
o

704 0.86 -
CIoudI-On\y Edge‘-omy Hybrid Edlqe—cloud C‘OUd"OT\W Edgel-On\y Hybrid Edge—cloud
Architecture Type Architecture Type
Figure 8. Energy consumption comparison among Figure 9. Carbon emission comparison for cloud,
different computing architectures edge, and hybrid architectures

4.6. Statistical validation

All experiments were repeated ten times. The latency improvement of 64.6% exhibited a standard
deviation of £2.3 ms, confirming result stability.

4.7. Discussion summary
The suggested hybrid edge-cloud design always does better than baseline systems when it comes to

lowering latency, saving energy, improving bandwidth, and lowering carbon emissions. This makes it a good
choice for smart-city projects that will last.

5. CONCLUSION

This study describes a hybrid edge-cloud architecture for smart-city computing that is based on RL.
It combines scheduling that takes carbon into account, data security that uses blockchain, and work
orchestration that uses RL. EdgeCloudSim was used to test the framework against benchmarks for both
cloud-only and edge-only systems.

The trial findings showed that the proposed architecture had the lowest latency of 170 ms, which
was 64.6% better than processing simply on the cloud. By combining adaptive orchestration with scheduling
that takes sustainability into account, energy use dropped by 24.2% and carbon emissions dropped by 15%.
These results show that hybrid edge-cloud computing is a good way to address the performance and
environmental needs of future smart city services. Because we think that carbon intensity levels stay the
same, we can only look at simulations right now. Dynamic energy prices, different edge capabilities, and the
costs of processing on the blockchain are just a few of the things that might make practical deployments even
less predictable. Future work will focus on federated multi-agent RL orchestration, integration of real carbon-
intensity datasets, and large-scale deployment in 5G/6G smart-city testbeds.
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