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Anterior cruciate ligament (ACL) tears are a frequent cause of knee
instability, yet magnetic resonance imaging (MRI) interpretation remains
time-consuming and observer-dependent. This paper presents an automated
MRI framework for ACL injury screening and severity grading using a
hybrid support vector machine—artificial neural network (SVM-ANN)
model. A balanced dataset of 600 sagittal knee MRI images from Hospital
Taiping (normal, partial tear, complete tear) was standardized via resizing,
region-of-interest cropping, contrast enhancement, noise filtering, and
segmentation. Morphological and texture features were extracted and
reduced using principal component analysis (PCA). The SVM performs the
initial screening (injured vs. non-injured) and samples predicted as injured
are passed to the artificial neural network (ANN) to classify severity. Using
confusion-matrix and receiver operating characteristic (ROC) evaluation, the
proposed system achieved 86.2% overall accuracy and 81.7% sensitivity,
with the ANN reaching approximately 95% accuracy on injured cases
forwarded for grading. A clinician usability survey indicated high
acceptance (~95%), supporting the feasibility of deployment as a lightweight
decision-support tool. Limitations include reliance on single sagittal slices
and single-sequence data; future work will incorporate multi-slice/3D and
multi-sequence MRI to improve sensitivity and generalizability.
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1. INTRODUCTION

Anterior cruciate ligament (ACL) injuries are among the most frequent serious ligament injuries of
the knee in sports medicine and are a major cause of functional instability when untreated. Accurate detection
and grading are clinically important to guide timely management and to reduce secondary meniscal or
chondral damage. Magnetic resonance imaging (MRI) in Figure 1 is widely used to evaluate ACL fiber
continuity, signal changes, and associated intra-articular findings [1], [2]. Figure 1(a) is knee anatomy of
ACL injury and Figure 1(b) is actual MRI knee. Although MRI provides excellent soft-tissue contrast for
evaluating ACL integrity, interpretation still depends on reader expertise and can show inter-observer
variability, particularly for partial tears and subtle signal abnormalities. These limitations motivate
computer-aided diagnosis systems that can offer objective and reproducible decision support [1], [3], [4].

In many clinical settings, MRI is interpreted by radiology services and then integrated with
orthopedic assessment. This multi-step workflow can contribute to delays and variability in grading when
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case volumes are high or when expertise is limited. Automating parts of the image-based assessment may
help standardize grading and shorten the time to a preliminary report, especially in resource-constrained
environments [5]. Recent research has demonstrated strong performance for ACL tear detection using
multi-sequence radiomics and modern machine learning. For example, Cheng et al. [3] used multi-sequence
(T1-weighted and PD-weighted) MRI radiomics with an support vector machine (SVM) classifier and
reported high area under the curve (AUC), sensitivity, and specificity. Deep learning approaches have also
been applied to ACL tear detection and localization on knee MRI [3]. However, many high-performing
methods require multi-sequence or multi-slice/3D inputs, intensive feature extraction, and substantial
computing resources, which can hinder rapid deployment on lightweight platforms and limit interpretability
[6]-[8]. This study targets a complementary niche by proposing a fully automated, computationally efficient
pipeline that uses standardized preprocessing, interpretable morphometric features, principal component
analysis (PCA) for dimensionality reduction, and a hybrid SVM-artificial neural network (ANN) architecture
to i) screen for injury and ii) grade severity. Accordingly, the system is evaluated using confusion matrices,
receiver operating characteristic (ROC) analysis, and clinically relevant metrics (accuracy, sensitivity, and
specificity). The results section reports both the screening performance (injury vs non-injury) and the grading
performance (normal/partial/complete tear) [9]. Clinically, ACL injury assessment typically combines patient
history, physical examination (e.g., Lachman, pivot-shift, and anterior drawer tests) and MRI confirmation.
Normal ACLs often appear as a continuous low-signal band, whereas partial tears may show waviness,
increased signal, or focal fiber disruption; complete tears show discontinuity or non-visualization [1].

Thighbone (femur)

cruciate
ligament (ACL)

Shinbone (tibia)

ACL injury

(b)

Figure 1. MRI is widely used to (a) knee anatomy of ACL injury and (b) actual MRI knee

Digital image processing has emerged as a critical enabler of automated medical image analysis
because it allows systematic enhancement and segmentation of anatomical structures. Basic operations such
as resizing, cropping, contrast adjustment, filtering, thresholding and binary inversion are used to standardize
input images and prepare for subsequent segmentation and feature extraction [9], [10]. In ACL MRI studies,
these methods are applied to isolate the ligament from surrounding bone, cartilage and soft tissues, usually by
focusing on a region of interest and then performing morphological operations to sharpen structural
boundaries [11], [12]. The work of Mazlan and colleagues describes a comprehensive pipeline that includes
resizing to a standard format, cropping to a region determined collectively by medical experts and
computational analysis, contrast enhancement to correct dark scans and noise suppression using median or
average filters, followed by segmentation using dilation, erosion, boundary tracing and region-propagation
techniques. This progression reflects a general consensus in the literature that a robust pre-processing stage is
essential for any successful automated ACL diagnosis system.

Beyond preprocessing, segmentation and feature extraction are central to digital interpretation of
ACL images. Anatomical studies have reported considerable variation in ACL shape and texture, prompting
calls for quantitative analysis of ligament morphology rather than solely visual inspection [13]. Research has
shown that parameters such as ligament size, area, orientation angle and elongation correlate with different
injury levels, where size often separates intact from severely damaged ligaments, area distinguishes partial
from normal injuries, angle reflects complete tears and elongation indicates the degree of stretching or fiber
disruption [3], [14], [15]. These insights support the extraction of shape descriptors as core features for
machine-learning-based ACL classifiers [16]-[18] as shows in Figure 2.
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Figure 2. Variation shape of the knee [13]

Machine learning, particularly supervised learning, is now firmly established in the field of medical
image analysis [4]. Techniques such as SVM, ANN, logistic regression and decision trees have been
extensively used for classification tasks involving tumors, organ segmentation and lesion detection [19]-[21].
In the context of ACL, Mazlan’s early work introduced fuzzy-inference systems using rule-based logic
derived from expert knowledge for MRI-based classification, illustrating the feasibility of automating ACL
diagnosis [19], [20]. Later studies extended this approach to embrace fully data-driven methods, including
SVM-based classification and comparative analyses of embedded systems for ACL MRI diagnosis, which
examined the feasibility of implementing ACL diagnostic tools on different hardware platforms [21]. Further
work proposed a complete ACL diagnosis system using image processing and SVM, where the authors
reported improved performance and provided a stepping stone towards hybrid architectures that integrate
more than one classifier [17], [21], [22] as in (1) and (2).

{(xl' }’1), (x2' yZ)t (X3, }’3) R (xn' yn)} (1)
w,x)+b=0 (2)

The parameter b is scalar, while w is dimensional. The vector w coordinate is perpendicular to
separating plane and the offset parameter b is added to increase the margin gap. Removing parameter b, will
cause the plane going through the origin (0,0) point and restrict any solution. The parallel planes can be
described in (3) and (4) [23].

wx+b=1 3)

w.x+b=-1 4)
The condition of training data must be separable, in order for those planes to have no intersect points and
maximize their distance. In geometry, determine the distance between those planes represent as IZTI in

minimizing |w|.

2. MATERIAL AND METHOD

The methodology of this study is designed to construct a fully automated diagnostic framework for
ACL injuries using MRI and to reflect the steps by which clinicians assess such injuries in practice.
The overall workflow extends previous work by Mazlan, who developed an ACL diagnosis system that
integrates digital image processing, feature reduction and an ensemble of SVM and ANN classifiers for MRI-
based injury diagnosis, and demonstrated its feasibility in a hospital setting as in Figure 3 [18], [22], [24].

Input Neural |—>
Feature Network Feature
A

T \4

Supervised Learning Algorithm

Figure 3. Structure of a supervised learning system
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The first stage concerns MRI data acquisition and standardization. All MRI images used in this
research were obtained from the radiology department of Hospital Taiping, Malaysia. MRI acquisition details
(to address scanner-related variability): all knee MRI examinations were acquired at Hospital Taiping using a
consistent clinical knee protocol to minimize intra-dataset variability. The scanner model, field strength: [1.5
T/3 T], and knee coil: [to be specified]. The sagittal images used in this study were exported from the routine
protocol. All images were anonymized at export, converted to grayscale, and resized for standardized
processing. Slice selection and ground truth labeling: each sample in the dataset corresponds to a 2D sagittal
slice image. Reference labels (normal, partial tear, complete tear) were assigned based on the final clinical
interpretation of the full MRI examination (multi-slice series) and corresponding radiology/orthopedic
assessment, and then mapped to the exported slice used as input to the algorithm. Because the ACL course is
oblique relative to the sagittal plane, using a single slice can miss focal fiber disruption; therefore, future
work will extend the input from a single slice to multi-slice or 3D volume analysis and/or sagittal
reconstructions aligned with the ACL trajectory [3], [14]. The dataset comprises 600 sagittal-plane knee MRI
images of grayscale format, each with dimensions of 500x500 pixels.

Among these, 200 represent normal ACL structures, 200 depict partial tears and 200 correspond to
complete or complete tears, resulting in a balanced three-class dataset. The images were captured under
standardized settings designed to minimize movement artefacts and other sources of noise, such as
physiologic motion and magnetic susceptibility effects, so as to ensure a consistent visualization of the knee
anatomy. MRI was selected because it offers excellent soft-tissue contrast while using radiofrequency
radiation considered safe compared with invasive imaging modalities like arthroscopy [22]. Once collected,
the MRI images undergo an image preprocessing pipeline that standardizes resolution, enhances contrast and
prepares the images for segmentation and feature extraction. The preprocessing is implemented in MATLAB
and begins by resizing each MRI to a uniform size, which facilitates later processing steps and ensures that
region-of-interest operations reference consistent coordinates. The system then applies cropping to isolate the
ACL region. Through collaborative analysis involving medical experts and inspection of 600 MRI samples, a
cropping window located at [30 73 150 190] for resized images of [320 220] was identified as optimal for
capturing the ligament area between the femur and tibia. This choice is consistent with prior imaging studies
that recommend focusing on anatomically relevant regions to improve efficiency and reduce irrelevant
variation in subsequent processing as in (5) [25], [26].

(xnew,ynew) = (xold X k), YVoa X k) )

Where by k is the resize gain.

Following cropping, contrast enhancement is applied to redistribute pixel intensities and improve
the visibility of ligament structures, especially in scans that initially appear dark or exhibit low contrast.
This enhancement increases the effective grayscale dynamic range available for ACL and adjacent tissues,
making it easier to distinguish ligament fibers from surrounding structures as illustrate in (6).

(ayimya )= (5).(3)-(3) () ©)

Noise is reduced using median and mean filters to smooth intensity variations and suppress small
artefacts while preserving edges, helping standardize image appearance and improve segmentation reliability.
Segmentation then isolates the ACL by thresholding grayscale images to binary, followed by morphological
refinement: dilation bridges gaps between ligament pixels and erosion removes isolated noise and sharpens
boundaries. Boundary tracing extracts a closed ligament contour, and region-based labeling (region
propagation) retains the connected ACL object while removing unrelated structures [10], [24]. This fully
automated process yields an ACL mask that preserves ligament geometry and location for morphometric
analysis, following key stages described by Mazlan [18], [22]. Feature extraction then represents the
segmented ACL using quantitative descriptors for machine learning. Guided by orthopedic knowledge and
prior studies [3], [13]-[15], features include size, area, orientation angle, elongation, aspect ratio, circularity,
centroid, and related region properties (Table 1).

Size and area capture ligament extent and potential fiber loss, angle reflects alignment disruption
typical of complete tears, and elongation/aspect ratio/circularity describe shape changes associated with
stretching or structural damage. The full set of features can be high-dimensional and may contain redundant
or correlated variables, principal component analysis is employed for dimensionality reduction. PCA
transforms the original variables into a smaller set of uncorrelated principal components that capture most of
the variance in the feature space. In earlier ACL classification work, Mazlan showed that four principal
components are sufficient to preserve the discriminative information necessary to distinguish normal, partial
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and crucial injuries, while simplifying classifier design and mitigating overfitting. Accordingly, this study
uses the leading principal components as inputs to the machine-learning models. The machine-learning
architecture consists of two levels: an SVM-based screening stage and an ANN-based classification stage.
The screening stage addresses the binary question of whether a given MRI scan shows an ACL injury. For
this purpose, an SVM is trained on the principal components to separate injured from non-injured cases,
leveraging the algorithm’s ability to construct optimal separating hyperplanes with maximal margins.
Hyperparameters such as the kernel type and regularization factors are tuned empirically using training and
validation sets, with performance assessed through confusion matrices and ROC curves. Samples classified
as non-injured are labeled as normal and not passed to further processing, whereas samples classified as
injured are forwarded to the ANN.

Table 1. Parameter extraction

Feature Description
X-axis Elongation pixel in x-axis.
Y-axis Elongation pixel in y-axis.
Perimeter Total pixel along ACL boundary.
Area Triangular area in ACL.

Average pixel  An average pixel of ACL object in image.
Circularity Circular area in ACL.
Aspectratio  Ratio vertical pixel line with horizontal pixel line.
Angle Elongation degree ACL.
Number side  Total pixel ACL object in image.

The ANN, implemented as a feed-forward network trained with the Levenberg—Marquardt
algorithm, performs multi-class classification into normal, partial tear and complete tear categories. It accepts
the principal components as inputs and produces a three-class output. During training, the network weights
are iteratively updated until convergence is achieved based on performance metrics such as mean-squared
error and accuracy on training, validation and test sets. Mazlan’s thesis reports that, with appropriate
configuration, the ANN achieves near-perfect regression values and high class-specific performance indices.
These findings inform the network design and training strategy used in the present study as in Figure 4.

Input Hidden Layer Output

Weight 2

Figure 4. ANN applied for the ACL diagnosis structure

Performance evaluation involves both quantitative and qualitative measures. Quantitatively, the
system is evaluated using accuracy, sensitivity, specificity, confusion matrices and ROC curves for the SVM,
ANN and the combined hybrid system. Qualitatively, clinical validation is obtained by comparing system
outputs against the diagnoses of orthopedic and radiology specialists on selected cases, and by administering
an online questionnaire to medical practitioners to gauge usability, usefulness and affordability. The system
is ultimately implemented on two platforms: MATLAB, serving as the development and processing
environment, and an Android application that delivers a lightweight diagnostic tool for mobile use.

3. RESULTS AND DISCUSSION

The results of this study demonstrate that the proposed SVM—ANN ensemble system can accurately
diagnose ACL conditions using MRI and that it aligns closely with clinical expectations. Quantitative
performance is summarized using confusion matrices and aggregated metrics for the SVM screening module,
the ANN classification module and the integrated hybrid system. The process input obtained data from four
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features explained in previous chapter. Figure 5(a) does not apply the k-mean technique, while Figure 5(b)

applied with 2720f (K) and Figure 5(c) with different (K) parameter of 27*. Red dots mean ACL injury and
green dots mean non-ACL injury.

Figure 5. Data distribution: (a) without the k-mean cluster, (b) 272 k-mean cluster, and
(c) 27* k-mean cluster

All the clustered parameters based on four features (circularity, aspect ratio, angle and number side)
can be easily identified from each group using k-mean cluster which used constant parameter of C=23 with
v=2—4. This figure is the best testing parameter applied on both cluster; higher parameter might produce large
margin error, while a low parameter produces less boundary cluster. The approximate coefficient explains the
relation between injury data and non-injury data as Table 2 shows the result of screening using SVM with
different parameters of gamma. From here, the most suitable value fits for this system is at y=-4 with an
average highest approximate coefficient of 79%.

Table 2. SVM screening with the variable gamma parameter

Phase Data Scheme y=0 y=-2 y=-4 y=-8
Training 70% 40.40% 52.10% 77.40% 61.40%
Testing 20% 47.10% 54.70% 81.20% 72.50%

Validation 10% 38.90% 59.30% 82.50% 68.60%

The ANN applied Levenberg-Marquardt (LM) technique. The LM is a very simple method for
approximating a function in classifying ACL injuries LM able to reveal potentially complex relationships for
all features in this ACL diagnosis system. It is unable to estimate the output, which result type of ACL
injuries. Figure 6 indicates system performance and Figure 7 show the performance without training.

_ Best Validation Performance is 0.00078755 at epoch 76

Train
Validation
— Test
Best

Mean Squared Erfor (mse)

10 20 50 60 70

% 40
76 Epochs

Figure 6. System performance

The training epoch of 76 iterations or epoch has tune weighted from origin value 0.001 to 0.01,
whereby lower weight produces smaller data and the impact on graph shows training data pattern of 1073,
Figure 6 plots graph for training state, the gradient a graph shows gradient value decreasing from 0.0007 to
9.681x1076 with 76 epochs. The decreasing is tuned to maximize matching between training data and test
data, while Figure 7 shows three graphs which is training, test and overall (all). Training regression plotted at
0.9808, while the validation regression shows at 0.9863 and test regression at 0.9657. From here, the all
graph shows most of the data lay on the fit line. The overall performance of training, validation and test
shows regression of 0.9785. From here, when all data plotted in a single graph, obviously seen most of the
data are not lay on the fit line. Therefore, a further training is required to ensure most of the data lay on the fit
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line and produced a more accurate system. A confusion matrix method in this research consists of the hybrid
combination of SVM and ANN, it is used for a decision support tool that uses a model of decisions and
possible consequences including chance event outcomes, resource costs and utility. For the identification of
ACL injury, the results are typically presented in terms of the confusion matrix. This matrix shows the
dispositions of the set of instances in a matrix form. Suppose an identification system involves only two
classes, where each has its associated class labels. There will be four possible outcomes in this case because
it is a binary case. Table 3 shows details result on hybrid system.
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Figure 7. System performance without complete training

Table 3. Details result for hybrid diagnosis system of ACL
Severity Mild Moderate Severe
Accuracy (%) 85.274%  87.731%  87.369%
Error rate (%) <15% <14% <14%
Sensitivity (%) 79.351%  80.924%  82.463%

Table 3 summarizes the hybrid system performance for three severity levels (mild, moderate, and
severe), which correspond to increasing degrees of ACL fiber disruption in this dataset. Importantly, clinical
treatment decisions (e.g., surgery vs. rehabilitation) depend on additional factors such as knee instability,
patient activity demands, and concomitant meniscal or chondral injuries; therefore, the system output should
be interpreted as imaging-based severity grading rather than a direct treatment recommendation [2], [14].

Performance comparison and refinement: the hybrid SVM-ANN system attains sensitivity values of
approximately 79-82% across severity strata (Table 3), which is lower than several recent multi-sequence
radiomics and deep learning approaches. For instance, Cheng et al. [3] reported validation sensitivity and
specificity of 0.857 and 0.829 (AUC 0.927) using multi-sequence MRI radiomics with an SVM classifier.
The performance gap is likely influenced by (i) the use of a single 2D sagittal slice rather than multi-slice/3D
inputs, (ii) scanner/protocol variability not fully modeled, and (iii) the use of hand-crafted morphometric
features instead of richer texture/radiomics features [12], [25]. Future refinements will prioritize multi-slice
aggregation (e.g., slice-wise voting or 3D modeling), protocol harmonization, feature expansion toward
radiomics, and comparative benchmarking against lightweight convolutional neural network (CNN)
backbones suitable for mobile deployment [5], [14], [26].

4. CONCLUSION

The results show that a structured pipeline standardized preprocessing, interpretable morphometric
feature extraction, PCA-based reduction, and hybrid classification can enable automated ACL injury
screening and MRI-based severity grading as a decision-support tool (not a replacement for expert reading).
A key strength is the two-stage design: the SVM first filters clearly normal cases, reducing ANN workload
and allowing the ANN to focus on grading injured scans. This reflects clinical reasoning and, based on
confusion matrices and performance comparisons, reduces normal-case misclassification while improving
discrimination between partial and complete tears, consistent with Mazlan’s findings on hybrid systems.

Hybrid SYM—ANN system for automated mri diagnosis of anterior ... (Sazwan Syafiqg Mazlan)
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Clinically motivated choices (region of interest (ROI) definition and morphology-based descriptors linked to
ligament continuity/appearance) also improve transparency versus black-box models and support future
extension to radiomics or deep features. A preliminary clinician evaluation found the interface and outputs
understandable for screening and grading; however, broader multi-disciplinary and prospective assessments
especially including more musculoskeletal radiologists are needed to quantify clinical impact. Limitations
include reliance on a single sagittal slice (risking missed focal disruption due to the ACL’s oblique course),
potential scanner/protocol variability, and a modest dataset with hand-crafted features that may underperform
multi-sequence radiomics. Real-world deployment will require multi-center prospective validation, protocol
harmonization, and threshold calibration; future work will expand data across scanners/sequences, add multi-
slice aggregation, and benchmark lightweight deep-learning backbones suitable for edge/mobile use.

Overall, this study presents a fully automated framework integrating preprocessing, PCA-based
feature reduction, SVM screening, and ANN grading in a unified architecture. On a balanced dataset of 600
knee MRI images from Hospital Taiping, the system achieved ~86% accuracy and >81% sensitivity, with
ROC analysis indicating strong discriminative performance. Expert verification and practitioner survey
feedback suggest the outputs align with routine practice and that the tool is usable and potentially cost-
effective for deployment.

This work contributes by embedding expert knowledge into an end-to-end platform that combines
image processing, machine learning, and confusion-matrix-based evaluation to reduce manual workload,
standardize decisions, and support consistent ACL diagnosis. Future work will focus on multi-center
expansion, learning features directly from raw images using deep learning, and tighter integration with
clinical information technology (IT) systems to improve robustness, accuracy, and adoption in routine
orthopedic and sports medicine practice.
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