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 Clustering is essential in big data analytics, especially for partitioning high-

dimensional socioeconomic datasets to support interpretation and policy 

decisions. While K-Means is widely used for its simplicity and scalability, 

its strong sensitivity to initial centroid selection often leads to unstable 

results and slower convergence. Previous hybrid approaches, such as 

Agglomerative–K-Means, attempted to address this issue by using 

hierarchical clustering for centroid initialization; however, these methods 

rely on bottom-up merging, which can produce suboptimal initial partitions 

and increase computational overhead for larger datasets. To overcome these 

limitations, this study proposes a hybrid divisive–K-Means (DHC) model 

that employs top-down hierarchical splitting to generate more coherent 

initial centroids before refinement with K-Means. Using a multidimensional 

poverty dataset from Central Java Province provided by the Indonesian 

Central Bureau of Statistics (BPS), the performance of DHC was evaluated 

against standard K-Means and Agglomerative–K-Means. The assessment 

included execution time, convergence iterations, and cluster validity indices 

(Silhouette, Davies–Bouldin, and Calinski–Harabasz). Experimental results 

demonstrate that DHC reduces execution time by up to 97% and requires 

40% fewer iterations than standard K-Means, while achieving comparable or 

improved cluster quality (e.g., CH Index increasing from 14.3 to 15.8). 

These findings indicate that the DHC model offers a more efficient and 

stable clustering solution, addressing the shortcomings of previous standard 

K-Means methods and improving performance for large-scale 

socioeconomic data analysis. 
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1. INTRODUCTION 

Clustering is a widely used unsupervised learning technique for identifying hidden structures within 

unlabeled data, supporting applications in socio-economic analysis, urban planning, environmental 

monitoring, and health informatics [1]. Among various clustering algorithms, K-Means remains popular due 

to its efficiency and scalability; however, its strong sensitivity to initial centroid selection often leads to 

inconsistent results, slow convergence, and susceptibility to local minima [2], [3]. To address these 

weaknesses, several studies have proposed hybrid or optimization based modifications to K-Means, including 

the integration of hierarchical methods, genetic algorithms, and density-based preprocessing [4]–[6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Although hierarchical clustering provides deterministic partitioning and avoids random 

initialization, it suffers from high computational complexity when applied to large datasets [7]–[10]. Prior 

hybrid approaches, such as hierarchical–K-Means combinations, have attempted to merge the strengths of 

both methods. However, these studies predominantly rely on agglomerative (bottom-up) clustering, which 

may result in suboptimal centroid initialization due to its merging-based structure. Moreover, existing 

hybrids rarely evaluate whether the hierarchical stage genuinely improves initialization quality or scalability 

when applied to multidimensional socio-economic datasets [11]–[16]. These limitations highlight a clear 

research gap: current hybrid methods have not sufficiently optimized centroid initialization while maintaining 

computational efficiency, especially for complex poverty-related indicators.  

Given this gap, the underlying problem of this study emerges naturally: despite the abundance of 

hybrid clustering approaches, it remains unclear how centroid initialization can be systematically improved to 

enhance convergence speed, stability, and clustering quality for K-Means when dealing with 

multidimensional socio-economic data. Existing evidence suggests that a more globally informed 

initialization strategy is needed, yet the operational effectiveness of such an approach has not been fully 

established in prior work. 

Motivated by this issue, the present study advances the hypothesis that a divisive hierarchical 

process—owing to its top-down, recursively splitting mechanism—can generate more coherent and 

representative initial centroids. This, in turn, is expected to reduce execution time and convergence iterations, 

while achieving clustering quality comparable to or better than conventional K-Means and existing 

Agglomerative–K-Means hybrids [11], [17], [18]. Although divisive methods theoretically provide a broader 

structural overview than agglomerative approaches, their potential benefits for hybrid clustering have not 

been comprehensively evaluated in previous studies. 

To evaluate this hypothesis, the proposed DHC model is applied to a multidimensional poverty 

dataset from Central Java Province, Indonesia, obtained from the Central Bureau of Statistics (BPS). The 

dataset consists of interrelated socio-economic indicators, including education, income, employment, and 

living conditions, which are challenging to cluster using conventional methods. Understanding poverty 

distribution through clustering has important implications for policy targeting and regional development 

planning [7], [8]. 

The contributions of this study are as follows: 

a) Proposing a hybrid divisive–K-means (DHC) algorithm to improve centroid initialization and clustering 

efficiency for multidimensional socio-economic data. 

b) Comparatively evaluating K-Means, Agglomerative–K-Means, and DHC in terms of execution time, 

convergence rate, and cluster validity metrics. 

c) Demonstrating the relevance of hybrid clustering methods for regional poverty analysis as a decision-

support tool for socio-economic policy formulation. 

Overall, this research extends existing hybrid clustering literature by addressing unresolved 

limitations in centroid initialization and demonstrating that combining deterministic hierarchical strategies 

with partitioning techniques can produce more stable and computationally efficient clustering results [11], 

[13], [15], [19]. 

 

 

2. METHOD 

Figure 1 presents the workflow of the proposed hybrid DHC framework for big data–driven poverty 

analysis in Central Java Province. The framework begins with the acquisition of input data, which includes 

large-scale poverty indicators such as education attainment, employment status, and household expenditure. 

To ensure analytical reliability, a more robust data preprocessing pipeline is employed. This stage includes 

systematic handling of missing values through multivariate imputation, detection and treatment of outliers, 

normalization of heterogeneous numeric ranges, and feature consistency checks across districts. 

Following preprocessing, a divisive hierarchical clustering procedure is applied using a top-down 

strategy. At each iteration, the dataset is recursively split based on maximum heterogeneity criteria, with 

explicit algorithmic steps defined for selecting splitting attributes and calculating subgroup centroids. These 

centroids serve as structured, data-driven initial seeds for the subsequent optimization stage. 

The next phase performs K-Means optimization using a predefined number of clusters (k=3), where 

the divisive-generated centroids are refined through iterative minimization of the within-cluster sum of 

squares. This step enhances compactness and reduces sensitivity to random initialization, addressing a 

common limitation of standard K-Means. Convergence thresholds, iteration limits, and distance metrics are 

explicitly defined to ensure methodological transparency. 

To evaluate clustering robustness, the resulting optimized clusters are subjected to multiple 

benchmarking techniques, including comparisons with standard K-Means and alternative initialization 
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strategies. Cluster quality is assessed using several validity indices (e.g., Silhouette, Davies–Bouldin, 

Calinski–Harabasz), enabling broader and more rigorous performance evaluation. 

Finally, spatial and socioeconomic patterns are visualized at the district level to derive policy-

relevant insights. While the dataset used in this study is modest in size, limiting the demonstration of full big-

data scalability, the framework is designed to be extendable to larger datasets due to its hierarchical reduction 

and optimized initialization steps. 

 

 

 
 

Figure 1. Hybrid DHC 

 

 

All experiments were executed in the Google Colab environment using Python 3.10 with standard 

hardware resources provided by the platform. The clustering procedures were implemented using widely 

adopted scientific libraries, including scikit-learn, NumPy, pandas, and SciPy. These specifications are 

reported to ensure transparency and reproducibility of the experimental workflow. 

 

2.1.  Dataset 

This study employs the poverty dataset of Central Java Province obtained from the Indonesian 

Central BPS in 2024 (Table 1) [8]. The dataset consists of records from 35 districts and municipalities within 

the province. It contains nine socio-economic indicators that represent multidimensional aspects of poverty. 

This dataset was selected because it provides a real-world case of high-dimensional, imbalanced, 

and unlabeled socio-economic data that requires accurate clustering to support regional poverty reduction 

policies and resource allocation [7], [8], [20]. Such multidimensional datasets are often used in big data 

clustering research to evaluate the performance and scalability of clustering algorithms in real-world contexts 

[3], [4], [11]. In addition to the regional dataset, supplementary testing was conducted using benchmark 

datasets from the UCI machine learning repository to ensure the generalizability of the proposed methods 

across different domains [14], [15]. Benchmark datasets are widely used for evaluating clustering algorithms 

under standardized conditions to validate consistency, accuracy, and adaptability [2], [16]. 

Before performing clustering, data preprocessing was conducted to handle missing or incomplete 

values. The dataset contained several entries with “NA” (not applicable), particularly in socioeconomic 

indicators such as employment data. Rather than deleting records with missing values which may lead to the 

loss of meaningful information and distortion of data distribution this study applied imputation techniques to 

replace missing entries with estimated values derived from existing data patterns [9], [10], [12], [18]. 

Specifically, for the data presented in Table 1, missing values were imputed using the mean of the 

corresponding variable which is one of the most commonly used statistical imputation methods in 

unsupervised learning tasks [10], [12]. This approach ensured that the dataset remained consistent and 

complete for clustering analysis. Data imputation is generally more effective than deletion because it 

preserves dataset integrity, robustness, and completeness, especially when dealing with multidimensional or 

big data scenarios where each record contributes to model performance [9], [10], [12], [21]. 

 

2.2.  Divisive hierarchical + K-Means (Hybrid DHC-KMeans) 

The divisive hierarchical + K-Means (DHC–KMeans) method is another hybrid clustering approach 

that combines divisive hierarchical clustering with K-Means. Unlike the agglomerative method, which starts 

from individual points and merges them step by step, the divisive approach works in the opposite direction. It 

begins with the entire dataset as a single large cluster and then recursively splits it into smaller sub-clusters 

until the desired number of clusters (k) is reached [3], [22], [23]. 

 

2.2.1. Divisive hierarchical stage 

To begin the process of divisive hierarchical clustering, the algorithm adopts a top-down approach 

that systematically partitions the dataset into progressively smaller and more homogeneous groups. In this 
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method, all data points are initially grouped into a single, comprehensive cluster, representing the entire 

dataset as one unit. The algorithm then analyzes the internal dissimilarities among the data points to identify 

the most distinct separation. Based on these dissimilarities, the cluster is divided into two subclusters, 

ensuring that objects within each group are as similar as possible while maintaining clear separation from the 

other group [24], [25]. 

This recursive splitting process continues iteratively, with each resulting cluster being further 

divided according to the same dissimilarity criteria. The procedure proceeds until the desired number of 

clusters (k) is reached, resulting in a structured hierarchy that reflects the natural divisions within the dataset 

[22]. This top-down strategy allows the algorithm to uncover meaningful cluster boundaries efficiently while 

preserving the global structure of the data. 

 

 

Table 1. Employs the poverty dataset of Central Java Province 
Regency Percenta

ge of 

poor 

populati
on (%)  

Did 
Not/Have 

Not 

Completed 
Primary 

School 

(>15 Years 
Old)  

Literac
y Rate 

(15–55 

Years 
Old)  

Scol 
Participatio

n Rate (13–

15 Years 
Old) 

Not 
Employe

d (>15 

Years 
Old) 

Employed 
in the 

Agricultur

al Sector 
(>15 Years 

Old) 

Employe
d in the 

Informal 

Sector 
(>15 

Years 

Old) 

Per Capita 
Monthly 

Expenditure 

on Food 
Commoditie

s 

Using 
Private

/ 

Shared 
Toilet 

Cilacap 10.68 17.76 95.28 95.37 39.54 32.25 38.96 65.66 93.88 

Banyumas  11.95 15.25 95.91 99.59 38.05 14.93 37 64.03 91.56 
Purbalingga  14.18 18.45 93.87 94.77 32.05 19.04 39.89 63.98 94.16 

Banjarnegara 14.71 17.16 92.92 94.64 31.97 30.73 46.34 60.84 93.58 

Kebumen  15.71 15.66 94.87 99.47 30.77 27.6 48.91 60.04 98.35 
Purworejo  10.87 12.13 95.81 99.1 29.43 27.71 46.77 61.92 99.12 

Wonosobo  15.28 18.71 93.03 90.08 29.42 36.45 47.91 62.52 93.8 

Magelang  10.83 14.37 93.72 93.99 28.79 30.91 46.64 58.05 92.61 
Boyolali  9.63 14.66 92.77 96.26 27.31 26.84 45.55 62.1 92.53 

Klaten 12.04 12.48 94.27 99.99 33.43 15.52 34.19 59.1 98.13 

Sukoharjo 7.47 8.98 95.51 99.98 33.48 9.37 28.03 61.1 98.33 
Wonogiri  10.71 17.74 92.43 97.04 31.67 32.66 45.75 62.08 100 

Karanganyar  9.59 10.21 94.07 98.73 33.08 15.82 31.95 60.37 97.57 

Sragen 12.41 16.46 89.79 94.21 29.3 28.29 43.75 58.4 100 
Grobogan  11.43 11.94 94.16 97.02 29.01 32.72 50.28 65.68 93.7 

Blora  11.42 19.89 88.56 97.04 27.15 38.94 54.74 62.39 94.14 

Rembang 14.02 14.43 94.97 99.17 32.1 26.66 39.26 62.21 90.74 
Pati  9.17 14.79 94.01 97.6 35.00 24.02 41.45 61.83 98.52 

Kudus 7.23 8.56 95.91 99.99 30.57 6.97 25.66 59.43 98.63 

Jepara  6.09 11.22 96.26 98.91 34.26 10.35 30.53 63.59 94.14 
Demak  11.89 11.26 95.92 98.25 31.19 17.75 33.42 60.82 93.74 

Semarang  6.96 13.79 95.67 96.31 27.95 17.57 36.81 59.28 96.33 

Temanggung 8.67 16.77 96.07 95.78 25.9 41.51 52.68 63.3 95.02 
Kendal  9.35 16.38 95.47 97.38 34.39 19.57 34.9 62.06 93.35 

Batang  8.73 18.08 93.59 93.13 29.7 20.25 39.19 63.95 94.73 

Pekalongan  8.95 15.9 93.47 96.3 30.66 11.22 33.75 62.29 92.22 
Pemalang  14.92 20.99 89.27 88.85 36.45 20.83 41.04 63.14 91.26 

Tegal 6.81 19.21 93.62 99.93 40.85 12.52 30 63.63 95.19 

Brebes  15.6 24.72 92.37 97.18 34.61 27.02 43.56 62.27 91.15 
Magelang City  5.94 2.88 99.43 99.81 41.72 0.5 24.18 59.22 76.86 

Surakarta City  8.31 4.27 98.33 99.96 38.38 NA 23.52 56.58 78.06 

Salatiga City 4.57 4.41 98.63 99.02 32.05 2.75 25.4 55.24 100.00 
Semarang City 4.03 5.86 97.88 99.98 34.29 0.71 21.06 55.39 94.99 

Pekalongan 

City 
6.71 8.47 98.69 96.52 31.37 1.67 25.6 62.7 83.97 

Tegal City 7.64 13.54 97.94 98.56 36.7 4.47 23.94 60.63 94.61 

 
 

2.2.2. Centroid initialization 

Once the divisive hierarchical process has successfully partitioned the dataset into k clusters, the 

next step focuses on integrating these results into the hybrid Divisive–K-Means framework for further 

refinement. In this stage, the mean (centroid) of each cluster produced by the hierarchical division is 

computed to represent the central tendency of the data points within that cluster. These calculated centroids 

serve as strategic and representative initial seeds for the subsequent K-Means algorithm, effectively 

eliminating the randomness typically associated with centroid initialization [19], [21], [26]. By using 

centroids derived from the hierarchical stage, the hybrid model ensures that K-Means begins its optimization 

from more accurate and data-informed starting points, thereby enhancing the precision and consistency of the 

final clustering results. 
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2.2.2. K-Means refinement stage 

Following the initialization phase using centroids obtained from the divisive hierarchical process, 

the K-Means algorithm is employed to further refine the cluster assignments and enhance the overall quality 

of clustering. At this stage, K-Means utilizes the centroids derived from the divisive clustering results as its 

initial reference points for optimization. Because these centroids already reflect the natural divisions and 

inherent structure of the dataset, the algorithm begins with a more informed starting configuration. As a 

result, K-Means converges more rapidly toward stable cluster boundaries and typically requires fewer 

iterations to achieve optimal results [2], [27], [28]. This integration ensures more accurate and reliable 

clustering outcomes compared to conventional random initialization. 

 

2.2.3. Advantages of the hybrid method 

The integration of the Divisive Hierarchical Clustering approach with K-Means offers several 

significant advantages that enhance both the stability and efficiency of the clustering process. First, the use of 

representative initial centroids obtained from the divisive stage provides a top-down analytical perspective, 

ensuring that the initial points selected for K-Means are already positioned close to the true cluster centers 

[3], [29]. This strategic initialization minimizes the randomness that typically affects the traditional K-Means 

method. Consequently, the clustering results exhibit greater stability and consistency, as the algorithm 

produces similar outcomes across multiple runs rather than fluctuating due to random centroid selection [13], 

[30]. Moreover, because the centroids are initialized based on meaningful structural divisions within the 

dataset, K-Means converges faster and requires fewer iterations to reach an optimal solution [15], [31], [32]. 

This improvement not only reduces computational time but also enhances the overall accuracy and 

interpretability of the resulting clusters, making the hybrid Divisive–K-Means method a more robust 

alternative for complex data analysis. 

 

2.2.4. Limitations 

Despite its advantages in producing more accurate and well-structured clusters, the Divisive–K-

Means hybrid method also presents several computational limitations that must be considered when applied 

to large-scale data analysis. One of the primary drawbacks is that divisive clustering is computationally 

demanding, as it involves a top-down splitting process that requires evaluating numerous possible 

partitioning strategies before determining the optimal division of data [6], [7], [23]. This evaluation process 

can significantly increase computational load, especially when dealing with high-dimensional or complex 

datasets. 

Additionally, similar to the agglomerative approach, divisive clustering is not ideal for very large 

datasets, as the recursive splitting and distance calculations demand substantial computational resources and 

memory capacity [21], [33]. Consequently, while the method offers improved accuracy and stability in 

clustering results, it may become impractical for large-scale or real-time applications without further 

optimization or the use of parallel processing techniques. The combination of hierarchical and partitioning 

techniques in both hybrid methods is designed to address the weaknesses of K-Means while maintaining 

computational efficiency [13], [29], [34]. 

 

2.3.  Evaluation metrics 

To comprehensively assess clustering performance, this study applies three categories of evaluation 

metrics: execution time, convergence iterations, and cluster validity indices. These metrics capture not only 

computational efficiency but also the stability and quality of clustering results, which are essential for 

evaluating clustering algorithms in big data environments [1], [2], [15], [20]. 

 

2.3.1. Execution time 

Execution time refers to the total amount of time taken by each clustering algorithm to complete the 

clustering process, measured in seconds. In this study, execution time was recorded using Python’s built-in 

time function, which captures the duration from the initialization of the algorithm to its convergence. This 

metric directly evaluates computational efficiency, which is particularly critical in the context of big data 

analysis, where clustering methods must be both accurate and scalable [3], [11], [20]. Hybrid approaches, 

such as Agglomerative K-Means and Divisive K-Means, are expected to reduce overall computation time by 

improving centroid initialization, which leads to faster convergence despite the additional hierarchical 

overhead [1], [31], [35]. Previous studies have demonstrated that such hybrid hierarchical–partitioning 

methods can achieve a balance between accuracy and efficiency, outperforming traditional K-Means in large-

scale datasets [13], [32]. 
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2.3.2. Convergence iterations 

Convergence iterations represent the number of refinement steps K-Means requires to stabilize after 

centroid initialization. A lower number of iterations indicates that centroids were initialized closer to optimal 

positions, leading to faster convergence and reduced computational load [31], [19], [26]. In standard K-

Means, poor centroid initialization can lead to multiple redundant iterations, increasing both execution time 

and the risk of suboptimal clustering [2], [15], [36]. In contrast, hybrid methods such as hierarchical-based or 

metaheuristic-assisted centroid initialization improve convergence by providing better starting centroids, 

thereby accelerating the stabilization process [1], [26], [27], [37]. This metric is essential for comparing the 

efficiency and stability between conventional and hybrid clustering algorithms, as it highlights the role of 

initialization in the optimization of clustering performance [19], [21], [38]. 

 

2.4.  Cluster validity indices 

To evaluate the quality of the resulting clusters, three internal validation indices are employed: 

Silhouette Coefficient, Davies–Bouldin Index (DBI), and Calinski–Harabasz Index (CH Index). These 

indices measure cluster cohesion, separation, and variance structure to provide a comprehensive evaluation of 

clustering quality [10], [14], [28]. 

The Silhouette Coefficient: is one of the most widely used internal validation indices for clustering 

evaluation. It provides a quantitative measure of how well each data point fits within its assigned cluster 

compared to other clusters. The index combines two key aspects of clustering quality: cohesion (the degree 

of similarity between a data point and other points in the same cluster) and separation (the degree of 

dissimilarity between a data point and points in the nearest neighboring cluster). 

For each data point i, the Silhouette value s(i) is defined as: 𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max⁡{𝑎(𝑖),𝑏(𝑖)}
 the Silhouette 

Coefficient formulation, two main components are used to evaluate the clustering quality of each data point. 

The first component, a(i), represents the average distance between a specific data point (i) and all other points 

within the same cluster. This value measures cohesion, or how closely related the point is to the members of 

its own cluster. The second component, b(i), denotes the minimum average distance between the same point 

(i) and all points belonging to other clusters, which reflects separation, or how distinct the point is from other 

clusters. By comparing these two values, the Silhouette Coefficient assesses whether a data point is 

appropriately assigned to its cluster, balancing both internal similarity and external dissimilarity. 

The Silhouette Coefficient is a widely used metric for evaluating clustering quality, with values 

ranging from –1 to +1. A coefficient value close to +1 indicates that a data point is well-matched to its own 

cluster and distinctly separated from neighboring clusters, reflecting a well-defined and cohesive clustering 

structure. Conversely, a value near 0 suggests that the data point lies on the boundary between two or more 

clusters, indicating potential overlap or ambiguity in cluster membership. Meanwhile, a value approaching –1 

implies that the data point may have been incorrectly assigned to its current cluster, as it is more similar to 

points in another cluster [9]. This range allows researchers to assess both the overall clustering performance 

and the appropriateness of individual data point assignments within the model. 

High Silhouette scores suggest compact and well-separated clusters, while low scores indicate 

overlap or weak structure [10], [14]. This metric is frequently used in comparative studies of clustering 

algorithms to evaluate the effectiveness of initialization and the optimal number of clusters [1], [15], [28]. 

The Davies–Bouldin Index (DBI): is an internal cluster validity metric that evaluates the average 

similarity between clusters by considering both the compactness within clusters and the separation between 

clusters. It was first introduced by Davies and Bouldin (1979) and has since been widely used for assessing 

clustering quality in unsupervised learning. For each cluster i, the DBI is calculated as the average of the 

maximum similarity values between cluster i and all other clusters j. The similarity measure is defined as the 

ratio between the within-cluster scatter (how compact the cluster is) and the distance between cluster 

centroids (how far apart two clusters are). Mathematically, the DBI is expressed as: 

 

𝐷𝐵𝐼 =
1

𝑘
∑max

𝑗≠𝑖
(
𝑆𝑖 + 𝑆𝑗

𝑀𝑖𝑗

)

𝑘

𝑖=1

 

 

In the formulation of the DBI, several parameters are used to evaluate clustering performance based 

on intra-cluster similarity and inter-cluster separation. Here, k represents the total number of clusters formed 

by the algorithm. The term Sᵢ denotes the average distance of all data points within cluster i to its centroid, 

which measures the intra-cluster distance or how compact each cluster is. Meanwhile, Mᵢⱼ refers to the 

distance between the centroids of clusters i and j, capturing the inter-cluster distance or the degree of 

separation between clusters. By analyzing the balance between these two distances, the DBI provides an 

overall measure of clustering effectiveness, where lower values indicate better-defined and more distinct 
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clusters. Lower DBI values indicate better clustering compact clusters and high separation [14], [28]. The 

DBI is particularly effective for imbalanced or variable-density datasets, making it a suitable index for 

evaluating hybrid clustering algorithms in big data analysis [1], [10], [20]. 

The Calinski–Harabasz Index (CH Index): also referred to as the Variance Ratio Criterion (VRC), is 

an internal clustering validation metric that evaluates the quality of a clustering structure based on the ratio of 

between-cluster dispersion to within-cluster dispersion. It was first proposed by Caliński and Harabasz 

(1974) and has since been widely adopted as a reliable measure for determining the optimal number of 

clusters in unsupervised learning. 

Mathematically, the CH Index is defined as: 

 

𝐶𝐻(𝑘) =
𝑇𝑟(𝐵𝑘)

𝑇𝑟(𝑊𝑘)
𝑥
𝑁 − 𝑘

𝑘 − 1
 

 

In the computation of the Calinski–Harabasz Index (CH Index), several key parameters are employed to 

measure the balance between cluster separation and compactness. The variable N denotes the total number of 

data points in the dataset, while k represents the number of clusters formed by the algorithm. The term Tr(Bₖ) 

refers to the trace of the between-cluster dispersion matrix, which quantifies the variance of the cluster 

centroids relative to the overall mean a measure of how well clusters are separated from each other. 

Conversely, Tr(Wₖ) indicates the trace of the within-cluster dispersion matrix, reflecting the variance of data 

points within each cluster, or how tightly grouped the members of a cluster are. A higher Calinski–Harabasz 

Index value suggests that the clustering structure exhibits both strong inter-cluster separation and low intra-

cluster variance, indicating better clustering quality. 

A higher CH Index value indicates better clustering quality, as it reflects clusters that are well-

separated from each other (high between-cluster variance) and internally compact (low within-cluster 

variance). Unlike the DBI, where lower values are preferred, the CH Index favors higher values as a sign of 

optimal partitioning [1], [14]. Higher CH values indicate better clustering, signifying high inter-cluster 

variance and low intra-cluster variance [10], [28]. The CH Index is widely applied for model selection to 

determine the optimal number of clusters, complementing the Silhouette and DBI metrics [10], [15], [28]. 

Prior studies have confirmed its effectiveness in hybrid hierarchical–partitioning clustering, especially for 

medium to large-scale datasets, due to its sensitivity to both compactness and separation [1], [13], [30]. 

Alongside the Silhouette Coefficient and DBI, the CH Index offers a complementary perspective in 

evaluating the overall performance and quality of clustering results. Together, these metrics provide a 

balanced assessment across different aspects of clustering effectiveness. 

The execution time metric measures computational efficiency, indicating how quickly an algorithm 

can produce results without compromising accuracy [1], [3], [11], [32]. Meanwhile, Convergence Iterations 

reflect both the effectiveness of centroid initialization and the stability of the algorithm, where fewer 

iterations generally signify a more optimized and consistent process [19], [26], [27], [31]. Finally, the 

combination of Cluster Validity Indices including Silhouette, DBI, and CH serves to evaluate clustering 

accuracy and structural quality, providing insights into how well clusters are formed and how distinct they 

are from one another [10], [14], [15], [28]. Together, these evaluation metrics form a comprehensive 

framework for assessing clustering performance from multiple dimensions: accuracy, stability, and 

computational efficiency. This integrated evaluation framework ensures a balanced and objective comparison 

between standard K-Means and hybrid approaches, revealing the trade-offs between efficiency, stability, and 

cluster quality [1], [2], [15], [20], [28].  

 

 

3. RESULTS AND DISCUSSION 

To illustrate the operational workflow of the proposed Hybrid Divisive–K-Means model, the code 

segment in Algorithm 1 presents the algorithmic steps used in the experiment. This implementation 

demonstrates how the divisive splitting process is executed to obtain initial cluster partitions, how centroids 

are computed from the hierarchical results, and how these centroids are subsequently refined using K-Means. 

The code reflects the exact procedure applied in the study to ensure methodological clarity and 

reproducibility. 

 

Algorithm 1. Algorithmic steps used in the experiment 
def hybrid_divisive_kmeans(X, n_clusters=3): 

    cluster_labels = np.zeros(len(X), dtype=int) 

    clusters = [np.arange(len(X))] 

    #Step 1: Divisive → split until the number of clusters reaches n_clusters. 

    while len(clusters) < n_clusters: 
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        sizes = [len(c) for c in clusters] 

        idx_split = np.argmax(sizes) 

        indices = clusters.pop(idx_split) 

        if len(indices) <= 1: 

            clusters.append(indices) 

            continue 

        km = KMeans(n_clusters=2, random_state=42, n_init=10) 

        split_labels = km.fit_predict(X[indices]) 

        clusters.append(indices[split_labels == 0]) 

        clusters.append(indices[split_labels == 1]) 

    # mapping divisive cluster results to cluster_labels 

    for cid, idx in enumerate(clusters): 

        cluster_labels[idx] = cid 

    # Compute the centroid from the divisive results 

    centroids = np.array([X[cluster_labels == i].mean(axis=0) for i in range(n_clusters)]) 

    # Step 2: K-Means with initialization from the divisive centroids 

    kmeans = KMeans(n_clusters=n_clusters, init=centroids, n_init=1, random_state=42) 

    return kmeans.fit_predict(X) 

 

3.1.  Execution time comparison 

Figure 2 presents the first 35 data points of the clustering results show the assigned cluster labels for 

each method: K-Means predominantly assigns most points to cluster 2, with some points in clusters 0 and 1; 

Agglomerative K-Means shows more variation across clusters 0, 1, and 2; while Divisive K-Means produces 

a pattern very similar to Agglomerative K-Means, indicating comparable cluster assignments between the 

two hybrid approaches. 

Table 2 presents the execution time of the two clustering methods: standard K-Means as shown in 

Figure 3, and Divisive K-Means as shown in Figure 4. The results are reported in seconds and represent the 

average of multiple experimental runs to reduce the effect of random variations. Figures 5 and 6 present the 

runtime scalability analysis of the proposed Hybrid Divisive–K-Means framework, illustrating how 

computational performance changes with increasing dataset size (n) and feature dimensionality (d). 

 

 

 
 

Figure 2. First 35 data points of clustering results 

 

 

Table 2. Execution time comparison of clustering methods 
Method Execution Time (ms) Iterations to convergence Silhouette score DBI CH Index 
KMeans 54.98 5 0.196 1.454 14.3 

Divisive KMeans (DHC) 1.45 3 0.195 14.05 15.8 

 

 

  
 

Figure 3. The K-means clustering 

 

Figure 4. The hybrid divisive K-means clustering 
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Figure 5. Runtime scaling with dataset size(n) 
 

Figure 6. Runtime scaling with dimensionality(d) 

 

 

3.2.  Interpretation of cluster validity indices 

The cluster validity indices provide deeper insight into the quality of the clustering results. The 

Silhouette Score shows that standard K-Means and Divisive K-Means produce nearly identical values (0.196 

vs. 0.195), suggesting similar levels of separation and cohesion among clusters. Although the score is 

relatively modest, it aligns with the nature of complex socioeconomic datasets, which often exhibit 

overlapping group characteristics. Meanwhile, the DBI indicates that K-Means achieves better separation 

between clusters with a lower value (1.454) compared to Divisive K-Means (14.05). The unusually high DBI 

for Divisive K-Means may reflect compact yet closely positioned clusters, underscoring the need for 

additional parameter tuning or expanded benchmarking to fully understand this behavior. In contrast, the CH 

Index favors the Divisive K-Means method, which attains a higher score (15.8) than standard K-Means 

(14.3), demonstrating superior overall dispersion and compactness—an outcome consistent with its more 

structured initialization approach. Together, these indices suggest that while the proposed hybrid improves 

computational efficiency and centroid stability, the overall clustering quality varies depending on the metric 

used, warranting broader comparative validation. 
 

3.3.  Discussion and limitations 

Overall, the hybrid model demonstrates enhanced convergence speed and stability, confirming the 

advantage of divisive initialization for large and high-dimensional datasets. However, the findings remain 

largely descriptive and are based on a modest-sized dataset, limiting the ability to fully validate the framework’s 

scalability claims. Additional experiments with larger datasets potentially exceeding millions of observations 

would be necessary to empirically confirm the model’s suitability for big data applications. Moreover, while the 

clustering results reveal meaningful structural patterns, their direct relevance to poverty policy is not yet 

strongly established. Future work should integrate spatial analysis, district-level socioeconomic profiling, and 

domain expert validation to translate the clustering outcomes into actionable policy insights. 

 

 

4. CONCLUSION 

The Hybrid Divisive–K-Means model demonstrates clear improvements over the standard K-Means 

approach, particularly through faster convergence and more stable centroid initialization. The execution time 

dropped from 54.98 ms to 1.45 ms, though this gain should be viewed in relation to the relatively small 

dataset used. Additionally, the decrease in iterations from five to three shows that the divisive initialization 

step effectively reduces centroid randomness, leading to a more consistent and reliable clustering process. 

The cluster validity indices also demonstrate that the hybrid approach maintains or slightly enhances 

clustering quality. A higher Calinski–Harabasz Index (15.8) and a comparable Silhouette Score (0.195) 

suggest that the resulting clusters are reasonably compact and well-separated, even though the Davies–

Bouldin Index increased. In a socio-economic context, a higher Silhouette Score indicates that districts with 

similar poverty characteristics such as unemployment rate, education level, or access to services are grouped 

more consistently, implying that the model captures meaningful patterns of deprivation. Similarly, higher 

Calinski–Harabasz values imply that the distinctions between low-, moderate-, and high-poverty clusters are 

more structurally defined, which can support policymakers in identifying priority regions. Conversely, an 

increase in Davies–Bouldin scores suggests that some clusters may still overlap socio-economically, 

indicating that certain districts share mixed characteristics that complicate clear policy categorization. This 
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mixed performance across validity metrics highlights the need for broader benchmarking and external 

validation before generalizing the model’s effectiveness to larger or more heterogeneous datasets. 

Beyond technical performance, the clustering results have meaningful implications for regional 

socio-economic policy. By grouping districts based on multidimensional poverty indicators, policymakers 

can identify priority regions, allocate resources more effectively, and design targeted poverty alleviation 

programs. The DHC framework thus provides an analytical foundation that supports evidence-based planning 

for regional development. 

However, this study also acknowledges key limitations. The dataset contains a limited number of 

variables, which may not fully capture the complexity of poverty dynamics. In addition, the relatively small 

dataset restricts the evaluation of scalability claims, and external validation using independent datasets was 

not conducted. Future research should therefore explore the application of the model to larger datasets, 

incorporate additional socio-economic indicators, and assess scalability using parallel or distributed 

computing frameworks. Expanding the analysis to other provinces or sectors would further strengthen the 

robustness and policy relevance of the proposed hybrid clustering approach. 
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