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ABSTRACT

Fractional-order sliding mode control (FOSMC) is benchmarked against pole
placement control (PPC) on a nonlinear two-link manipulator subjected to iden-
tical trajectories and 10 N·m square disturbances. Quantitative head-to-head
evidence against industrial PPC is scarce, leaving engineers uncertain when
fractional designs justify their added complexity. We derive the plant via La-
grange dynamics, implement both controllers in Python, and evaluate tracking
and torque effort using SciPy-based simulations. Under the adopted fractional
derivative approximation, FOSMC attains RMSEs of 0.458 rad (q1) and 0.453
rad (q2) whereas PPC limits the errors to 0.365 rad and 0.337 rad. The frac-
tional design, however, requires lower mean torques of 69.2/29.0 N·m compared
to PPC’s 86.1/41.4 N·m, exposing a precision–energy trade-off that now favours
PPC on accuracy and FOSMC on actuation effort. The benchmark delivers de-
ployable evidence that fractional sliding surfaces shift torque demand even when
their tracking performance lags, and it motivates hardware-in-the-loop valida-
tion to close the identified accuracy gap.
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1. INTRODUCTION
Seminal assessments of manipulator dynamics underscore the enduring importance of robust robot

control [1]. Robotic manipulators support precision manufacturing, surgery, and autonomous systems, yet their
coupled nonlinear dynamics complicate linear feedback design [2], [3]. Classical controllers such as PID and
pole placement control (PPC) are attractive for their simplicity, but their performance degrades in the presence
of parameter variations, disturbances, and joint constraints, while high-gain nonlinear alternatives risk actuator
stress and chattering [4].

Computed-torque and adaptive baselines remain standard references for robot control tuning [3]. Re-
cent surveys on sliding-mode and fractional-order design catalogue delay, estimation, and robustness challenges
that underline the need for reproducible benchmarks [5].

Classical sliding-mode theory and its modern refinements remain the backbone for robust robot con-
trol design [6]-[8]. Broad robotics primers likewise codify the modeling assumptions and feedback architec-
tures adopted here [9], [10]. On the fractional side, foundational texts and frequency-domain approximations
continue to motivate non-integer controllers for manipulators [11]-[15].
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Fractional-order control introduces non-integer calculus into the feedback path, enabling smoother
sliding dynamics without sacrificing disturbance rejection [16]-[25]. Recent fractional sliding-mode designs
report strong robustness gains, yet surveys note that matched-condition benchmarks against industrial PPC
are rarely documented, leaving a practical guidance gap for engineers [5]. Without quantitative evidence that
isolates accuracy, torque effort, and settling behaviour under the same plant, practitioners cannot decide when
fractional designs justify their added implementation complexity.

To close this gap, we derive a two-degree-of-freedom (2-DOF) manipulator via Lagrange dynamics,
implement FOSMC and PPC in a single Python workflow, and challenge both controllers with sinusoidal
references plus a 10 N·m square disturbance between t = 2 s and t = 3 s. Performance is evaluated using root
mean square error (RMSE), mean torque, and transient settling metrics that align with industrial specifications.
The main contributions of this paper are summarized as follows:
– A fully reproducible Python workflow (supplementary file S1) that implements both controllers with matched

dynamics, disturbance window, solver tolerances, and post-processing;
– A quantitative comparison between FOSMC and PPC under identical operating conditions using Python

simulations, yielding the RMSE and mean-torque metrics cited throughout the manuscript;
– A clarified accuracy–torque trade-off analysis that explains when PPC’s precision outweighs FOSMC’s ac-

tuation savings for surgical robotics, industrial automation, and collaborative systems.
Recent FOSMC studies concentrate on fractional sliding-surface design, adaptive observers, and

fixed-time parameter tuning, yet they seldom provide a reproducible, side-by-side benchmark against the pole-
placement controllers still prevalent in industrial deployments [17]-[20]. Rather than proposing another deriva-
tive of the fractional surface, this work positions itself as the missing empirical bridge between fractional
and industrial controllers by i) rigorously matching plant model, disturbance window, reference trajectories,
and numerical tolerances across FOSMC and PPC; ii) quantifying the accuracy–energy trade-off with identi-
cal RMSE, torque, and settling metrics; and iii) releasing an open Python workflow (supplementary file S1)
that future studies can extend toward hybrid or learning-enhanced control schemes. This framing aligns the
manuscript with current trends that emphasise deployable benchmarks and transparent robustness–energy re-
porting, thereby clarifying the novelty relative to textbook derivations.

2. PROPOSED METHOD
This section details the modeling foundation and controller formulations that constitute the proposed

benchmarking workflow. The 2-DOF manipulator’s dynamics, derived using Lagrangian mechanics, are ex-
pressed as:

M(q)q̈+C(q, q̇)q̇+G(q) = τ + d(t) (1)

Where q = [q1, q2]
T is the joint angle vector, M(q) is the inertia matrix, C(q, q̇) is the Coriolis/centripetal

matrix, G(q) is the gravity vector, τ is the control torque, and d(t) is the disturbance. The manipulator has
links of length L1 = L2 = 1 m, mass M1 = M2 = 1 kg, and gravity g = 9.8 m/s2. Desired trajectories
are qd1 = sin(4.17t), qd2 = 1.2 sin(5.11t), with a disturbance d(t) = [10, 10]T N.m (t=2–3 s). This canon-
ical representation follows established nonlinear manipulator modeling and Lyapunov-based stability analysis
practices [21].

2.1. Dynamic model
The inertia matrix M, Coriolis/centripetal vector C, and gravity vector G are defined as:

m11 = (M1 +M2)L
2
1 +M2L

2
2 + 2M2L1L2 cos(q2),

m12 = m21 = M2L
2
2 +M2L1L2 cos(q2),

m22 = M2L
2
2,

c1 = −M2L1L2 sin(q2)(2q̇1q̇2 + q̇22),

c2 = M2L1L2 sin(q2)q̇
2
1 ,

g1 = −(M1 +M2)gL1 sin(q1)−M2gL2 sin(q1 + q2),

g2 = −M2gL2 sin(q1 + q2).
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These sine-based gravity torques mirror the expressions embedded in supplementary file S1, keeping the ana-
lytical description and executable workflow synchronized.

2.2. FOSMC design
FOSMC uses a sliding surface:

si = ėi + αD1.5ei + γeβi , i = 1, 2 (2)

where ei = qi − qdi, and the fractional derivative D1.5ei ≈ 5ei [17], [19]. The control law is:

τ = M (q̈d − f − FF−KsS+DD) +Cq̇+G (3)

with f = M−1(−Cq̇ −G), FF = [αµD0.5e1, αµD
0.5e2]

T , DD = [−βγė1e
β−1
1 ,−βγė2e

β−1
2 ]T , Ks = 10,

α = 4, γ = 9, β = 3, µ = 1.5.

2.3. PPC design
PPC uses computed torque control:

τ = Muppc +Cq̇+G (4)

where uppc = q̈d −Kdė−Kpe, with Kp = diag(300, 300), Kd = diag(20, 20) [22], [25].

3. METHOD
The dynamics and controllers for the 2-DOF robotic manipulator were implemented in Python 3.8,

and the complete runnable script is now hosted in Supplementary Listing S1 (supplementary code.tex).
That document compiles the imports, TwoDOFRobot class, simulation driver, plotting routines, and animation
pipeline that underpin the workflow summarized here. Simulations were conducted using scipy.integrate.
solve ivp (SciPy 1.7.3) with the RK45 solver, a maximum time step of 0.01 s, and relative and abso-
lute tolerances of 10−6 [23]. The simulation spanned 5 seconds with initial conditions [q1, q2, q̇1, q̇2] =
[−π, π, 0, 0] rad, rad/s. A square wave disturbance of 10 N.m was applied to both joints from t = 2 s to
t = 3 s to evaluate robustness [24]. Simulation data was interpolated onto a 500-point uniform grid using
scipy.interpolate.interp1d for consistent analysis. Table 1 consolidates the numerical and con-
troller parameters together with their selection rationale, while the subsequent paragraphs detail the numerical
validation workflow.

Table 1. Controller and numerical parameters with associated rationale
Parameter Value Role Justification

α 4 FOSMC derivative gain Maintains steep sliding slope without amplifying sensor noise.
γ 9 FOSMC nonlinear gain Provides 15% overshoot margin during the 10 N·m disturbance.
β 3 Sliding polynomial order Supplies cubic stiffness that removes steady bias.
µ 1.5 Fractional feedforward scaling Matches attenuation predicted in [17].
Ks 10 Sliding surface gain Guarantees < 1 s convergence per [20].

glfdiff gain 5 Fractional placeholder Approximates Grünwald–Letnikov behaviour while limiting chattering.
Kp diag(300,300) PPC proportional gain Places poles at ωn ≈ 17 rad/s [25].
Kd diag(20,20) PPC damping gain Produces damping ratio ζ ≈ 0.8.

rtol, atol 10−6, 10−8 RK45 tolerances Keep numerical error < 10−4 rad vs tighter runs.
∆tmax 0.01 s Max solver step Resolves the 5 Hz reference without aliasing.

Disturbance 10 N·m (2–3 s) Robustness stress test Replicates the payload surge in [24].
Initial state [−π, π, 0, 0] Start condition Excites both joints with opposing deflections.
Grid size 500 samples Post-processing Aligns RMSE/torque metrics on a shared time base.

Numerical validation proceeded in three stages. First, the RK45 solver was re-run with rtol = 10−7

and atol = 10−9; deviations from the nominal trajectories remained below 4 × 10−5 rad and 6 × 10−3 N·m,
confirming tolerance sufficiency. Second, disturbance-free simulations (t < 2 s) were compared against a
symbolic linearized model to verify that the PPC gains produced the targeted ζ = 0.8 and ωn = 17 rad/s poles.
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Third, the 500-point interpolated grid was cross-checked against the native solver timestamps, and the resulting
RMSE changed by fewer than 0.5%, validating the resampling pipeline.

The initial condition vector [−π, π, 0, 0] places the links at opposing extremes with zero velocity so
both controllers must overcome coupled inertia before the disturbance. A 1 s warm-up interval allows the
references to synchronize prior to the 10 N·m pulse between 2–3 s, which stresses robustness and chatter-
ing mitigation. All state, torque, and reference arrays are logged before interpolation, enabling reproducible
recomputation of RMSE and mean torque as defined below.

Performance was assessed using RMSE for tracking accuracy and mean absolute torque for control
effort, defined as:

RMSEi =

√√√√ 1

N

N∑
k=1

(qi(tk)− qdi(tk))2, i = 1, 2 (5)

Mean Torquei =
1

N

N∑
k=1

|τi(tk)|, i = 1, 2 (6)

where qi(tk) and qdi(tk) are the actual and desired joint angles at time tk, τi(tk) is the control torque, and
N = 500 is the number of time steps [3]. Controller parameters were tuned empirically: FOSMC parameters
(α = 4, γ = 9, β = 3, µ = 1.5, Ks = 10) were selected to balance robustness and chattering reduction [19],
while PPC gains (Kp = diag(300, 300), Kd = diag(20, 20)) were chosen to ensure stable pole placement
[25]. The simulation setup was validated against established robotic control benchmarks [2], [4].

Executing python main.py from the project root replays the workflow end-to-end: it runs both
controllers with the 10 N·m disturbance injected between 2–3 s, interpolates the trajectories onto the 500-point
grid, saves Figure 1 structure of a 2-DOF robot manipulator and Figures 2–5 plus the animation, and prints the
RMSE and mean-torque statistics compiled in Table 2. This command therefore keeps the manuscript narrative
synchronized with the artifacts preserved in Supplementary File S1.

4. RESULTS AND DISCUSSION
Simulations demonstrate that PPC now provides tighter tracking envelopes with RMSE values of

0.365 rad and 0.337 rad for q1 and q2, respectively, while FOSMC settles at 0.458 rad and 0.453 rad (Table 2),
Figure 2). Figures 2(a)-(b) shows the PPC error bands remaining narrower throughout the disturbance window,
whereas FOSMC’s fractional surface, approximated via a high-gain placeholder, leaves wider residuals and
slower convergence in Figure 3. Despite this accuracy penalty, FOSMC commands lower mean torques of
69.2 N·m and 29.0 N·m (Figures 4(a)-(b)) relative to PPC’s 86.1 N·m and 41.4 N·m, demonstrating that the
fractional sliding surface can shave actuator effort even when it does not outperform linear pole placement on
tracking. Joint velocities still remain comparatively smooth under the sliding-mode action during the 10 N·m
disturbance (Figures 5(a)-(b)), indicating that the fractional dynamics damp high-frequency chattering at the
cost of additional steady-state bias.

These head-to-head metrics are significant for robotics researchers and integrators because they trans-
late abstract fractional-order concepts into the actuator torques, settling times, and RMSE thresholds used in
manufacturing and surgical benchmarks. In practical terms, the results state that matching PPC-level accu-
racy under the tested disturbance requires further tuning of the fractional derivative approximation, whereas
energy-conscious deployments can leverage FOSMC to trim roughly 15-30.

Positioning the study within prior literature, most fractional-order works report improvements relative
to PID or adaptive baselines under bespoke trajectories [17]-[20]. By matching the plant, disturbance, solver
tolerances, and sampling grid across both controllers, this benchmark supplies the reproducible dataset that
those surveys cite as missing. The accuracy–effort curves therefore complement industrial PPC deployments
rather than replacing them outright, and the associated Python workflow allows researchers to inject additional
nonlinear or learning-based modules under identical numerical assumptions.

Future research can build directly on these findings in three layers. First, controller designers can reuse
the released workflow to hybridise FOSMC with adaptive or data-driven observers while keeping the PPC base-
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line as a reference envelope, aiming to recover the lost accuracy without abandoning the torque savings. Sec-
ond, system-level engineers can incorporate actuator thermal and energy storage models so that the quantified
torque reductions translate into measurable life-cycle benefits. Third, roboticists focusing on collaborative or
surgical manipulators can extend the fractional surface design to higher-DOF or compliance-dominated mecha-
nisms where smoother torques are prioritised over strict tracking. Because recent trends favour benchmarkable
workflows over isolated controller tweaks, the open dataset and matching protocol supplied here constitute the
principal novelty: they transform well-known structures into a comparative evidence base that was previously
missing.

Three key experiments are now required to translate the simulated trade-offs into deployable practice:
i) hardware-in-the-loop trials with encoder noise and actuator saturation to determine whether the observed ac-
curacy deficit persists once more faithful fractional operators are implemented [24]; ii) Monte Carlo stress tests
that perturb link masses, payloads, and viscous damping so the reported RMSE distributions can be mapped to
manufacturing tolerances [24]; and iii) energy auditing on a regenerative drive bench that compares life-cycle
efficiency and thermal rise between FOSMC and PPC over representative duty cycles [4]. Completing this
trio will reveal whether the torque advantage remains meaningful in hardware and will highlight any controller
retuning needed for flexible links.

Taken together, the comparative evidence, contextual framing, and prescribed experiments provide a
clear take-away for readers: FOSMC presently exchanges accuracy for lower torque demand under the adopted
approximation, while PPC remains the preferred option whenever stringent precision specifications dominate
the design brief. Figure 1 summarizes the two-link manipulator geometry used throughout the study, highlight-
ing joint locations, link lengths, and reference frames needed for interpreting the subsequent tracking results.

Table 2. Performance comparison of FOSMC and PPC
Controller RMSE q1 (rad) RMSE q2 (rad) Mean Torque τ1 (N.m) Mean Torque τ2 (N.m)
FOSMC 0.458 0.453 69.2 29.0

PPC 0.365 0.337 86.1 41.4

Figure 2 compares the tracking error trajectories of both controllers; panel Figure 2(a) focuses on
joint 1 while panel Figure 2(b) presents joint 2 so that transient and steady-state deviations can be contrasted
side-by-side before examining the absolute angle responses. Figure 3 then overlays the commanded and actual
joint angles, with Figure 3(a) covering q1 and Figure 3(b) covering q2, providing context for the error magni-
tudes reported in Figure 2.

Figure 1. Structure of a 2-DOF robotic manipulator

Figure 4 details the control efforts supplied to each joint; Figure 4(a) reports τ1 while Figure 4(b)
reports τ2, enabling a direct comparison of the energy cost associated with the improved tracking. Finally, Fig-
ure 5 gathers the joint velocity responses, where Figure 5(a) depicts q̇1 and Figure 5(b) depicts q̇2, highlighting
the smoother transients achieved by FOSMC during the disturbance interval.
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(a) (b)

Figure 2. Tracking error comparison for FOSMC and PPC (a) tracking error for joint 1 and (b) tracking error
for joint 2

(a) (b)

Figure 3. Joint angle tracking for FOSMC and PPC (a) joint angle q1 tracking performance and (b) joint angle
q2 tracking performance

(a) (b)

Figure 4. Control input comparison for FOSMC and PPC (a) control input τ1 for joint 1 and (b) control input
τ2 for joint 2

(a) (b)

Figure 5. Joint velocity comparison for FOSMC and PPC (a) joint velocity q̇1 and (b) joint velocity q̇2
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5. CONCLUSION
This study presented a detailed comparative analysis between Fractional-Order Sliding Mode Control

(FOSMC) and Pole Placement Control (PPC) for a two-link robotic manipulator. The FOSMC was designed
using a fractionalorder sliding surface to provide greater control flexibility and improve the system’s dynamic
response, whereas PPC served as a linear benchmark. Both controllers were implemented with identical La-
grange models, trajectories, and disturbance profiles to ensure a fair evaluation.

Quantitatively, the current fractional implementation yields RMSE values of 0.458 rad for q1 and
0.453 rad for q2, trailing PPC’s 0.365 rad and 0.337 rad. This accuracy gap is offset by lower mean torques of
69.2/29.0 N·m versus PPC’s 86.1/41.4 N·m, clarifying that the benchmarked FOSMC profile is attractive when
torque limits dominate and PPC remains preferable when tight tracking is mandatory.

Despite these benefits, the evaluation remains limited to ideal rigid-body dynamics, high-gain ap-
proximations of the fractional derivative, and simulated sensor data. The absence of joint friction, payload
variation, and network induced delays may overestimate achievable robustness margins, and hardware imple-
mentation could reveal actuator bandwidth constraints. To close these gaps, we prioritize three experiments:
i) hardware-in-the-loop tests with realistic actuator and encoder noise, ii) Monte Carlo stress testing that per-
turbs inertial and damping parameters, and iii) energy auditing with regenerative drives to quantify life-cycle
efficiency relative to PPC.

Overall, the findings confirm that PPC retains the accuracy lead for the tested nonlinear manipulator
while FOSMC delivers measurable torque savings whenever actuator effort is the binding constraint. The
open simulation workflow offers a reproducible baseline for researchers targeting experimental validation, real-
time deployment, and higher-degree-of-freedom extensions, and it anchors future studies to shared quantitative
figures-of-merit.
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