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1. INTRODUCTION

The internet of things (IoT) has expanded into large-scale deployments supporting smart cities,
industrial automation, healthcare monitoring, and intelligent transportation. These applications rely on multi-
hop wireless communication over low-power and lossy networks (LLNs), making them vulnerable to routing
threats due to limited computation, open wireless exposure, and lack of centralized control. Attackers exploit
this environment to launch Syhil, sinkhole, blackhole, and wormhole attacks, severely degrading packet
delivery, energy stability, and service reliability [1]-[3].

Despite extensive research on 10T secure routing, existing solutions either focus on cryptographic
protection, trust-based routing, or machine learning (ML)-based intrusion detection in isolation. These
approaches struggle to simultaneously achieve security, energy efficiency, and adaptability under coordinated
routing attacks in resource-constrained IoT environments.

Conventional cryptographic mechanisms ensure authentication but fail to detect compromised
forwarding behavior, while rule-based intrusion detection system (IDS) and threshold-driven detectors
generate high false alarms under dynamic loT traffic [4]-[6]. ML-based intrusion detection has recently
shown promising results; however, these approaches often require high-end resources or large training
datasets unsuitable for constrained 10T nodes [7]-[9]. Trust-based routing improves resilience against insider
threats but introduces overhead and adapts slowly to evolving attacks [1], [10], [11].

Recent studies highlight the need for lightweight anomaly detection integrated with adaptive secure
routing, enabling 10T nodes to detect malicious behavior while maintaining energy efficiency [12]-[15].
Reinforcement learning and deep models also show potential but require long convergence times or
significant processing power, limiting real-world adoption in LLNs [16]-[18].
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To address these gaps, this work proposes artificial intelligence-enhanced secure routing (AIRS), an
Al-enhanced secure routing protocol that integrates (i) lightweight anomaly detection, (ii) adaptive trust-based
routing, and (iii) low-overhead integrity verification. AIRS is designed to operate efficiently on constrained 10T
hardware while providing strong resilience against coordinated routing attacks. The efficacy of AIRS is
validated through extensive Cooja-based simulations following methodologies similar to [19]-[21].

Figure 1 illustrates a typical 10T multi-hop network where various routing attacks occur. A Sybil
attacker injects packets using multiple fake identities; a sinkhole attacker falsely advertises a low-cost route
to attract traffic; a blackhole attacker drops all forwarded packets; and a wormhole attacker creates a tunnel
to relay packets, bypassing legitimate routes. Legitimate nodes attempt to reroute traffic but suffer from
disrupted topology, reduced packet delivery ratio (PDR), and energy imbalance.

The main contributions of this work are:

A tightly integrated Al-enhanced secure routing framework where anomaly scores directly influence
trust-aware next-hop selection.

A lightweight random forest—based anomaly detector tailored for low-power 10T nodes.

A unified cost function that balances security (trust), efficiency (energy), and routing performance.
Comprehensive simulation-based evaluation under multiple routing attacks.

We hypothesize that combining a compact ML-based anomaly score with a trust-aware routing cost
results in significantly higher detection accuracy and longer network lifetime than existing secure routing
schemes, while keeping per-node overhead suitable for LLNs.

The remainder of the paper is organized as follows: section 2 presents the related work. Section 3
describes the proposed AIRS methodology. Section 4 explains the simulation environment and evaluation
metrics. Section 5 presents performance results and comparative analysis. Section 6 concludes the paper.
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Figure 1. Conceptual overview of 10T routing threats

2. RELATED WORK

Ensuring secure routing in 10T networks remains a significant challenge due to sophisticated attacks
that exploit the multi-hop communication structure. Several approaches have been proposed, including trust-
based routing, anomaly detection, cryptographic protection, and ML-based intrusion detection. Trust-based
routing approaches estimate node reliability using forwarding behavior and interaction history. Methods
proposed in [1], [10], and [11] improve resistance to insider attacks; however, they incur high communication
overhead, slow trust convergence, and increased energy consumption. Foundational mechanisms such as [22]
provide early insights but lack adaptability for modern, dynamic loT environments.

ML-based IDS solutions have shown notable progress. Lightweight ML detectors in [7]-[9]
demonstrate improved accuracy but require careful feature selection and remain sensitive to false positives
during congestion. Deep learning models such as [4], [5], [17], [23] achieve high detection accuracy but
demand significant computational and memory resources unsuitable for constrained nodes. Recent studies
report that deep learning models require tens to hundreds of megabytes of memory and incur inference
latencies unsuitable for typical 10T nodes with 32-256 KB RAM [17], [23]. Hybrid IDS frameworks
combining traffic statistics and learning methods, such as [12]-[14], detect multiple attack types but generate
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increased false positives under heavy network load. Cryptographic mechanisms including [24] ensure robust
authentication but fail to detect compromised internal nodes.

Reinforcement-learning-based routing solutions such as [16] and [18] offer adaptability but require
lengthy training periods, limiting real-time deployment. Surveys in [3], [6], [22] emphasize the need for
integrated, energy-efficient, ML-enhanced secure routing strategies. To bridge these gaps, this study proposes
an Al-enhanced secure routing approach that combines lightweight ML-based anomaly detection, adaptive
trust management, and energy-aware secure path selection. Table 1 summarizes existing secure routing
approaches for l1oT networks. It compares their main methods, strengths, limitations, and identifies the
research gaps addressed by the proposed AIRS protocol.

Table 1. Comparison of existing secure routing approaches and research gaps

Approach Method highlights Strengths Limitations Research gap (addressed
by AIRS)
Trust-based routing [1], Node reputation, Simple; insider High overhead; slow Lacks real-time anomaly-
[7],[12] behavior monitoring resilience adaptation driven trust updates.
ML-based IDS [16], [24] Supervised/deep High accuracy High computation; Not suitable for
learning IDS large datasets constrained 10T nodes.
Hybrid statistical-ML Statistics+ ML Multi-attack High false positives No routing-aware
IDS [4] detection mitigation mechanism.
Cryptographic routing [5] Key-based Prevents spoofing ~ Cannot detect insiders No behavior-based attack
authentication detection.
RL-based routing [10] Adaptive learning Dynamic paths Long training; high High online learning
cost overhead.

3. PROPOSED METHOD

This section presents the proposed AIRS protocol. AIRS integrates lightweight anomaly detection,
trust-based secure routing, and cryptographic integrity verification to mitigate routing attacks such as Sybil,
sinkhole, blackhole, and wormhole attacks. The overall architecture of AIRS includes four components:
(i) feature extraction and anomaly detection, (ii) trust computation, (iii) secure next-hop selection, and
(iv) integrity validation.

3.1. System architecture overview

AIRS operates in three phases. In Phase 1, each node collects transmission behavior (packet success
rate, drop rate), energy level, and neighborhood consistency. In Phase 2, a lightweight ML classifier
generates an anomaly score for each neighbor. In Phase 3, secure routing paths are selected using a trust-
aware cost function. Figure 2 illustrates the overall architecture of the proposed AIRD protocol.
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Figure 2. Block diagram of the AIRS architecture

3.2. Lightweight anomaly detection
Each node periodically evaluates its neighbors by computing the PDR:

PDRi — Packetyecy (1)

Packetgent
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The packet drop rate is computed as:

A lightweight ML classifier (random forest with optimized depth) is trained offline and deployed on loT
nodes. The classifier uses four input features: PDR, drop rate, residual energy, and hop consistency. The
output anomaly score 4;lies in the range [0,1]. Nodes with A; > 6 are marked suspicious.

The random forest model is trained offline using labeled traffic data generated from Cooja
simulations under normal and attack scenarios. The dataset consists of approximately 12,000 samples with a
70:30 training—testing split. The model uses 20 decision trees with a maximum depth of 8, selected through
preliminary sensitivity analysis to balance accuracy and memory footprint. Offline training avoids
computational burden on 10T nodes, while runtime inference remains lightweight. To prevent data leakage,
training and testing datasets are generated from independent simulation runs.

3.3. Trust score computation
AIRS assigns each node a dynamic trust value updated as:

TPV =y + (1= H(1 - A) ®)

where:

T/**"= updated trust value;

T2'= previous trust value;

A,;=anomaly score; A= trust decay factor (0.6-0.8 recommended)
Nodes with T; < T,;,are excluded from routing tables.

3.4. Secure next-hop selection
AIRS selects the next hop using a cost function combining distance, trust, and energy:

i) =adip)+ p-T)+ y(1-E) )

d(i, j)= transmission distance

T;= trust value of neighbor j

E;= normalized residual energy of neighbor j

a, B, y= weighting factors (¢ + B +y = 1)
The next hop is selected as:

NH () = argmin C(i, ) ®)

This ensures nodes with low trust or low energy are avoided.

3.5. Packet integrity verification
To prevent packet modification or replay attacks, AIRS attaches a lightweight hash:

H(P) = SHA—256(S || P ||t) (6)

where: S= source ID; P= packet payload; t= timestamp
Receiving nodes recompute the hash, and a mismatch triggers trust reduction.

3.6. AIRS algorithm workflow
Algorithm 1. AIRS intrusion-resilient secure routing
1. Initialize trust and energy values for all nodes
2. For each broadcast interval:
a. Compute PDR and drop rate
b. Extract features and compute anomaly score using ML model
c. Update trust using (3)
3. For route selection:
a. Compute cost function using (4)
b. Select next hop using (5)
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4. For each packet:
a. Compute hash using (6)
b. Verify hash at receiver
c. Penalize sender if a mismatch occurs
This workflow ensures accurate detection, stable routing, and energy-efficient operation.

3.7. Overhead analysis

The AIRS components are designed to operate within typical 10T node constraints (32-256 KB
RAM). ML inference latency is in the order of milliseconds, making AIRS suitable for real-time routing
decisions in LLNs. The computational and communication overhead of AIRS is summarized in Table 2.

Table 2. AIRS overhead analysis

Component Time complexity ~ Memory  Communication overhead
Anomaly detection O(T-F) ~18 KB None
Trust update 0(2) Negligible Local
Integrity check O(L) Negligible +hash field

4.  SIMULATION SETUP AND EVALUATION

The proposed AIRS protocol was implemented using the Cooja simulator running Contiki OS,
which supports low-power wireless networks and realistic 10T communication models. The simulation
evaluated AIRS under multiple routing attack conditions and compared its performance with secure-RPL and
trust-based LEACH.

4.1. Simulation environment

A total of 500 10T nodes were randomly deployed in a 100 x 100 m area using the unit disk graph
(UDG) radio model. Each node was initialized with an energy budget of 2,000 mJ. The sink node was
positioned at the center. Nodes transmitted constant bit rate (CBR) traffic at 50 packets/s.

Routing attacks were introduced by compromising 20% of nodes. Attackers generated Sybil
identities, attracted traffic (sinkhole), dropped packets (blackhole), or tunneled packets (wormhole). The
simulation lasted 500 rounds, and all results represent the average of 10 runs.

4.2. Simulation parameters
The simulation parameters used in the Cooja environment are listed in Table 3.

Table 3. Simulation parameters

Parameter Value Parameter Value
Network size 500 nodes Radio model UDG
Simulation area (100\times 100) m Attack ratio 20% malicious nodes
Initial energy 2,000 mJ/node Simulation duration 500 rounds
Traffic model CBR, 50 packets/s Protocols compared AIRS, secure-RPL, trust-based LEACH

4.3. Evaluation metrics
AIRS was evaluated using the following performance indicators:
— Intrusion detection accuracy (IDA)
- PDR
— Energy consumption
— Network lifetime (rounds until 50% node death)
— False positive rate (FPR)
These metrics are widely used to assess routing performance in 10T security research [13], [14].

4.4. Performance analysis

This section summarizes the key findings obtained from the performance evaluation of the proposed
AIRS protocol. The results consistently demonstrate that AIRS provides stronger intrusion resilience,
improved routing stability, and better energy efficiency compared to secure-RPL and trust-based LEACH.
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4.4.1. Intrusion detection accuracy

As shown in Figure 3, AIRS achieves a detection accuracy of 96.5%, outperforming secure-RPL
and trust-based LEACH. This performance gain is attributed to the lightweight ML model, which evaluates
PDR, drop rate, energy behavior, and neighborhood consistency—features validated as effective in earlier
studies [7], [12], [13]. Secure-RPL suffers due to static metrics, while trust-based LEACH lacks dynamic
anomaly evaluation needed for coordinated attacks [1], [25].

4.4.2. Packet delivery ratio

AIRS maintains a 94% PDR, significantly higher than baseline protocols (Figure 4). Its trust-aware
routing cost function enables avoidance of malicious and low-energy nodes, reducing packet losses caused by
Sybil, sinkhole, and blackhole attacks. Similar secure routing improvements using trust and ML-based
detection were reported in [10], [14], [19]. By reducing retransmissions, AIRS enhances network stability
and conserves energy [11].
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Figure 3. Intrusion detection accuracy of AIRS Figure 4. PDR under routing attacks

4.4.3. Energy consumption

Figure 5 shows AIRS consuming only 1.3 J/node, which is lower than trust-based LEACH and
secure-RPL. This improvement aligns with findings from energy-aware ML-based routing in [15], [20], and
trust-driven optimization in [10], [26]. AIRS minimizes redundant transmissions and avoids routing through
compromised nodes, ensuring balanced energy usage across the network [9].

4.4.4. Network lifetime

As illustrated in Figure 6, AIRS achieves the longest network lifetime, sustaining 450 rounds before
50% node depletion. Balanced next-hop selection prevents overload on specific nodes, similar to lifetime-
optimized routing in [11], [18]. Unlike secure-RPL and trust-based LEACH, AIRS maintains consistent
connectivity even under attack-driven energy imbalance [1], [2].
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4.4.5. False POSITIVE RATE

AIRS maintains a low 3.5% FPR, significantly better than baseline protocols (Figure 7). This
improvement results from behavior-contextual ML detection, consistent with techniques in [4], [7], [8].
Reduced misclassification rates lead to fewer unnecessary route changes and higher routing stability under
adversarial conditions [5], [23].
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Figure 7. False positive rate comparison

4.5. Discussion

The comparative analysis demonstrates that AIRS consistently outperforms existing secure routing
schemes across all evaluated metrics. The integration of lightweight ML-based anomaly detection
significantly improves detection accuracy and reduces false positives, aligning with trends observed in recent
works such as [7], [13], [23]. The trust-aware routing mechanism effectively minimizes the influence of
compromised nodes, resulting in higher PDR and more stable multi-hop paths, which is consistent with
observations in trust-management studies like [1], [11]. Furthermore, AIRS achieves lower energy
consumption by reducing retransmissions and preventing routing loops, supporting findings reported in
energy-aware secure protocols [10], [20]. The extended network lifetime demonstrates that combining
anomaly detection with energy-adaptive cost functions yields long-term operational benefits, similar to
conclusions in [18], [19]. Overall, AIRS bridges the gap between accurate intrusion detection and efficient
secure routing, offering a balanced and scalable solution for resource-constrained 10T deployments where
both resilience and energy efficiency are critical.

5. CONCLUSION

This paper introduced AIRS, an Al-enhanced secure routing protocol designed to strengthen loT
networks against routing attacks while maintaining low energy consumption. By combining lightweight ML—
based anomaly detection, adaptive trust computation, and efficient next-hop selection, AIRS provides a
balanced solution that addresses both security and performance requirements in resource-constrained
environments. Simulation results demonstrated that AIRS achieves 96.5% intrusion detection accuracy,
maintains a 94% PDR, and reduces average energy consumption to 1.3 J per node, outperforming secure-
RPL and trust-based LEACH across all evaluation metrics. The protocol also extends network lifetime and
maintains a low false positive rate, showing that intelligent behavior analysis can significantly improve
routing stability under adversarial conditions.

AIRS offers a practical and scalable approach for 10T deployments requiring secure and energy-
aware communication. Future work will explore integrating federated learning for decentralized model
updates and validating AIRS on real hardware testbeds to assess performance under dynamic real-world
environments.

Despite promising results, this study has several limitations. The evaluation is restricted to Cooja-
based simulations and does not yet consider hardware testbeds or real traffic traces. The anomaly detection
model is trained offline and may require retraining under significant traffic pattern changes. Although
explicit concept drift experiments are not conducted, AIRS updates trust values dynamically using anomaly
scores, enabling partial adaptation to evolving attack behavior.
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