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 Smart-city applications demand ultra-low latency, high reliability, and 
sustainable operation, which are difficult to achieve using cloud-only or 
edge-only computing paradigms. This study suggests a carbon-conscious 
architecture for managing smart cities’ intelligent job offloading between the 

edge and the cloud. This is made possible by the Internet of Things and 
driven by reinforcement learning (RL). A deep Q-network (DQN) is used to 
dynamically assign tasks to cloud servers and edge nodes based on how 
much energy they use, how long it takes to send data over the network, and 
how much bandwidth they have. A lightweight permissioned blockchain 
layer makes sure that data is correct across all of its parts, and carbon-aware 
scheduling puts low-carbon resources first. EdgeCloudSim is used to test the 
system with real-world smart city workloads. When compared to systems 
that simply use the cloud, the proposed solution showed a 64.6% drop in 

average latency, a 24.2% drop in energy use, and a 15% drop in carbon 
emissions. Combining artificial intelligence (AI)-driven orchestration with 
scheduling that takes sustainability into account in a hybrid edge-cloud 
environment yields positive outcomes. 
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1. INTRODUCTION 

As more people move to cities and digital infrastructure gets better, smart cities are becoming more 

common. These cities use internet of things (IoT) sensors to keep an eye on things like traffic, the weather, 

healthcare, and energy use, among other things [1], [2]. Standard cloud-based computing architectures offer 

centralized analytics and scalable resources; nevertheless, they are insufficient for providing smart-city 
services susceptible to delays from high latency, bandwidth congestion, and excessive energy usage [3]-[5]. 

Edge computing moves processing closer to data sources, which reduces end-to-end latency and 

network overhead. This makes these problems easier to deal with [6], [7]. Edge nodes are not suitable for 

analytics that require a lot of processing and storage power because they don’t have enough of either [8]. 

Because of this, hybrid edge-cloud architectures have emerged, with time-sensitive operations done at the 

edge and more complicated analytics done in the cloud [9]–[11]. 

Figure 1 shows how smart city apps are moving from centralized cloud systems to collaborative 

hybrid edge-cloud models that make them more scalable and responsive. The ever-changing nature of 

networks and workloads makes it very hard to properly coordinate different cloud and edge resources. 

Reinforcement learning (RL) has been suggested for adaptive task offloading due to its improved latency and 
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energy efficiency compared to heuristic approaches [12]. At the same time, decentralized smart-city 

infrastructures create worries about data privacy, integrity, and trust [13], [14]. Blockchain technology has 

shown promise as a clear and secure way to move data across edge–cloud systems [15]-[17]. Also, carbon-

aware scheduling solutions are necessary for making smart-city computing more sustainable because the 

carbon footprint of large data centers and the IoT is growing [18], [19]. 

 

 

 
 

Figure 1. Evolution of computing paradigms from cloud-centric to hybrid edge–cloud architectures. 

 

 

Prior research on smart-city computing has focused on four major directions: (i) edge and fog 

computing for low-latency processing [20]-[22]; (ii) hybrid edge–cloud frameworks enabling collaborative 

workload allocation [23]; (iii) RL-based task offloading to dynamically optimize delay and energy 

consumption [24]; and (iv) blockchain-enabled security mechanisms to protect distributed IoT 

infrastructures. More recently, green and carbon-aware computing has received attention as a means of 
minimizing the environmental impact of computing infrastructures through carbon-sensitive scheduling 

policies. Despite these advances, most existing works address performance optimization, security, or 

sustainability in isolation and do not provide a unified framework combining RL-based orchestration, 

blockchain-based trust, and carbon-aware scheduling. Recent studies have demonstrated the effectiveness of 

machine learning for robust intrusion detection and cybercrime classification in distributed computing 

environments [25]-[27]. Several recent works have explored security and privacy in cloud computing 

environments and hybrid systems, such as optimized homomorphic encryption to protect image data in the 

cloud [28] and privacy preservation models for secure cloud data sharing [29]. Comprehensive treatments of 

cloud infrastructure and related technologies are also discussed in foundational texts on cloud computing 

advancements [30]. To provide a clearer comparison of existing smart-city computing architectures and their 

limitations, Table 1 summarizes representative approaches across different application domains, data sources, 
and architectural designs. 

 

 

Table 1. Comparative summary of existing computing architectures and their limitations 
Reference Application 

domain 

Dataset / data 

source 

Computing 

architecture 

Key focus Limitations 

[1] IoT monitoring Sensor data Cloud-only Centralized 

analytics 

High latency, high bandwidth 

overhead, no sustainability 

metrics 

[2] Smart cities Heterogeneous IoT Edge-only Local processing Limited scalability, no global 

optimization 

[3] Healthcare IoT Wearable data Fog/Edge Reduced latency Resource constraints, no carbon-

awareness 

[4] Industrial IoT Machine data Edge–cloud Task offloading Partial energy optimization, no 

security modeling 

[5] Smart 

environments 

Mixed sensors Hybrid edge–cloud Performance 

efficiency 

Sustainability and carbon impact 

ignored 

Proposed Smart city CPS IoT sensor streams Hybrid edge–cloud Latency, energy 

and sustainability 

Simulation-based only, 

blockchain overhead assumed 

 

 

Although hybrid edge–cloud systems, AI-based orchestration, blockchain security, and green 

computing have been individually studied, a comprehensive framework that jointly addresses performance, 

security, and environmental sustainability is still lacking, particularly for developing smart-city regions. The 

main contributions of this paper are as follows: 
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i) A hybrid edge–cloud architecture balancing low-latency edge processing with scalable cloud analytics. 

ii) A deep Q network (DQN)-based RL task offloading strategy optimizing latency, bandwidth, and energy 

consumption. 

iii) A lightweight blockchain-enabled security layer ensuring data integrity across distributed nodes. 

iv) A carbon-aware scheduling mechanism reducing energy usage and carbon emissions. 

v) A simulation-based evaluation using EdgeCloudSim demonstrating significant performance improvements 
over cloud-only systems. 

The next parts of the paper are set up like this. Section 2 describes the suggested hybrid edge-cloud 

architecture that uses RL. In section 3, we explain how to set up the simulation and what steps to take. 

Section 4 shows the outcomes of the experiments and how well they worked, and section 5 finishes the work 

by talking about its flaws and possible directions for further research. 

 

 

2. PROPOSED RL-DRIVEN HYBRID EDGE–CLOUD FRAMEWORK 

This section outlines the proposed hybrid edge-cloud architecture for smart-city applications, 

detailing its functional components and architectural characteristics. 

 

2.1.  System overview 
Data streams from IoT devices spread out across cities are either processed at edge nodes or sent to 

cloud servers, depending on the application’s latency needs, the state of the network, and the resources 

available. Figure 2 shows the whole design of the framework. 

 

 

 
 

Figure 2. Three-tier hybrid edge–cloud architecture for smart-city IoT applications 

 

 

2.2.  Hybrid edge–cloud architecture 

The proposed architecture has three layers: the IoT, the edge, and the cloud. The IoT layer is made 

up of different sensors and gadgets that gather data about cities in real time. Gateways, fog nodes, and MEC 

servers make up the edge layer. These are the parts that handle data that needs to be processed quickly.  

The cloud layer makes it easier to store data and run complex analytics. The AI-powered orchestration engine 

decides on the fly how to split up work between the edge and the cloud. 

 

2.3.  RL-based task orchestration 

The task offloading problem is modeled as a Markov decision process. 

 

𝑠𝑡 = {𝐿𝑒 , 𝐿𝑐 , 𝐵, 𝐸𝑒 , 𝐸𝑐} (1) 

 

𝑎𝑡 ∈ {𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑒𝑑𝑔𝑒𝑖 , 𝑜𝑓𝑓𝑙𝑜𝑎𝑑_𝑐𝑙𝑜𝑢𝑑} (2) 

 

𝑅𝑡 = −(α𝐷𝑡 + β𝐸𝑡 + γ𝐵𝑡) (3) 

 

Where Dt, Et, and Bt denote latency, energy consumption, and bandwidth usage, respectively. The 
key hyperparameters of the DQN model employed in the RL-based task orchestration are listed in Table 2. 
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The RL workflow is shown in Figure 3, illustrating state observation, action selection, reward evaluation, and 

policy update. 

 

 

Table 2. Hyperparameters of the DQN model 
Parameter Symbol Value 

Learning rate α 0.001 

Discount factor γ 0.95 

Exploration strategy ε-greedy ε=1→0.01 

Batch size — 64 

Replay buffer size — 10,000 

Training episodes — 2000 

Training episodes  2000 

 
 

 
 

Figure 3. RL-based task offloading workflow illustrating state observation, action selection, reward 

evaluation, and DQN policy update cycle 

 

 

2.4.  Blockchain-enabled secure transmission 

As shown in Figure 4, a lightweight permissioned blockchain is used between the edge and cloud 

levels to make sure that data is sent securely and can’t be changed. The SHA-256 hashing and PBFT 

consensus add three to five milliseconds of latency to each transaction. 

 

 

 
 

Figure 4. Secure data flow 

 

 

2.5.  Carbon-aware scheduling 

The carbon-aware scheduler assigns tasks to nodes minimizing carbon emissions: 

 

𝐶𝑖 = 𝐸𝑖 × 𝐶𝐼𝑖𝐶𝑖 =  𝐸𝑖 × 𝐶𝐼𝑖𝐶𝑖 = 𝐸𝑖 × 𝐶𝐼𝑖  
 

where EiE_iEi is the energy consumption and CIiCI_iCIi is the carbon-intensity factor of node iii.  

The workflow is illustrated in Figure 5. 
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Figure 5. Conceptual workflow of carbon aware task scheduling 
 
 

3. RESEARCH METHOD 

3.1.  Simulation setup 

Experiments are conducted using EdgeCloudSim. The simulation parameters are summarized in 

Table 3. 

 

 

Table 3. Simulation parameters 
Parameter Value 

Simulation tool EdgeCloudSim 

Number of IoT devices 50–200 

Number of edge nodes 5 

Cloud data centers 1 

Application type Latency-sensitive IoT tasks 

Task data size 300–800 KB 

Edge–cloud network latency 50–100 ms 

Simulation duration 1000 s 

Scheduling strategy Dynamic hybrid offloading 

Evaluation metrics Latency, bandwidth, energy, carbon emission 

 

 

3.2.  Performance metrics 

We compare the framework against both cloud-only and edge-only benchmarks, looking at things 
like average latency, bandwidth use, energy use, and carbon emissions. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Experimental results overview 

The proposed hybrid edge-cloud framework is tested against two baselines: cloud-only and edge-

only. Average latency, bandwidth use, energy use, and carbon emissions are all parts of the total performance 

indicators. The overall performance comparison of the three computing architectures is presented in Table 4. 
 
 

Table 4. Performance comparison of computing architectures 

Configuration 
Average latency 

(ms) 

Bandwidth usage 

(MB/min) 

Energy consumption 

(kJ) 

Carbon emission 

(CO₂e) 

Cloud-only 480 95 9.1 1 

Edge-only 210 58 7.8 0.88 

Hybrid edge–cloud (proposed) 170 62 6.9 0.85 

 
 

4.2.  Latency analysis 

The most centralized processing causes the highest delay for cloud-only, as seen in Figure 6.  

Edge-only reduces latency by running things locally, however the suggested hybrid design has the lowest 

latency of 170 ms, which is 64.6% lower than cloud-only. 
 

4.3.  Bandwidth utilization 

Figure 7 shows that cloud-only uses the most bandwidth. The suggested architecture cuts bandwidth 

uses by 34.7% compared to cloud-only by smartly sending compute-intensive tasks to the cloud. 
 

4.4.  Energy consumption 

As shown in Figure 8, the hybrid model achieves the lowest energy usage of 6.9 kJ, corresponding 

to a 24.2% reduction over cloud-only, demonstrating the effectiveness of adaptive offloading. 
 

4.5.  Carbon emission impact 

Figure 9 illustrates that the proposed framework reduces carbon emissions to 0.85 CO₂e, 

outperforming both cloud-only and edge-only, validating the benefits of carbon-aware scheduling. 
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Figure 6. Average latency comparison across 

different computing architectures 

 

Figure 7. Bandwidth usage comparison for cloud, 

edge, and hybrid architectures 
 
 

  
 

Figure 8. Energy consumption comparison among 

different computing architectures 

 

Figure 9. Carbon emission comparison for cloud, 

edge, and hybrid architectures 
 
 

4.6.  Statistical validation 

All experiments were repeated ten times. The latency improvement of 64.6% exhibited a standard 

deviation of ±2.3 ms, confirming result stability. 
 

4.7.  Discussion summary 

The suggested hybrid edge-cloud design always does better than baseline systems when it comes to 

lowering latency, saving energy, improving bandwidth, and lowering carbon emissions. This makes it a good 

choice for smart-city projects that will last. 
 
 

5. CONCLUSION 

This study describes a hybrid edge-cloud architecture for smart-city computing that is based on RL. 

It combines scheduling that takes carbon into account, data security that uses blockchain, and work 
orchestration that uses RL. EdgeCloudSim was used to test the framework against benchmarks for both 

cloud-only and edge-only systems. 

The trial findings showed that the proposed architecture had the lowest latency of 170 ms, which 

was 64.6% better than processing simply on the cloud. By combining adaptive orchestration with scheduling 

that takes sustainability into account, energy use dropped by 24.2% and carbon emissions dropped by 15%. 

These results show that hybrid edge-cloud computing is a good way to address the performance and 

environmental needs of future smart city services. Because we think that carbon intensity levels stay the 

same, we can only look at simulations right now. Dynamic energy prices, different edge capabilities, and the 

costs of processing on the blockchain are just a few of the things that might make practical deployments even 

less predictable. Future work will focus on federated multi-agent RL orchestration, integration of real carbon-

intensity datasets, and large-scale deployment in 5G/6G smart-city testbeds. 
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