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Clustering is essential in big data analytics, especially for partitioning high-
dimensional socioeconomic datasets to support interpretation and policy
decisions. While K-Means is widely used for its simplicity and scalability,
its strong sensitivity to initial centroid selection often leads to unstable
results and slower convergence. Previous hybrid approaches, such as
Agglomerative-K-Means, attempted to address this issue by using
hierarchical clustering for centroid initialization; however, these methods
rely on bottom-up merging, which can produce suboptimal initial partitions
and increase computational overhead for larger datasets. To overcome these
limitations, this study proposes a hybrid divisive—K-Means (DHC) model
that employs top-down hierarchical splitting to generate more coherent
initial centroids before refinement with K-Means. Using a multidimensional
poverty dataset from Central Java Province provided by the Indonesian
Central Bureau of Statistics (BPS), the performance of DHC was evaluated
against standard K-Means and Agglomerative-K-Means. The assessment
included execution time, convergence iterations, and cluster validity indices
(Silhouette, Davies—Bouldin, and Calinski-Harabasz). Experimental results
demonstrate that DHC reduces execution time by up to 97% and requires
40% fewer iterations than standard K-Means, while achieving comparable or
improved cluster quality (e.g., CH Index increasing from 14.3 to 15.8).
These findings indicate that the DHC model offers a more efficient and
stable clustering solution, addressing the shortcomings of previous standard
K-Means methods and improving performance for large-scale
socioeconomic data analysis.
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1. INTRODUCTION

Clustering is a widely used unsupervised learning technique for identifying hidden structures within
unlabeled data, supporting applications in socio-economic analysis, urban planning, environmental
monitoring, and health informatics [1]. Among various clustering algorithms, K-Means remains popular due
to its efficiency and scalability; however, its strong sensitivity to initial centroid selection often leads to
inconsistent results, slow convergence, and susceptibility to local minima [2], [3]. To address these
weaknesses, several studies have proposed hybrid or optimization based modifications to K-Means, including
the integration of hierarchical methods, genetic algorithms, and density-based preprocessing [4]-[6].
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Although hierarchical clustering provides deterministic partitioning and avoids random
initialization, it suffers from high computational complexity when applied to large datasets [7]-[10]. Prior
hybrid approaches, such as hierarchical-K-Means combinations, have attempted to merge the strengths of
both methods. However, these studies predominantly rely on agglomerative (bottom-up) clustering, which
may result in suboptimal centroid initialization due to its merging-based structure. Moreover, existing
hybrids rarely evaluate whether the hierarchical stage genuinely improves initialization quality or scalability
when applied to multidimensional socio-economic datasets [11]-[16]. These limitations highlight a clear
research gap: current hybrid methods have not sufficiently optimized centroid initialization while maintaining
computational efficiency, especially for complex poverty-related indicators.

Given this gap, the underlying problem of this study emerges naturally: despite the abundance of
hybrid clustering approaches, it remains unclear how centroid initialization can be systematically improved to
enhance convergence speed, stability, and clustering quality for K-Means when dealing with
multidimensional socio-economic data. Existing evidence suggests that a more globally informed
initialization strategy is needed, yet the operational effectiveness of such an approach has not been fully
established in prior work.

Motivated by this issue, the present study advances the hypothesis that a divisive hierarchical
process—owing to its top-down, recursively splitting mechanism—can generate more coherent and
representative initial centroids. This, in turn, is expected to reduce execution time and convergence iterations,
while achieving clustering quality comparable to or better than conventional K-Means and existing
Agglomerative—K-Means hybrids [11], [17], [18]. Although divisive methods theoretically provide a broader
structural overview than agglomerative approaches, their potential benefits for hybrid clustering have not
been comprehensively evaluated in previous studies.

To evaluate this hypothesis, the proposed DHC model is applied to a multidimensional poverty
dataset from Central Java Province, Indonesia, obtained from the Central Bureau of Statistics (BPS). The
dataset consists of interrelated socio-economic indicators, including education, income, employment, and
living conditions, which are challenging to cluster using conventional methods. Understanding poverty
distribution through clustering has important implications for policy targeting and regional development
planning [7], [8].

The contributions of this study are as follows:

a) Proposing a hybrid divisive—K-means (DHC) algorithm to improve centroid initialization and clustering
efficiency for multidimensional socio-economic data.

b) Comparatively evaluating K-Means, Agglomerative—-K-Means, and DHC in terms of execution time,
convergence rate, and cluster validity metrics.

¢) Demonstrating the relevance of hybrid clustering methods for regional poverty analysis as a decision-
support tool for socio-economic policy formulation.

Overall, this research extends existing hybrid clustering literature by addressing unresolved
limitations in centroid initialization and demonstrating that combining deterministic hierarchical strategies
with partitioning techniques can produce more stable and computationally efficient clustering results [11],
[13], [15], [19].

2. METHOD

Figure 1 presents the workflow of the proposed hybrid DHC framework for big data—driven poverty
analysis in Central Java Province. The framework begins with the acquisition of input data, which includes
large-scale poverty indicators such as education attainment, employment status, and household expenditure.
To ensure analytical reliability, a more robust data preprocessing pipeline is employed. This stage includes
systematic handling of missing values through multivariate imputation, detection and treatment of outliers,
normalization of heterogeneous numeric ranges, and feature consistency checks across districts.

Following preprocessing, a divisive hierarchical clustering procedure is applied using a top-down
strategy. At each iteration, the dataset is recursively split based on maximum heterogeneity criteria, with
explicit algorithmic steps defined for selecting splitting attributes and calculating subgroup centroids. These
centroids serve as structured, data-driven initial seeds for the subsequent optimization stage.

The next phase performs K-Means optimization using a predefined number of clusters (k=3), where
the divisive-generated centroids are refined through iterative minimization of the within-cluster sum of
squares. This step enhances compactness and reduces sensitivity to random initialization, addressing a
common limitation of standard K-Means. Convergence thresholds, iteration limits, and distance metrics are
explicitly defined to ensure methodological transparency.

To evaluate clustering robustness, the resulting optimized clusters are subjected to multiple
benchmarking techniques, including comparisons with standard K-Means and alternative initialization

A hybrid divisive K-means framework for big data—driven poverty analysis in Central ... (Bowo Winarno)



260 a ISSN: 2502-4752

strategies. Cluster quality is assessed using several validity indices (e.g., Silhouette, Davies—Bouldin,
Calinski—Harabasz), enabling broader and more rigorous performance evaluation.

Finally, spatial and socioeconomic patterns are visualized at the district level to derive policy-
relevant insights. While the dataset used in this study is modest in size, limiting the demonstration of full big-
data scalability, the framework is designed to be extendable to larger datasets due to its hierarchical reduction
and optimized initialization steps.

Input Data Data Preprocesing Divisive Hierarchical Clustering
Big Data on Proverty Indicators Mising Data Imputation Centroid

Final Optimized Clusters K-Means Optimization

Figure 1. Hybrid DHC

All experiments were executed in the Google Colab environment using Python 3.10 with standard
hardware resources provided by the platform. The clustering procedures were implemented using widely
adopted scientific libraries, including scikit-learn, NumPy, pandas, and SciPy. These specifications are
reported to ensure transparency and reproducibility of the experimental workflow.

2.1. Dataset

This study employs the poverty dataset of Central Java Province obtained from the Indonesian
Central BPS in 2024 (Table 1) [8]. The dataset consists of records from 35 districts and municipalities within
the province. It contains nine socio-economic indicators that represent multidimensional aspects of poverty.

This dataset was selected because it provides a real-world case of high-dimensional, imbalanced,
and unlabeled socio-economic data that requires accurate clustering to support regional poverty reduction
policies and resource allocation [7], [8], [20]. Such multidimensional datasets are often used in big data
clustering research to evaluate the performance and scalability of clustering algorithms in real-world contexts
[3], [4], [11]. In addition to the regional dataset, supplementary testing was conducted using benchmark
datasets from the UCI machine learning repository to ensure the generalizability of the proposed methods
across different domains [14], [15]. Benchmark datasets are widely used for evaluating clustering algorithms
under standardized conditions to validate consistency, accuracy, and adaptability [2], [16].

Before performing clustering, data preprocessing was conducted to handle missing or incomplete
values. The dataset contained several entries with “NA” (not applicable), particularly in socioeconomic
indicators such as employment data. Rather than deleting records with missing values which may lead to the
loss of meaningful information and distortion of data distribution this study applied imputation techniques to
replace missing entries with estimated values derived from existing data patterns [9], [10], [12], [18].
Specifically, for the data presented in Table 1, missing values were imputed using the mean of the
corresponding variable which is one of the most commonly used statistical imputation methods in
unsupervised learning tasks [10], [12]. This approach ensured that the dataset remained consistent and
complete for clustering analysis. Data imputation is generally more effective than deletion because it
preserves dataset integrity, robustness, and completeness, especially when dealing with multidimensional or
big data scenarios where each record contributes to model performance [9], [10], [12], [21].

2.2. Divisive hierarchical + K-Means (Hybrid DHC-KMeans)

The divisive hierarchical + K-Means (DHC-KMeans) method is another hybrid clustering approach
that combines divisive hierarchical clustering with K-Means. Unlike the agglomerative method, which starts
from individual points and merges them step by step, the divisive approach works in the opposite direction. It
begins with the entire dataset as a single large cluster and then recursively splits it into smaller sub-clusters
until the desired number of clusters (k) is reached [3], [22], [23].

2.2.1. Divisive hierarchical stage
To begin the process of divisive hierarchical clustering, the algorithm adopts a top-down approach
that systematically partitions the dataset into progressively smaller and more homogeneous groups. In this
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method, all data points are initially grouped into a single, comprehensive cluster, representing the entire
dataset as one unit. The algorithm then analyzes the internal dissimilarities among the data points to identify
the most distinct separation. Based on these dissimilarities, the cluster is divided into two subclusters,
ensuring that objects within each group are as similar as possible while maintaining clear separation from the
other group [24], [25].

This recursive splitting process continues iteratively, with each resulting cluster being further
divided according to the same dissimilarity criteria. The procedure proceeds until the desired number of
clusters (k) is reached, resulting in a structured hierarchy that reflects the natural divisions within the dataset
[22]. This top-down strategy allows the algorithm to uncover meaningful cluster boundaries efficiently while
preserving the global structure of the data.

Table 1. Employs the poverty dataset of Central Java Province

Regency Percenta  Did Literac  Scol Not Employed  Employe  Per Capita Using
ge of Not/Have y Rate Participatio  Employe inthe d in the Monthly Private
poor Not (15-55 nRate (13- d(>15 Agricultur  Informal  Expenditure  /
populati  Completed  Years 15 Years Years al Sector Sector on Food Shared
on (%) Primary Old) Old) Old) (>15 Years (>15 Commoditie  Toilet

School Old) Years S
(>15 Years Old)
Old)

Cilacap 10.68 17.76 95.28 95.37 39.54 32.25 38.96 65.66 93.88

Banyumas 11.95 15.25 95.91 99.59 38.05 14.93 37 64.03 91.56

Purbalingga 14.18 18.45 93.87 94.77 32.05 19.04 39.89 63.98 94.16

Banjarnegara 14.71 17.16 92.92 94.64 31.97 30.73 46.34 60.84 93.58

Kebumen 15.71 15.66 94.87 99.47 30.77 27.6 48.91 60.04 98.35

Purworejo 10.87 12.13 95.81 99.1 29.43 27.71 46.77 61.92 99.12

Wonosobo 15.28 18.71 93.03 90.08 29.42 36.45 47.91 62.52 93.8

Magelang 10.83 14.37 93.72 93.99 28.79 30.91 46.64 58.05 92.61

Boyolali 9.63 14.66 92.77 96.26 27.31 26.84 45.55 62.1 92.53

Klaten 12.04 12.48 94.27 99.99 33.43 15.52 34.19 59.1 98.13

Sukoharjo 747 8.98 95.51 99.98 33.48 9.37 28.03 61.1 98.33

Wonogiri 10.71 17.74 92.43 97.04 31.67 32.66 45.75 62.08 100

Karanganyar 9.59 10.21 94.07 98.73 33.08 15.82 31.95 60.37 97.57

Sragen 12.41 16.46 89.79 94.21 29.3 28.29 43.75 58.4 100

Grobogan 11.43 11.94 94.16 97.02 29.01 32.72 50.28 65.68 93.7

Blora 11.42 19.89 88.56 97.04 27.15 38.94 54.74 62.39 94.14

Rembang 14.02 14.43 94.97 99.17 321 26.66 39.26 62.21 90.74

Pati 9.17 14.79 94.01 97.6 35.00 24.02 41.45 61.83 98.52

Kudus 7.23 8.56 95.91 99.99 30.57 6.97 25.66 59.43 98.63

Jepara 6.09 11.22 96.26 98.91 34.26 10.35 30.53 63.59 94.14

Demak 11.89 11.26 95.92 98.25 31.19 17.75 33.42 60.82 93.74

Semarang 6.96 13.79 95.67 96.31 27.95 17.57 36.81 59.28 96.33

Temanggung 8.67 16.77 96.07 95.78 259 41.51 52.68 63.3 95.02

Kendal 9.35 16.38 95.47 97.38 34.39 19.57 34.9 62.06 93.35

Batang 8.73 18.08 93.59 93.13 29.7 20.25 39.19 63.95 94.73

Pekalongan 8.95 15.9 93.47 96.3 30.66 11.22 33.75 62.29 92.22

Pemalang 14.92 20.99 89.27 88.85 36.45 20.83 41.04 63.14 91.26

Tegal 6.81 19.21 93.62 99.93 40.85 12.52 30 63.63 95.19

Brebes 15.6 24.72 92.37 97.18 34.61 27.02 43.56 62.27 91.15

Magelang City 5.94 2.88 99.43 99.81 41.72 0.5 24.18 59.22 76.86

Surakarta City 8.31 4.27 98.33 99.96 38.38 NA 2352 56.58 78.06

Salatiga City 457 441 98.63 99.02 32.05 2.75 254 55.24 100.00

Semarang City 4.03 5.86 97.88 99.98 34.29 0.71 21.06 55.39 94.99

Pekalongan

City 6.71 8.47 98.69 96.52 31.37 1.67 25.6 62.7 83.97

Tegal City 7.64 13.54 97.94 98.56 36.7 447 23.94 60.63 94.61

2.2.2. Centroid initialization

Once the divisive hierarchical process has successfully partitioned the dataset into k clusters, the
next step focuses on integrating these results into the hybrid Divisive—K-Means framework for further
refinement. In this stage, the mean (centroid) of each cluster produced by the hierarchical division is
computed to represent the central tendency of the data points within that cluster. These calculated centroids
serve as strategic and representative initial seeds for the subsequent K-Means algorithm, effectively
eliminating the randomness typically associated with centroid initialization [19], [21], [26]. By using
centroids derived from the hierarchical stage, the hybrid model ensures that K-Means begins its optimization
from more accurate and data-informed starting points, thereby enhancing the precision and consistency of the
final clustering results.
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2.2.2. K-Means refinement stage

Following the initialization phase using centroids obtained from the divisive hierarchical process,
the K-Means algorithm is employed to further refine the cluster assignments and enhance the overall quality
of clustering. At this stage, K-Means utilizes the centroids derived from the divisive clustering results as its
initial reference points for optimization. Because these centroids already reflect the natural divisions and
inherent structure of the dataset, the algorithm begins with a more informed starting configuration. As a
result, K-Means converges more rapidly toward stable cluster boundaries and typically requires fewer
iterations to achieve optimal results [2], [27], [28]. This integration ensures more accurate and reliable
clustering outcomes compared to conventional random initialization.

2.2.3. Advantages of the hybrid method

The integration of the Divisive Hierarchical Clustering approach with K-Means offers several
significant advantages that enhance both the stability and efficiency of the clustering process. First, the use of
representative initial centroids obtained from the divisive stage provides a top-down analytical perspective,
ensuring that the initial points selected for K-Means are already positioned close to the true cluster centers
[3], [29]. This strategic initialization minimizes the randomness that typically affects the traditional K-Means
method. Consequently, the clustering results exhibit greater stability and consistency, as the algorithm
produces similar outcomes across multiple runs rather than fluctuating due to random centroid selection [13],
[30]. Moreover, because the centroids are initialized based on meaningful structural divisions within the
dataset, K-Means converges faster and requires fewer iterations to reach an optimal solution [15], [31], [32].
This improvement not only reduces computational time but also enhances the overall accuracy and
interpretability of the resulting clusters, making the hybrid Divisive—K-Means method a more robust
alternative for complex data analysis.

2.2.4. Limitations

Despite its advantages in producing more accurate and well-structured clusters, the Divisive—K-
Means hybrid method also presents several computational limitations that must be considered when applied
to large-scale data analysis. One of the primary drawbacks is that divisive clustering is computationally
demanding, as it involves a top-down splitting process that requires evaluating numerous possible
partitioning strategies before determining the optimal division of data [6], [7], [23]. This evaluation process
can significantly increase computational load, especially when dealing with high-dimensional or complex
datasets.

Additionally, similar to the agglomerative approach, divisive clustering is not ideal for very large
datasets, as the recursive splitting and distance calculations demand substantial computational resources and
memory capacity [21], [33]. Consequently, while the method offers improved accuracy and stability in
clustering results, it may become impractical for large-scale or real-time applications without further
optimization or the use of parallel processing techniques. The combination of hierarchical and partitioning
techniques in both hybrid methods is designed to address the weaknesses of K-Means while maintaining
computational efficiency [13], [29], [34].

2.3. Evaluation metrics

To comprehensively assess clustering performance, this study applies three categories of evaluation
metrics: execution time, convergence iterations, and cluster validity indices. These metrics capture not only
computational efficiency but also the stability and quality of clustering results, which are essential for
evaluating clustering algorithms in big data environments [1], [2], [15], [20].

2.3.1. Execution time

Execution time refers to the total amount of time taken by each clustering algorithm to complete the
clustering process, measured in seconds. In this study, execution time was recorded using Python’s built-in
time function, which captures the duration from the initialization of the algorithm to its convergence. This
metric directly evaluates computational efficiency, which is particularly critical in the context of big data
analysis, where clustering methods must be both accurate and scalable [3], [11], [20]. Hybrid approaches,
such as Agglomerative K-Means and Divisive K-Means, are expected to reduce overall computation time by
improving centroid initialization, which leads to faster convergence despite the additional hierarchical
overhead [1], [31], [35]. Previous studies have demonstrated that such hybrid hierarchical—partitioning
methods can achieve a balance between accuracy and efficiency, outperforming traditional K-Means in large-
scale datasets [13], [32].

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 1, January 2026: 258-269



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 263

2.3.2. Convergence iterations

Convergence iterations represent the number of refinement steps K-Means requires to stabilize after
centroid initialization. A lower number of iterations indicates that centroids were initialized closer to optimal
positions, leading to faster convergence and reduced computational load [31], [19], [26]. In standard K-
Means, poor centroid initialization can lead to multiple redundant iterations, increasing both execution time
and the risk of suboptimal clustering [2], [15], [36]. In contrast, hybrid methods such as hierarchical-based or
metaheuristic-assisted centroid initialization improve convergence by providing better starting centroids,
thereby accelerating the stabilization process [1], [26], [27], [37]. This metric is essential for comparing the
efficiency and stability between conventional and hybrid clustering algorithms, as it highlights the role of
initialization in the optimization of clustering performance [19], [21], [38].

2.4. Cluster validity indices

To evaluate the quality of the resulting clusters, three internal validation indices are employed:
Silhouette Coefficient, Davies—Bouldin Index (DBI), and Calinski-Harabasz Index (CH Index). These
indices measure cluster cohesion, separation, and variance structure to provide a comprehensive evaluation of
clustering quality [10], [14], [28].

The Silhouette Coefficient: is one of the most widely used internal validation indices for clustering
evaluation. It provides a quantitative measure of how well each data point fits within its assigned cluster
compared to other clusters. The index combines two key aspects of clustering quality: cohesion (the degree
of similarity between a data point and other points in the same cluster) and separation (the degree of
dissimilarity between a data point and points in the nearest neighboring cluster).

For each data point i, the Silhouette value s(i) is defined as: s(i) = b(i)-a(l)

——————— the Silhouette
max {a(i),b(i)}

Coefficient formulation, two main components are used to evaluate the clustering quality of each data point.
The first component, a(i), represents the average distance between a specific data point (i) and all other points
within the same cluster. This value measures cohesion, or how closely related the point is to the members of
its own cluster. The second component, b(i), denotes the minimum average distance between the same point
(i) and all points belonging to other clusters, which reflects separation, or how distinct the point is from other
clusters. By comparing these two values, the Silhouette Coefficient assesses whether a data point is
appropriately assigned to its cluster, balancing both internal similarity and external dissimilarity.

The Silhouette Coefficient is a widely used metric for evaluating clustering quality, with values
ranging from —1 to +1. A coefficient value close to +1 indicates that a data point is well-matched to its own
cluster and distinctly separated from neighboring clusters, reflecting a well-defined and cohesive clustering
structure. Conversely, a value near 0 suggests that the data point lies on the boundary between two or more
clusters, indicating potential overlap or ambiguity in cluster membership. Meanwhile, a value approaching —1
implies that the data point may have been incorrectly assigned to its current cluster, as it is more similar to
points in another cluster [9]. This range allows researchers to assess both the overall clustering performance
and the appropriateness of individual data point assignments within the model.

High Silhouette scores suggest compact and well-separated clusters, while low scores indicate
overlap or weak structure [10], [14]. This metric is frequently used in comparative studies of clustering
algorithms to evaluate the effectiveness of initialization and the optimal number of clusters [1], [15], [28].

The Davies—Bouldin Index (DBI): is an internal cluster validity metric that evaluates the average
similarity between clusters by considering both the compactness within clusters and the separation between
clusters. It was first introduced by Davies and Bouldin (1979) and has since been widely used for assessing
clustering quality in unsupervised learning. For each cluster i, the DBI is calculated as the average of the
maximum similarity values between cluster i and all other clusters j. The similarity measure is defined as the
ratio between the within-cluster scatter (how compact the cluster is) and the distance between cluster
centroids (how far apart two clusters are). Mathematically, the DBI is expressed as:

- 1w S +5;
—EZ‘?EE‘ M

i=1 Y

In the formulation of the DBI, several parameters are used to evaluate clustering performance based
on intra-cluster similarity and inter-cluster separation. Here, k represents the total number of clusters formed
by the algorithm. The term S; denotes the average distance of all data points within cluster i to its centroid,
which measures the intra-cluster distance or how compact each cluster is. Meanwhile, M;; refers to the
distance between the centroids of clusters i and j, capturing the inter-cluster distance or the degree of
separation between clusters. By analyzing the balance between these two distances, the DBI provides an
overall measure of clustering effectiveness, where lower values indicate better-defined and more distinct
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clusters. Lower DBI values indicate better clustering compact clusters and high separation [14], [28]. The
DBI is particularly effective for imbalanced or variable-density datasets, making it a suitable index for
evaluating hybrid clustering algorithms in big data analysis [1], [10], [20].

The Calinski-Harabasz Index (CH Index): also referred to as the Variance Ratio Criterion (VRC), is
an internal clustering validation metric that evaluates the quality of a clustering structure based on the ratio of
between-cluster dispersion to within-cluster dispersion. It was first proposed by Califiski and Harabasz
(1974) and has since been widely adopted as a reliable measure for determining the optimal number of
clusters in unsupervised learning.

Mathematically, the CH Index is defined as:

Tr(B) N —k
Trwy) &k — 1

CH(k) =

In the computation of the Calinski—-Harabasz Index (CH Index), several key parameters are employed to
measure the balance between cluster separation and compactness. The variable N denotes the total number of
data points in the dataset, while k represents the number of clusters formed by the algorithm. The term Tr(Bx)
refers to the trace of the between-cluster dispersion matrix, which quantifies the variance of the cluster
centroids relative to the overall mean a measure of how well clusters are separated from each other.
Conversely, Tr(Wx) indicates the trace of the within-cluster dispersion matrix, reflecting the variance of data
points within each cluster, or how tightly grouped the members of a cluster are. A higher Calinski—Harabasz
Index value suggests that the clustering structure exhibits both strong inter-cluster separation and low intra-
cluster variance, indicating better clustering quality.

A higher CH Index value indicates better clustering quality, as it reflects clusters that are well-
separated from each other (high between-cluster variance) and internally compact (low within-cluster
variance). Unlike the DBI, where lower values are preferred, the CH Index favors higher values as a sign of
optimal partitioning [1], [14]. Higher CH values indicate better clustering, signifying high inter-cluster
variance and low intra-cluster variance [10], [28]. The CH Index is widely applied for model selection to
determine the optimal number of clusters, complementing the Silhouette and DBI metrics [10], [15], [28].
Prior studies have confirmed its effectiveness in hybrid hierarchical—partitioning clustering, especially for
medium to large-scale datasets, due to its sensitivity to both compactness and separation [1], [13], [30].

Alongside the Silhouette Coefficient and DBI, the CH Index offers a complementary perspective in
evaluating the overall performance and quality of clustering results. Together, these metrics provide a
balanced assessment across different aspects of clustering effectiveness.

The execution time metric measures computational efficiency, indicating how quickly an algorithm
can produce results without compromising accuracy [1], [3], [11], [32]. Meanwhile, Convergence lterations
reflect both the effectiveness of centroid initialization and the stability of the algorithm, where fewer
iterations generally signify a more optimized and consistent process [19], [26], [27], [31]. Finally, the
combination of Cluster Validity Indices including Silhouette, DBI, and CH serves to evaluate clustering
accuracy and structural quality, providing insights into how well clusters are formed and how distinct they
are from one another [10], [14], [15], [28]. Together, these evaluation metrics form a comprehensive
framework for assessing clustering performance from multiple dimensions: accuracy, stability, and
computational efficiency. This integrated evaluation framework ensures a balanced and objective comparison
between standard K-Means and hybrid approaches, revealing the trade-offs between efficiency, stability, and
cluster quality [1], [2], [15], [20], [28].

3. RESULTS AND DISCUSSION

To illustrate the operational workflow of the proposed Hybrid Divisive—K-Means model, the code
segment in Algorithm 1 presents the algorithmic steps used in the experiment. This implementation
demonstrates how the divisive splitting process is executed to obtain initial cluster partitions, how centroids
are computed from the hierarchical results, and how these centroids are subsequently refined using K-Means.
The code reflects the exact procedure applied in the study to ensure methodological clarity and
reproducibility.

Algorithm 1. Algorithmic steps used in the experiment
def hybrid divisive kmeans (X, n_clusters=3):
cluster labels = np.zeros(len(X), dtype=int)
clusters = [np.arange (len (X))]
#Step 1: Divisive - split until the number of clusters reaches n clusters.
while len(clusters) < n_clusters:
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sizes = [len(c) for c in clusters]
idx split = np.argmax(sizes)
indices = clusters.pop(idx split)

if len(indices) <= 1:
clusters.append(indices)
continue
km = KMeans (n_clusters=2, random state=42, n_ init=10)
split labels = km.fit predict (X[indices])
clusters.append (indices[split labels == 0])
clusters.append(indices[split labels == 1])
# mapping divisive cluster results to cluster labels
for cid, idx in enumerate (clusters) :
cluster labels[idx] = cid
# Compute the centroid from the divisive results
centroids = np.array([X[cluster labels == i].mean(axis=0) for i in range(n_clusters)])
# Step 2: K-Means with initialization from the divisive centroids
kmeans = KMeans (n_clusters=n_clusters, init=centroids, n_init=1, random state=42)
return kmeans.fit predict (X)

3.1. Execution time comparison

Figure 2 presents the first 35 data points of the clustering results show the assigned cluster labels for
each method: K-Means predominantly assigns most points to cluster 2, with some points in clusters 0 and 1;
Agglomerative K-Means shows more variation across clusters 0, 1, and 2; while Divisive K-Means produces
a pattern very similar to Agglomerative K-Means, indicating comparable cluster assignments between the
two hybrid approaches.

Table 2 presents the execution time of the two clustering methods: standard K-Means as shown in
Figure 3, and Divisive K-Means as shown in Figure 4. The results are reported in seconds and represent the
average of multiple experimental runs to reduce the effect of random variations. Figures 5 and 6 present the
runtime scalability analysis of the proposed Hybrid Divisive—K-Means framework, illustrating how
computational performance changes with increasing dataset size (n) and feature dimensionality (d).

=== First 35 Data Points of Clustering Results ===

.F
2202200221
2 2

KMeans: 2 228020©2211222222020111111
Divisive-KMeans: 22111211122121112202221212121000000
Figure 2. First 35 data points of clustering results
Table 2. Execution time comparison of clustering methods

Method Execution Time (ms) Iterations to convergence  Silhouette score DBl CH Index
KMeans 54.98 5 0.196 1.454 14.3
Divisive KMeans (DHC) 1.45 3 0.195 14.05 15.8
K-Means Clustering Hybrid Divisive-KMeans

W Cluster 0
W Cluster 1
Cluster 2
No Data

Figure 3. The K-means clustering Figure 4. The hybrid divisive K-means clustering
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Runtime Scaling with Dataset Size (n) Runtime Scaling with Dimensionality (d)
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Figure 5. Runtime scaling with dataset size(n) Figure 6. Runtime scaling with dimensionality(d)

3.2. Interpretation of cluster validity indices

The cluster validity indices provide deeper insight into the quality of the clustering results. The
Silhouette Score shows that standard K-Means and Divisive K-Means produce nearly identical values (0.196
vs. 0.195), suggesting similar levels of separation and cohesion among clusters. Although the score is
relatively modest, it aligns with the nature of complex socioeconomic datasets, which often exhibit
overlapping group characteristics. Meanwhile, the DBI indicates that K-Means achieves better separation
between clusters with a lower value (1.454) compared to Divisive K-Means (14.05). The unusually high DBI
for Divisive K-Means may reflect compact yet closely positioned clusters, underscoring the need for
additional parameter tuning or expanded benchmarking to fully understand this behavior. In contrast, the CH
Index favors the Divisive K-Means method, which attains a higher score (15.8) than standard K-Means
(14.3), demonstrating superior overall dispersion and compactness—an outcome consistent with its more
structured initialization approach. Together, these indices suggest that while the proposed hybrid improves
computational efficiency and centroid stability, the overall clustering quality varies depending on the metric
used, warranting broader comparative validation.

3.3. Discussion and limitations

Overall, the hybrid model demonstrates enhanced convergence speed and stability, confirming the
advantage of divisive initialization for large and high-dimensional datasets. However, the findings remain
largely descriptive and are based on a modest-sized dataset, limiting the ability to fully validate the framework’s
scalability claims. Additional experiments with larger datasets potentially exceeding millions of observations
would be necessary to empirically confirm the model’s suitability for big data applications. Moreover, while the
clustering results reveal meaningful structural patterns, their direct relevance to poverty policy is not yet
strongly established. Future work should integrate spatial analysis, district-level socioeconomic profiling, and
domain expert validation to translate the clustering outcomes into actionable policy insights.

4. CONCLUSION

The Hybrid Divisive—K-Means model demonstrates clear improvements over the standard K-Means
approach, particularly through faster convergence and more stable centroid initialization. The execution time
dropped from 54.98 ms to 1.45 ms, though this gain should be viewed in relation to the relatively small
dataset used. Additionally, the decrease in iterations from five to three shows that the divisive initialization
step effectively reduces centroid randomness, leading to a more consistent and reliable clustering process.

The cluster validity indices also demonstrate that the hybrid approach maintains or slightly enhances
clustering quality. A higher Calinski—Harabasz Index (15.8) and a comparable Silhouette Score (0.195)
suggest that the resulting clusters are reasonably compact and well-separated, even though the Davies—
Bouldin Index increased. In a socio-economic context, a higher Silhouette Score indicates that districts with
similar poverty characteristics such as unemployment rate, education level, or access to services are grouped
more consistently, implying that the model captures meaningful patterns of deprivation. Similarly, higher
Calinski—-Harabasz values imply that the distinctions between low-, moderate-, and high-poverty clusters are
more structurally defined, which can support policymakers in identifying priority regions. Conversely, an
increase in Davies—Bouldin scores suggests that some clusters may still overlap socio-economically,
indicating that certain districts share mixed characteristics that complicate clear policy categorization. This
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mixed performance across validity metrics highlights the need for broader benchmarking and external
validation before generalizing the model’s effectiveness to larger or more heterogeneous datasets.

Beyond technical performance, the clustering results have meaningful implications for regional
socio-economic policy. By grouping districts based on multidimensional poverty indicators, policymakers
can identify priority regions, allocate resources more effectively, and design targeted poverty alleviation
programs. The DHC framework thus provides an analytical foundation that supports evidence-based planning
for regional development.

However, this study also acknowledges key limitations. The dataset contains a limited number of
variables, which may not fully capture the complexity of poverty dynamics. In addition, the relatively small
dataset restricts the evaluation of scalability claims, and external validation using independent datasets was
not conducted. Future research should therefore explore the application of the model to larger datasets,
incorporate additional socio-economic indicators, and assess scalability using parallel or distributed
computing frameworks. Expanding the analysis to other provinces or sectors would further strengthen the
robustness and policy relevance of the proposed hybrid clustering approach.
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