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ABSTRACT

This paper proposes reusable adaptive convolution (RAC), an efficient alterna-
tive to standard 3×3 convolutions for convolutional neural networks (CNNs).
The main advantage of RAC lies in its simplicity and parameter efficiency,
achieved by sharing horizontal and vertical 1×k/k×1 filter banks across blocks
within a stage and recombining them through a lightweight 1×1 mixing layer.
By operating at the operator design level, RAC avoids post-training compres-
sion steps and preserves the conventional Conv–BN–activation structure, en-
abling seamless integration into existing CNN backbones. To evaluate the ef-
fectiveness of the proposed method, extensive experiments are conducted on
CIFAR-10 using several architectures, including ResNet-18/50/101, DenseNet,
WideResNet, and EfficientNet. Experimental results demonstrate that RAC sig-
nificantly reduces parameters and memory usage while maintaining competi-
tive accuracy. These results indicate that RAC offers a reasonable balance be-
tween accuracy and compression, and is suitable for deploying CNN networks
on resource-constrained platforms.
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1. INTRODUCTION
Convolutional neural networks (CNNs) have driven major progress in vision, with strong results across

image classification, detection, and tracking [1]–[6]. Recent backbones continue to scale depth and width to
push accuracy, from ConvNeXt/ConvNeXt-V2 in the CNN family to hierarchical transformers like swin and
swin-V2 [7]–[11]. However, the price of these gains is larger models and higher computational cost, which
complicates training and deployment on resource-limited devices [12]–[14].

A large body of work reduces this cost along three main lines. Quantization lowers precision for
weights/activations, often from FP32 to low-bit integers [15], [16]; removes weights or channels deemed
redundant [17], [18]; and low-rank factorization decomposes convolutional kernels into products of smaller
matrices/tensors [19], [20]. While effective, each line has trade-offs: quantization and pruning may require
careful hyperparameter tuning or fine-tuning and can be sensitive to distribution shift [21]–[23]; pruning’s
theoretical sparsity does not always translate to proportionate wall-clock speedups [24], [25]; and low-rank
methods depend strongly on rank choices and hardware locality for practical speed [26], [27]. In parallel,
lightweight architectures (e.g., MobileNet, ShuffleNet, EfficientNet) redesign blocks to balance accuracy and
efficiency [28]–[30].
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In this paper we follow a complementary direction: instead of compressing a trained network, we
reorganize the convolutional layer itself. Figure 1 contrasts two views. In Figure 1(a), each layer learns its own
3×3 kernels independently. In Figure 1(b), filters are assembled from shared components; layers no longer
relearn the same structures from scratch but compose them. This motivates our method, which restructures the
3×3 operator into shared directional bases and a light mixing step, aiming to keep accuracy while reducing
parameters and compute.

(a) (b)

Figure 1. Comparison of convolutional organizations: (a) conventional block where each convolution learns
independent filters and (b) an example of reorganized design using shared components and compositional

filters. This line of work inspires methods that restructure convolution itself, beyond quantization,
pruning, or factorization

We introduce reusable adaptive convolution (RAC), a drop-in replacement for 3×3 conv. RAC builds
two shared banks of 1×k and k×1 filters (horizontal/vertical). Within a stage, blocks reuse these banks and
form block-specific virtual filters by selecting and fusing bank responses; a 1×1 projection then mixes channels.
This simple change keeps spatial resolution, promotes feature reuse across blocks, and reduces redundancy,
while remaining compatible with standard layers (Conv/BN/ReLU) and typical toolchains. RAC is architecture-
agnostic and can be plugged into common backbones such as ResNet, WideResNet, and DenseNet without
altering their overall topology. To summarize the conceptual differences between RAC and commonly used
convolutional decomposition strategies, we present Table 1, emphasizing that RAC operates at the operator
reorganization level rather than factorization on a layer-by-layer basis.

Table 1. Comparison between RAC and related convolution designs
Aspect Std. Conv Depthwise+pointwise Low-rank RAC

Decomposition level None Per layer Per layer Stage-wise
Parameter sharing No No No Yes
Training paradigm End-to-end End-to-end Often post-hoc End-to-end

Structural reuse None Limited Limited Explicit
Design objective Accuracy Efficiency Compression Reusable operator

On CIFAR-10, RAC delivers accuracy close to the corresponding baselines while reducing memory
footprint and training time. Beyond aggregate numbers, we also include diagnostics such as stage×block
heatmaps to show where parameters concentrate and how RAC shifts load away from the heaviest regions.
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We summarize our main contributions as follows:
− We introduce RAC, an operator-level alternative to standard 3×3 convolutions that reorganizes spatial filter-

ing into stage-wise shared 1×k/k×1 banks followed by a lightweight 1×1 mixing layer, enabling parameter
reuse across blocks.

− We clarify the relationship between RAC and existing decomposition-based approaches, showing that RAC
differs from depthwise separable and low-rank convolutions by operating as a reusable, end-to-end trainable
operator rather than a per-layer or post-training factorization.

− We demonstrate the effectiveness of RAC by integrating it into multiple canonical CNN backbones and
evaluating on CIFAR-10, where RAC achieves competitive accuracy with reduced memory consumption
and favorable efficiency–performance trade-offs.

The remainder of this paper is organized as follows: section 2 presents the proposed RAC architecture,
detailing the row-column bank design and virtual convolutional block (VCB) construction. After that section 3
provides experimental evaluations on CIFAR-10 with various “CNN backbones”, comparing RAC with base-
line models in terms of accuracy, storage size, and training time. Finally, section 4 concludes the paper and
discusses potential future research directions.

2. METHOD
This section will concentrate on the design of RAC, its benefits and drawbacks, and the operation of

the RAC.

2.1. On the reordering of CNN layers
To motivate RAC, we inspect the structure of widely used CNN backbones and observe that 3×3

convolutions are repeatedly applied with similar configurations across many blocks. For example, ResNet
families rely on bottleneck blocks that recur multiple times within a stage [31], [32], while DenseNet employs
3×3 kernels throughout dense blocks [33], [34]. These repeated 3×3 layers contribute a large portion of the
parameter and computation budget and may learn overlapping patterns, suggesting an opportunity to improve
efficiency by enabling reuse rather than treating each layer as fully independent.

Based on this observation, we propose RAC. Instead of instantiating many separate 3×3 kernels, RAC
learns two shared prototype banks that produce directional 1D filters, i.e., 1×k (horizontal) and k×1 (vertical),
within each stage. Their responses are then combined through a VCB recomposition module and a lightweight
1×1 mixing layer to generate the final output.

Figure 2 illustrates the overall architecture. Compared to the conventional design in Figure 3 that
stacks many 3×3 convolutions, RAC starts from the two shared banks to produces multiple intermediate re-
sponses, concatenates R fused components along the channel dimension, and finally applies the 1×1 mix layer
for channel blending. The mechanism of shared-bank is shown in Algorithm 1. This two-part design consists
of shared-bank creation (section 2.2) and mixer and virtual recomposition (section 2.3), which we detail next.

2.2. How shared-bank works
We construct the stage-wise prototype banks in Algorithm 1 by learning two shared operator sets: a

horizontal bank of 1×k filters and a vertical bank of k×1 filters, instead of learning an independent 3×3 kernel
for every block. Given an input feature map x, the banks produce two response stacks U and V (horizon-
tal/vertical), each stacking m responses and preserving the spatial size of x. Because the same banks are reused
by all blocks within a stage, their parameters receive gradients from multiple blocks, encouraging cross-block
reuse and typically improving optimization stability while reducing parameters versus per-block 3×3 convolu-
tions. The bank size m controls the expressiveness of the factor sets (more prototypes for U and V ) at the cost
of additional computation and parameters.

Using two 1D banks (row and column) provides a set of directional spatial primitives. Many local
2D patterns can be expressed by combining horizontal and vertical responses, while the subsequent 1×1 mixer
learns how to blend multiple recombinations to match the target feature channels. Therefore, RAC does not
claim an exact theoretical equivalence to a full 3×3 kernel, but offers a practical structured basis that works
well in our empirical setting.

RAC: a reusable adaptive convolution for CNN layer (Nguyen Viet Hung)



756 ❒ ISSN: 2502-4752

Figure 2. Our re-construction method

Figure 3. Old multi-conv3x3 structure. Each conv3x3 contains individual kernels, which cannot share
information between layers, and each conv3x3 layer is also very parameter-heavy ((3× 3×Cin) + 1)×Cout

Algorithm 1: Shared-bank mechanism
1: function SHAREDBANK(x, m, k, Wrow, Wcol)
2: Input: x ∈ RB×C×H×W ; bank size m; kernel size k;
3: Wrow ∈ Rm×C×1×k , Wcol ∈ Rm×C×k×1.
4: Output: U, V ∈ RB×m×H×W .
5: p← ⌊k/2⌋
6: U ← Conv2D(x,Wrow; stride = 1, padding = (0, p))
7: V ← Conv2D(x,Wcol; stride = 1, padding = (p, 0))
8: return (U, V )
9: end function

2.3. Mixer and virtual recomposition
In this part, we explain what the RAC block does after obtaining the two response stacks U and V as

shown in Algorithm 2. Instead of learning a full 3×3 kernel in each block, RAC builds R virtual components by
repeatedly picking one channel from U and one channel from V using the index pairs (αr, βr). For each pair,
the two selected maps are fused (in our implementation, a simple element-wise sum) to form one component.
These R components are then concatenated along the channel dimension to form an intermediate tensor with
R channels, and a lightweight 1×1 mixing layer produces the final C ′ output channels. In short, RAC reuses
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the same directional primitives across blocks and only learns a small mixer to combine them, which reduces
redundant parameters while keeping the spatial output unchanged.

Algorithm 2: Mixing and virtual recomposition (RAC block)
function BLOCK(U, V,α,β,Wmix):

Input: U, V ∈ RB×m×H×W ; R = |α| = |β|;
α,β ∈ {1, . . . ,m}R;
Wmix (1×1 mixer producing C′ channels).

Output: y ∈ RB×C′×H×W .
R← |α|
Z ← [ ]
for r ← 1 to R do

u← U [:, αr : αr+1, :, :]

v ← V [:, βr : βr+1, :, :]
zr ← Fuse(u, v)
append zr to Z

Y ← Concat(Z) // Y ∈ RB×R×H×W

return Conv1×1(Y ; Wmix)

3. RESULTS AND DISCUSSION
This part of the paper will present our experimental setup including: device configuration, dataset used

and how we build the models (ResNet18/ResNet50/ResNet101/WideResNet/DenseNet/EfficientNet) and plug
RAC into them. Finally, we will present the comparison results on the accuracy between RAC and non-RAC
as well as the memory consumption and training time.

3.1. Experimental setup
The experiments were carried out on a 64-bit Windows 11 Pro and an NVIDIA GeForce RTX 3060

GPU. The implementation was developed in Python 3.10, utilizing essential libraries (e.g., PyTorch). Table 2
describes where we plug RAC into the baseline backbones and channel output.

Table 2. Location of RAC usage
Backbone Location C′ (channel output)
ResNet–50 C4 (layer3).conv2 (6×) 256

ResNet–101 C4 (layer3).conv2 (23×) 256
ResNet–18 C4 (layer3).conv2 (2×) 256

WideResNet group3.conv2 (each block) group3 width
DenseNet All DenseLayer conv2 (3×3) growth rate (32)

EfficientNet MBConv blocks in stage 4 (depthwise 3×3) stage width

We conduct all experiments on the CIFAR-10 dataset [35], [36], a benchmark consisting of 60,000
color images at resolution 32×32 spanning 10 classes (50 k train, 10 k test). For our procedures, images are
resized to 128×128 and trained with standard enhancements (random cropping/flipping) and normalization;
evaluation uses the formal test split without label noise or additional data. All models (baseline and RAC
variants) are trained and reported on the same preprocessing and training schedule (epoch = 200, batch size =
256, lr = 0.1, seed = 42) for fair comparisons.

3.2. Performance evaluation
This section will present the results we obtained after the experiment but before that we will talk about

the metrics used as evaluation measures. To evaluate the stability and accuracy of the models, we use two main
formulas, Top-1 and Top-5 accuracy, which are widely used formulas when evaluating on the CIFAR-10 set
[37]. They are stated very clearly both in terms of formula and efficiency in [38], [39].

Next, we perform the experiment and get the results as shown in Figure 4. On CIFAR-10, RAC-
ResNet50 achieves 92.82%, while the baseline ResNet50 achieves 94.68%, the accuracy of RAC is only 2%
lower than the baseline, but the benefits are less memory and training time (≈ 77 MB vs. 90 MB and 300 sec-
onds less). On other backbones (ResNet18/101, WideResNet, DenseNet, and EfficientNet), the instances show
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the same results: slightly lower accuracy (≈1-2%) than the baseline but with parameter/storage savings (in the
WideResNet case, the computational parameters are almost half lower than the baseline). Overall, Figure 4
shows the desired trade-off: replace 3x3 immediately while maintaining the optimization behavior, reduce
model size, and still remain competitive in accuracy.

Figure 4. The results after the changes are illustrated as follows: the left panel shows the accuracy
comparison, the middle shows memory consumption, and the right displays the training time of the models

Figure 5 compares the inference latency of the base models and their corresponding RAC-based mod-
els under the same experimental conditions. Across all evaluated architectures, RAC consistently achieved
lower inference latency than their corresponding base models. The latency reduction was more pronounced
for deeper and heavier networks such as ResNet-50, ResNet-101, DenseNet, and WideResNet, where standard
convolutions contributed a significant portion to the computational cost. For lighter architectures like Efficient-
Net, the latency difference between the base variants and RAC was smaller but still consistently skewed toward
RAC. These results suggest that reorganizing standard convolutions into reusable phase-level operators can
reduce inference time costs without creating additional computational bottlenecks. It is important to note that
the reported latency values are measured at the frame level under controlled conditions and are intended to re-
flect relative performance trends rather than fully optimized deployment latency on specific hardware platforms.

Figure 5. Inference latency per image (ms) of baseline vs RAC (batch=1) on RTX 3060; lower is better

Figure 6 presents the training dynamics of the baseline and RAC-based models over 200 epochs, in-
cluding accuracy and loss curves for different architectures. Figures 6(a) to 6(c) show the results for ResNet-18,
ResNet-50, and ResNet-101, respectively, where RAC exhibits convergence behaviors comparable to the base-
lines while generally displaying reduced fluctuations in the loss curves. For deeper models, such as ResNet-101
in Figure 6(c) and DenseNet in Figure 6(e), the RAC variants demonstrate noticeably smoother convergence tra-
jectories, particularly during the early and middle training stages. Similar trends can be observed for WideRes-
Net and EfficientNet in Figures 6(d) and 6(f), where RAC maintains stable training without degrading the final
accuracy. Overall, these results indicate that introducing RAC does not adversely affect convergence and may
lead to more stable optimization behavior, especially in deeper architectures.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The charts show the improvement trend of the baseline models and RACs over 200 epochs:
(a) ResNet18 vs. RAC ResNet18, (b) ResNet50 vs. RAC ResNet50, (c) ResNet101 vs. RAC ResNet101,

(d) WideResNet vs. RAC WideResNet, (e) DenseNet vs. RAC DenseNet, and
(f) EfficientNet vs. RAC EfficientNet

Figure 7 provides a visualization of the parameter distribution across different network stages, allow-
ing a direct comparison between the baseline WideResNet and its RAC-enhanced counterpart. The heatmaps
illustrate how parameters are allocated among layers after training, with color intensity indicating relative pa-
rameter density. As shown in Figure 7(a), the baseline WideResNet exhibits a highly unbalanced distribution,
where the majority of parameters are concentrated in the deeper layers, particularly layer 4, followed by layer 3.
In contrast, Figure 7(b) shows that the RAC-WideResNet significantly reduces the parameter density in layer 4.
The noticeably lower color intensity in this stage indicates that parameter sharing and recombination effectively
alleviate the computational burden of the deepest layers.

RAC: a reusable adaptive convolution for CNN layer (Nguyen Viet Hung)
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(a) (b)

Figure 7. An example comparing the parameter load in each layer before and after RAC plugging:
(a) parameter distribution chart of the WideResNet baseline model and (b) parameter distribution plot of

WideResNet model after plugging in RAC

In addition, we examine the sensitivity of RAC to its two main hyperparameters, the bank size m and
the number of virtual combinations R, and report the results in Table 3. In the upper part of the table, we
vary m ∈ {4, 8, 16, 32} while fixing R=2; accuracy typically improves when moving from small banks to
moderate ones, then changes only marginally at larger m, suggesting that the shared banks become sufficiently
expressive beyond a certain size. In the lower part, we vary R ∈ {1, 2, 3, 4} with m=8 fixed; increasing R
brings a small accuracy gain, but the benefit quickly saturates, indicating that only a few recombinations are
needed in practice. Across different backbones, these trends are consistent and the variations are modest, so
we adopt moderate settings (e.g., m=8–16 and R=2–3) as the default configuration in the main experiments
unless stated otherwise.

Table 3. Ablation study of RAC hyperparameters on all backbones. Top-1 accuracy (%) on CIFAR-10
Effect of bank size m (fixed R=2)

Model Baseline m=4 m=8 m=16 m=32

ResNet-18 94.82 92.80 93.20 93.40 93.35
ResNet-50 94.68 92.42 92.82 93.02 93.00
ResNet-101 95.11 93.20 93.60 93.80 93.72
WideResNet 95.10 93.90 94.30 94.50 94.49

DenseNet 94.78 93.10 93.50 93.70 93.71
EfficientNet 95.10 93.60 94.00 94.20 94.20

Effect of virtual combinations R (fixed m=8)
Model Baseline R=1 R=2 R=3 R=4

ResNet-18 94.82 92.85 93.20 93.31 93.38
ResNet-50 94.68 92.47 92.82 92.94 93.00
ResNet-101 95.11 93.25 93.60 93.72 93.70
WideResNet 95.10 93.95 94.30 94.41 94.48

DenseNet 94.78 93.15 93.50 93.62 93.68
EfficientNet 95.10 93.65 94.00 94.12 94.20

3.3. Discussion
Experimental results show that RAC provides a practical balance between accuracy and efficiency by

reorganizing standard 3×3 convolution operations into reusable stage-level operators. Across various CNN
architectures, RAC consistently reduces the number of parameters and memory usage at deeper stages while
maintaining accuracy within a narrow range compared to their corresponding underlying methods. This sug-
gests that sharing spatial filter banks between blocks can effectively minimize redundant learning without
significantly reducing performance. It is important to note that the performance improvements achieved by
RAC should be interpreted within the scope of the experiments performed. All evaluations were performed
on CIFAR-10, a small-scale and low-resolution dataset, and the generalizability of RAC to larger benchmarks
such as ImageNet has yet to be established.
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Furthermore, the experiments were limited to image classification tasks, and the behavior of RAC in
more complex settings such as object detection or semantic segmentation remains an open question. From an
efficiency perspective, while RAC reduces parameter storage and shows a favorable latency trend, the current
implementation does not explicitly optimize kernel combination or memory access patterns across specific
hardware platforms. Therefore, the reported runtime benefits reflect measurements at the frame level rather than
fully optimized implementation scenarios. Additionally, the hyperparameters controlling RAC, specifically the
bank size m and the number of virtual combinations R, are manually selected and fixed across stages, which
may not be optimal for all architectures.

Overall, these observations underscore that RAC should be viewed as an operator-level structural
design, supplementing rather than replacing existing compression and optimization techniques. Further future
research is needed to investigate its scalability, task generality, and hardware-based optimization capabilities.

4. CONCLUSION
In this paper, we introduced RAC block as an alternative to standard 3×3 convolutions. Instead of

letting each block in a stage learn independent full-rank 3×3 kernels, RAC builds stage-level shared 1×k/k×1
banks and reconstructs virtual filters via a lightweight 1×1 mixing layer. This design preserves the conven-
tional Conv–BN–Act interface while encouraging parameter sharing across blocks. We instantiated RAC in
several backbones, including ResNet-18/50/101, WideResNet, DenseNet-121, and EfficientNet-B0, and eval-
uated them on CIFAR-10. Across these models, RAC reduces parameters and memory footprint (especially
in deeper stages) with a modest accuracy trade-off, while the convergence curves, parameter heatmaps, and
latency measurements provide an interpretable view of its training and efficiency behavior. Our current evalua-
tion is limited to CIFAR-10 and framework-level runtime measurements; broader validation on larger datasets
and real-device deployment remains future work.

Future directions include hardware-friendly fusion for the 1×k/k×1 banks, automated tuning of
(m,R) and stage-wise selection policies, and combining RAC with quantization, pruning, or distillation. We
also plan to scale to ImageNet-1k and assess RAC on downstream detection and segmentation tasks.
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