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 This paper proposes artificial intelligence-enhanced secure routing (AIRS), a 
lightweight AI-enhanced secure routing protocol for internet of things (IoT) 

networks operating under advanced routing attacks. Unlike existing 
approaches that treat intrusion detection and routing separately, AIRS tightly 
integrates anomaly scoring into trust-aware routing decisions using a 
compact random forest model designed for constrained nodes. The anomaly 
detector is trained offline on simulated IoT traffic features and deployed for 
real-time inference during routing. Extensive Cooja simulations demonstrate 
that AIRS improves intrusion detection accuracy and packet delivery while 
reducing energy consumption compared to secure-RPL and trust-LEACH. 

The current validation is limited to simulation environments, and real-world 
testbed evaluation is left for future work. 
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1. INTRODUCTION 

The internet of things (IoT) has expanded into large-scale deployments supporting smart cities, 

industrial automation, healthcare monitoring, and intelligent transportation. These applications rely on multi-

hop wireless communication over low-power and lossy networks (LLNs), making them vulnerable to routing 

threats due to limited computation, open wireless exposure, and lack of centralized control. Attackers exploit 

this environment to launch Sybil, sinkhole, blackhole, and wormhole attacks, severely degrading packet 

delivery, energy stability, and service reliability [1]–[3]. 

Despite extensive research on IoT secure routing, existing solutions either focus on cryptographic 

protection, trust-based routing, or machine learning (ML)-based intrusion detection in isolation. These 

approaches struggle to simultaneously achieve security, energy efficiency, and adaptability under coordinated 
routing attacks in resource-constrained IoT environments. 

Conventional cryptographic mechanisms ensure authentication but fail to detect compromised 

forwarding behavior, while rule-based intrusion detection system (IDS) and threshold-driven detectors 

generate high false alarms under dynamic IoT traffic [4]–[6]. ML-based intrusion detection has recently 

shown promising results; however, these approaches often require high-end resources or large training 

datasets unsuitable for constrained IoT nodes [7]–[9]. Trust-based routing improves resilience against insider 

threats but introduces overhead and adapts slowly to evolving attacks [1], [10], [11]. 

Recent studies highlight the need for lightweight anomaly detection integrated with adaptive secure 

routing, enabling IoT nodes to detect malicious behavior while maintaining energy efficiency [12]–[15]. 

Reinforcement learning and deep models also show potential but require long convergence times or 

significant processing power, limiting real-world adoption in LLNs [16]–[18]. 

https://creativecommons.org/licenses/by-sa/4.0/
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To address these gaps, this work proposes artificial intelligence-enhanced secure routing (AIRS), an 

AI-enhanced secure routing protocol that integrates (i) lightweight anomaly detection, (ii) adaptive trust-based 

routing, and (iii) low-overhead integrity verification. AIRS is designed to operate efficiently on constrained IoT 

hardware while providing strong resilience against coordinated routing attacks. The efficacy of AIRS is 

validated through extensive Cooja-based simulations following methodologies similar to [19]–[21]. 

Figure 1 illustrates a typical IoT multi-hop network where various routing attacks occur. A Sybil 

attacker injects packets using multiple fake identities; a sinkhole attacker falsely advertises a low-cost route 
to attract traffic; a blackhole attacker drops all forwarded packets; and a wormhole attacker creates a tunnel 

to relay packets, bypassing legitimate routes. Legitimate nodes attempt to reroute traffic but suffer from 

disrupted topology, reduced packet delivery ratio (PDR), and energy imbalance. 

The main contributions of this work are: 
 A tightly integrated AI-enhanced secure routing framework where anomaly scores directly influence 

trust-aware next-hop selection. 

 A lightweight random forest–based anomaly detector tailored for low-power IoT nodes. 

 A unified cost function that balances security (trust), efficiency (energy), and routing performance. 
 Comprehensive simulation-based evaluation under multiple routing attacks. 

We hypothesize that combining a compact ML-based anomaly score with a trust-aware routing cost 

results in significantly higher detection accuracy and longer network lifetime than existing secure routing 

schemes, while keeping per-node overhead suitable for LLNs. 

The remainder of the paper is organized as follows: section 2 presents the related work. Section 3 
describes the proposed AIRS methodology. Section 4 explains the simulation environment and evaluation 

metrics. Section 5 presents performance results and comparative analysis. Section 6 concludes the paper. 

 

 

 
 

Figure 1. Conceptual overview of IoT routing threats 

 

 

2. RELATED WORK 

Ensuring secure routing in IoT networks remains a significant challenge due to sophisticated attacks 

that exploit the multi-hop communication structure. Several approaches have been proposed, including trust-

based routing, anomaly detection, cryptographic protection, and ML-based intrusion detection. Trust-based 

routing approaches estimate node reliability using forwarding behavior and interaction history. Methods 
proposed in [1], [10], and [11] improve resistance to insider attacks; however, they incur high communication 

overhead, slow trust convergence, and increased energy consumption. Foundational mechanisms such as [22] 

provide early insights but lack adaptability for modern, dynamic IoT environments. 

ML-based IDS solutions have shown notable progress. Lightweight ML detectors in [7]-[9] 

demonstrate improved accuracy but require careful feature selection and remain sensitive to false positives 

during congestion. Deep learning models such as [4], [5], [17], [23] achieve high detection accuracy but 

demand significant computational and memory resources unsuitable for constrained nodes. Recent studies 

report that deep learning models require tens to hundreds of megabytes of memory and incur inference 

latencies unsuitable for typical IoT nodes with 32–256 KB RAM [17], [23]. Hybrid IDS frameworks 

combining traffic statistics and learning methods, such as [12]–[14], detect multiple attack types but generate 
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increased false positives under heavy network load. Cryptographic mechanisms including [24] ensure robust 

authentication but fail to detect compromised internal nodes. 

Reinforcement-learning-based routing solutions such as [16] and [18] offer adaptability but require 

lengthy training periods, limiting real-time deployment. Surveys in [3], [6], [22] emphasize the need for 

integrated, energy-efficient, ML-enhanced secure routing strategies. To bridge these gaps, this study proposes 

an AI-enhanced secure routing approach that combines lightweight ML-based anomaly detection, adaptive 
trust management, and energy-aware secure path selection. Table 1 summarizes existing secure routing 

approaches for IoT networks. It compares their main methods, strengths, limitations, and identifies the 

research gaps addressed by the proposed AIRS protocol. 

 

 

Table 1. Comparison of existing secure routing approaches and research gaps 
Approach Method highlights Strengths Limitations Research gap (addressed 

by AIRS) 

Trust-based routing [1], 

[7], [12] 

Node reputation, 

behavior monitoring 

Simple; insider 

resilience 

High overhead; slow 

adaptation 

Lacks real-time anomaly-

driven trust updates. 

ML-based IDS [16], [24]  Supervised/deep 

learning IDS 

High accuracy High computation; 

large datasets 

Not suitable for 

constrained IoT nodes. 

Hybrid statistical–ML 

IDS [4]  

Statistics+ML Multi-attack 

detection 

High false positives No routing-aware 

mitigation mechanism. 

Cryptographic routing [5]  Key-based 

authentication 

Prevents spoofing Cannot detect insiders No behavior-based attack 

detection. 

RL-based routing [10]  Adaptive learning Dynamic paths Long training; high 

cost 

High online learning 

overhead. 

 

 

3. PROPOSED METHOD  

This section presents the proposed AIRS protocol. AIRS integrates lightweight anomaly detection, 

trust-based secure routing, and cryptographic integrity verification to mitigate routing attacks such as Sybil, 

sinkhole, blackhole, and wormhole attacks. The overall architecture of AIRS includes four components:  

(i) feature extraction and anomaly detection, (ii) trust computation, (iii) secure next-hop selection, and  

(iv) integrity validation. 
 

3.1.  System architecture overview 

AIRS operates in three phases. In Phase 1, each node collects transmission behavior (packet success 

rate, drop rate), energy level, and neighborhood consistency. In Phase 2, a lightweight ML classifier 

generates an anomaly score for each neighbor. In Phase 3, secure routing paths are selected using a trust-

aware cost function. Figure 2 illustrates the overall architecture of the proposed AIRD protocol. 
 
 

 
 

Figure 2. Block diagram of the AIRS architecture 
 
 

3.2.  Lightweight anomaly detection 

Each node periodically evaluates its neighbors by computing the PDR: 

 

𝑃𝐷𝑅𝑖 =  
𝑃𝑎𝑐𝑘𝑒𝑡𝑟𝑒𝑐𝑣

𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑒𝑛𝑡
  (1) 
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The packet drop rate is computed as: 

 

𝐷𝑖 = 1 − 𝑃𝐷𝑅𝑖 (2) 

 

A lightweight ML classifier (random forest with optimized depth) is trained offline and deployed on IoT 

nodes. The classifier uses four input features: PDR, drop rate, residual energy, and hop consistency. The 

output anomaly score 𝐴𝑖lies in the range [0,1]. Nodes with 𝐴𝑖 > 𝜃 are marked suspicious. 

The random forest model is trained offline using labeled traffic data generated from Cooja 

simulations under normal and attack scenarios. The dataset consists of approximately 12,000 samples with a 

70:30 training–testing split. The model uses 20 decision trees with a maximum depth of 8, selected through 

preliminary sensitivity analysis to balance accuracy and memory footprint. Offline training avoids 

computational burden on IoT nodes, while runtime inference remains lightweight. To prevent data leakage, 

training and testing datasets are generated from independent simulation runs. 

 

3.3.  Trust score computation 

AIRS assigns each node a dynamic trust value updated as: 

 

𝑇𝑖
𝑛𝑒𝑤 =  𝛾𝑇𝑖

𝑜𝑙𝑑 + (1 −  𝜆)(1 − 𝐴𝑖) (3) 

 

where:  

𝑇𝑖
𝑛𝑒𝑤= updated trust value;  

𝑇𝑖
𝑜𝑙𝑑= previous trust value;  

𝐴𝑖= anomaly score; 𝜆= trust decay factor (0.6–0.8 recommended) 

Nodes with 𝑇𝑖 < 𝑇minare excluded from routing tables. 

 

3.4.  Secure next-hop selection 

AIRS selects the next hop using a cost function combining distance, trust, and energy: 

 

𝐶(𝑖, 𝑗) = 𝛼 𝑑(𝑖, 𝑗) +  𝛽(1 − 𝑇𝑗) +   𝛾(1 − 𝐸𝑗) (4) 

 

𝑑(𝑖, 𝑗)= transmission distance 

𝑇𝑗= trust value of neighbor 𝑗 

𝐸𝑗= normalized residual energy of neighbor 𝑗 

𝛼, 𝛽, 𝛾= weighting factors (𝛼 + 𝛽 + 𝛾 = 1) 

The next hop is selected as: 
 

𝑁𝐻(𝑖) = arg min
𝑖

𝐶(𝑖, 𝑗)  (5) 

 

This ensures nodes with low trust or low energy are avoided. 

 

3.5.  Packet integrity verification 

To prevent packet modification or replay attacks, AIRS attaches a lightweight hash: 

 

𝐻(𝑃) = 𝑆𝐻𝐴 − 256(𝑆 || 𝑃 ||𝑡) (6) 

 

where: 𝑆= source ID; 𝑃= packet payload; 𝑡= timestamp 

Receiving nodes recompute the hash, and a mismatch triggers trust reduction. 
 

3.6.  AIRS algorithm workflow 

Algorithm 1. AIRS intrusion-resilient secure routing 

1. Initialize trust and energy values for all nodes 

2. For each broadcast interval: 

a. Compute PDR and drop rate 

b. Extract features and compute anomaly score using ML model 

c. Update trust using (3) 

3. For route selection: 

a. Compute cost function using (4) 

b. Select next hop using (5) 
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4. For each packet: 

a. Compute hash using (6) 

b. Verify hash at receiver 

c. Penalize sender if a mismatch occurs 

This workflow ensures accurate detection, stable routing, and energy-efficient operation. 

 

3.7.  Overhead analysis 

The AIRS components are designed to operate within typical IoT node constraints (32–256 KB 

RAM). ML inference latency is in the order of milliseconds, making AIRS suitable for real-time routing 

decisions in LLNs. The computational and communication overhead of AIRS is summarized in Table 2. 

 

 

Table 2. AIRS overhead analysis 
Component Time complexity Memory Communication overhead 

Anomaly detection O(T·F) ~18 KB None 

Trust update O(1) Negligible Local 

Integrity check O(L) Negligible +hash field 

 

 

4. SIMULATION SETUP AND EVALUATION 

The proposed AIRS protocol was implemented using the Cooja simulator running Contiki OS, 

which supports low-power wireless networks and realistic IoT communication models. The simulation 

evaluated AIRS under multiple routing attack conditions and compared its performance with secure-RPL and 

trust-based LEACH. 

 

4.1.  Simulation environment 

A total of 500 IoT nodes were randomly deployed in a 100 × 100 m area using the unit disk graph 
(UDG) radio model. Each node was initialized with an energy budget of 2,000 mJ. The sink node was 

positioned at the center. Nodes transmitted constant bit rate (CBR) traffic at 50 packets/s. 

Routing attacks were introduced by compromising 20% of nodes. Attackers generated Sybil 

identities, attracted traffic (sinkhole), dropped packets (blackhole), or tunneled packets (wormhole). The 

simulation lasted 500 rounds, and all results represent the average of 10 runs. 

 

4.2.  Simulation parameters 

The simulation parameters used in the Cooja environment are listed in Table 3. 

 

 

Table 3. Simulation parameters 
Parameter Value Parameter Value 

Network size 500 nodes Radio model UDG 

Simulation area (100\times 100) m Attack ratio 20% malicious nodes 

Initial energy 2,000 mJ/node Simulation duration 500 rounds 

Traffic model CBR, 50 packets/s Protocols compared AIRS, secure-RPL, trust-based LEACH 

 

 

4.3.  Evaluation metrics 

AIRS was evaluated using the following performance indicators: 

 Intrusion detection accuracy (IDA) 

 PDR 

 Energy consumption 

 Network lifetime (rounds until 50% node death) 

 False positive rate (FPR) 

These metrics are widely used to assess routing performance in IoT security research [13], [14]. 

 

4.4.  Performance analysis 

This section summarizes the key findings obtained from the performance evaluation of the proposed 

AIRS protocol. The results consistently demonstrate that AIRS provides stronger intrusion resilience, 

improved routing stability, and better energy efficiency compared to secure-RPL and trust-based LEACH. 
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4.4.1. Intrusion detection accuracy 

As shown in Figure 3, AIRS achieves a detection accuracy of 96.5%, outperforming secure-RPL 

and trust-based LEACH. This performance gain is attributed to the lightweight ML model, which evaluates 

PDR, drop rate, energy behavior, and neighborhood consistency—features validated as effective in earlier 

studies [7], [12], [13]. Secure-RPL suffers due to static metrics, while trust-based LEACH lacks dynamic 

anomaly evaluation needed for coordinated attacks [1], [25]. 

 

4.4.2. Packet delivery ratio 

AIRS maintains a 94% PDR, significantly higher than baseline protocols (Figure 4). Its trust-aware 

routing cost function enables avoidance of malicious and low-energy nodes, reducing packet losses caused by 

Sybil, sinkhole, and blackhole attacks. Similar secure routing improvements using trust and ML-based 

detection were reported in [10], [14], [19]. By reducing retransmissions, AIRS enhances network stability 

and conserves energy [11]. 

 

 

  
 

Figure 3. Intrusion detection accuracy of AIRS 

 

Figure 4. PDR under routing attacks 

 

 

4.4.3. Energy consumption 
Figure 5 shows AIRS consuming only 1.3 J/node, which is lower than trust-based LEACH and 

secure-RPL. This improvement aligns with findings from energy-aware ML-based routing in [15], [20], and 

trust-driven optimization in [10], [26]. AIRS minimizes redundant transmissions and avoids routing through 

compromised nodes, ensuring balanced energy usage across the network [9]. 

 

4.4.4. Network lifetime 

As illustrated in Figure 6, AIRS achieves the longest network lifetime, sustaining 450 rounds before 

50% node depletion. Balanced next-hop selection prevents overload on specific nodes, similar to lifetime-

optimized routing in [11], [18]. Unlike secure-RPL and trust-based LEACH, AIRS maintains consistent 

connectivity even under attack-driven energy imbalance [1], [2]. 

 
 

  
 

Figure 5. Average node energy consumption 

 

Figure 6. Network lifetime in rounds 
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4.4.5. False POSITIVE RATE 

AIRS maintains a low 3.5% FPR, significantly better than baseline protocols (Figure 7). This 

improvement results from behavior-contextual ML detection, consistent with techniques in [4], [7], [8]. 

Reduced misclassification rates lead to fewer unnecessary route changes and higher routing stability under 

adversarial conditions [5], [23]. 

 
 

 
 

Figure 7. False positive rate comparison 
 

 

4.5.  Discussion 

The comparative analysis demonstrates that AIRS consistently outperforms existing secure routing 

schemes across all evaluated metrics. The integration of lightweight ML-based anomaly detection 

significantly improves detection accuracy and reduces false positives, aligning with trends observed in recent 

works such as [7], [13], [23]. The trust-aware routing mechanism effectively minimizes the influence of 

compromised nodes, resulting in higher PDR and more stable multi-hop paths, which is consistent with 

observations in trust-management studies like [1], [11]. Furthermore, AIRS achieves lower energy 

consumption by reducing retransmissions and preventing routing loops, supporting findings reported in 

energy-aware secure protocols [10], [20]. The extended network lifetime demonstrates that combining 
anomaly detection with energy-adaptive cost functions yields long-term operational benefits, similar to 

conclusions in [18], [19]. Overall, AIRS bridges the gap between accurate intrusion detection and efficient 

secure routing, offering a balanced and scalable solution for resource-constrained IoT deployments where 

both resilience and energy efficiency are critical. 

 

 

5. CONCLUSION  

This paper introduced AIRS, an AI-enhanced secure routing protocol designed to strengthen IoT 

networks against routing attacks while maintaining low energy consumption. By combining lightweight ML–

based anomaly detection, adaptive trust computation, and efficient next-hop selection, AIRS provides a 

balanced solution that addresses both security and performance requirements in resource-constrained 

environments. Simulation results demonstrated that AIRS achieves 96.5% intrusion detection accuracy, 
maintains a 94% PDR, and reduces average energy consumption to 1.3 J per node, outperforming secure-

RPL and trust-based LEACH across all evaluation metrics. The protocol also extends network lifetime and 

maintains a low false positive rate, showing that intelligent behavior analysis can significantly improve 

routing stability under adversarial conditions. 

AIRS offers a practical and scalable approach for IoT deployments requiring secure and energy-

aware communication. Future work will explore integrating federated learning for decentralized model 

updates and validating AIRS on real hardware testbeds to assess performance under dynamic real-world 

environments. 

Despite promising results, this study has several limitations. The evaluation is restricted to Cooja-

based simulations and does not yet consider hardware testbeds or real traffic traces. The anomaly detection 

model is trained offline and may require retraining under significant traffic pattern changes. Although 
explicit concept drift experiments are not conducted, AIRS updates trust values dynamically using anomaly 

scores, enabling partial adaptation to evolving attack behavior. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 2, February 2026: 731-739 

738 

FUNDING INFORMATION 

The authors state that no external funding was received for this research work. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  
 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Leelavathi R.               

Vidya A.               

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

The authors declare no conflict of interest. 
 

 

DATA AVAILABILITY 

The data supporting the findings of this study are available from the corresponding author upon 

reasonable request. 

 

 

REFERENCES 
[1] R. Mitchell and I.-R. Chen, “Behavior rule specification-based intrusion detection for safety critical medical cyber physical 

systems,” IEEE Transactions on Dependable and Secure Computing, vol. 12, no. 1, pp. 16–30, 2015, doi: 

10.1109/TDSC.2014.2312327. 

[2] M. Hosseinzadeh et al., “A novel Q-learning-based secure routing scheme with a robust defensive system against wormhole 

attacks in flying ad hoc networks,” Vehicular Communications, vol. 49, p. 100826, 2024, doi: 10.1016/j.vehcom.2024.100826. 

[3] L. Cui, S. Yang, F. Chen, Z. Ming, N. Lu, and J. Qin, “A survey on application of machine learning for internet of things,” 

International Journal of Machine Learning and Cybernetics, vol. 9, pp. 1399–1417, 2018, doi: 10.1007/s13042-018-0834-5. 

[4] S. Luo, H. Yu, K. Li, and H. Xing, “Efficient file dissemination in data center networks with priority-based adaptive multicast,” 

IEEE Journal on Selected Areas in Communications, vol. 38, no. 6, pp. 1161–1175, 2020, doi: 10.1109/JSAC.2020.2986616. 

[5] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, and Y. C. Eldar, “6G wireless communications: from far -field beam steering to 

near-field beam focusing,” IEEE Communications Magazine, vol. 61, no. 4, pp. 72–77, 2023. 

[6] R. Mitchell and I.-R. Chen, “Behavior-rule based intrusion detection systems for safety critical smart grid applications,” IEEE 

Transactions on Smart Grid, vol. 4, no. 3, pp. 1254–1263, 2013, doi: 10.1109/TSG.2013.2258948. 

[7] W. Yao, L. Hu, Y. Hou, and X. Li, “A lightweight intelligent network intrusion detection system using one-class autoencoder and 

ensemble learning for IoT,” Sensors, vol. 23, no. 8, p. 4141, 2023, doi: 10.3390/s23084141. 

[8] A. Almalawi, “A lightweight intrusion detection system for internet of things: clustering and monte carlo cross-entropy 

approach,” Sensors, vol. 25, no. 7, p. 2235, 2025, doi: 10.3390/s25072235. 

[9] A. Sarfaraz, R. K. Chakrabortty, and D. L. Essam, “AccessChain: an access control framework to protect data access in 

blockchain enabled supply chain,” Future Generation Computer Systems, vol. 148, pp. 380–394, 2023, doi: 

10.1016/j.future.2023.06.009. 

[10] M. Moshawrab, M. Adda, A. Bouzouane, H. Ibrahim, and A. Raad, “Reviewing federated machine learning and its use in diseases 

prediction,” Sensors, vol. 23, p. 2112, 2023, doi: 10.3390/s23042112. 

[11] Q. Xia, F. Lee, and Q. Chen, “TCC-net: a two-stage training method with contradictory loss and co-teaching based on meta-

learning for learning with noisy labels,” Information Sciences, vol. 639, p. 119008, 2023, doi: 10.1016/j.ins.2023.119008. 

[12] V. K. Katta, R. B. Gadhiya, I. Habib, and P. P. Patavardhan, “Anomaly detection in IoT networks using ai machine learning and 

statistical models,” International Journal of Applied Mathematics, vol. 38, no. 11s, 2025, doi: 10.12732/ijam.v38i11s.1334. 

[13] E. Gyamfi and A. Jurcut, “Intrusion detection in internet of things systems: a review on design approaches leveraging multi-

access edge computing, machine learning, and datasets,” Sensors, vol. 22, no. 10, p. 3744, 2022, doi: 10.3390/s22103744. 

[14] S. Yaras and M. Dener, “IoT-based intrusion detection system using new hybrid deep learning algorithm,” Electronics, vol. 13, 

no. 6, p. 1053, 2024, doi: 10.3390/electronics13061053. 

[15] R. Chaganti, W. Suliman, V. Ravi, and A. Dua, “Deep learning approach for SDN-enabled intrusion detection system in IoT 

networks,” Information, vol. 14, no. 1, p. 41, 2023, doi: 10.3390/info14010041. 

[16] A. Musaddiq, T. Olsson, and F. Ahlgren, “Reinforcement-learning-based routing and resource management for internet of things 

environments: theoretical perspective and challenges,” Sensors, vol. 13, no. 19, p. 8263, 2023, doi: 10.3390/s23198263. 

[17] M. Q. J. Al-Zaidawi and M. Çevik, “Advanced deep learning models for improved iot network monitoring using hybrid 

optimization and MCDM techniques,” Symmetry, vol. 17, no. 3, p. 388, 2025, doi: 10.3390/sym17030388. 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Energy-efficient AI-enhanced secure routing for protecting IoT networks from … (Leelavathi R.) 

739 

[18] Y. Li, S. Xie, Z. Wan, H. Lv, H. Song, and Z. Lv, “Graph-powered learning methods in the internet of things: a survey,” Machine 

Learning with Applications, vol. 11, p. 100441, 2023, doi: 10.1016/j.mlwa.2022.100441. 

[19] P. L. R. Chze and K. S. Leong, “A secure multi-hop routing for IoT communication,” in 2014 IEEE World Forum on Internet of 

Things (WF-IoT), 2014, pp. 428–432, doi: 10.1109/WF-IoT.2014.6803204. 

[20] E. Dritsas and M. Trigka, “Federated learning for IoT: a survey of techniques, challenges, and applications,” Journal of Sensor 

and Actuator Networks, vol. 14, no. 1, p. 9, 2025, doi: 10.3390/jsan14010009. 

[21] S. Pandey and V. Singh, “Blackhole attack detection using machine learning approach on MANET,” in 2020 International 

Conference on Electronics and Sustainable Communication Systems (ICESC) , 2020, pp. 797–802, doi: 

10.1109/ICESC48915.2020.9155770. 

[22] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: attacks and countermeasures,” in Proceedings of the First 

IEEE International Workshop on Sensor Network Protocols and Applications, 2003 , 2003, pp. 113–127, doi: 

10.1109/SNPA.2003.1203362. 

[23] A. Villafranca, K. M. Thant, I. Tasic, and M.-D. Cano, “AI-enabled IoT intrusion detection: unified conceptual framework and 

research roadmap,” Machine Learning and Knowledge Extraction, vol. 7, no. 4, p. 115, 2025, doi: 10.3390/make7040115. 

[24] F. Xu, S. Liu, and X. Yang, “An efficient privacy-preserving authentication scheme with enhanced security for IoMT 

applications,” Computer Communications, vol. 208, pp. 171–178, 2023, doi: 10.1016/j.comcom.2023.06.012. 

[25] M. Z. Hussain and Z. M. Hanapi, “Efficient secure routing mechanisms for the low-powered IoT network: a literature review,” 

Electronics, vol. 12, no. 3, p. 482, 2023, doi: 10.3390/electronics12030482. 

[26] A. Hamarsheh, “An adaptive security framework for internet of things networks leveraging SDN and machine learning,” Applied 

Sciences, vol. 14, no. 11, p. 4530, 2024, doi: 10.3390/app14114530. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Leelavathi R.     is a research scholar in computer science and engineering at 
Vivekananda Institute of Technology, Bengaluru. She is currently pursuing her Ph.D. in IoT 
security, with a focus on intrusion detection, secure routing, and energy-efficient 
communication in wireless sensor networks. She has published research in the areas of 

intelligent routing protocols, anomaly detection, and machine learning for IoT systems. Her 
expertise includes Cooja/Contiki simulation, protocol modeling, and applied AI in distributed 
networks. She contributed to conceptualization, methodology design, software 
implementation, and manuscript preparation in this study. She can be contacted at email: 
rajleelavathi@gmail.com. 

  

 

Vidya A.     is an associate professor in the Department of Computer Science and 
Engineering at Vivekananda Institute of Technology, Bengaluru. With extensive academic 
and professional experience, her research interests include network security, wireless sensor 

networks, distributed systems, and AI-driven communication protocols. She has supervised 
numerous postgraduate and doctoral works and authored multiple publications in reputed 
international journals. She contributed to supervision, validation, analysis review, and 
manuscript refinement in this work. She can be contacted at email: 
vidyaananth16@gmail.com. 

 

https://orcid.org/0000-0003-2998-435X
https://scholar.google.com/citations?user=hE7MV1AAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57444441800
https://www.webofscience.com/wos/author/record/PGT-8061-2026

