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ABSTRACT

Vehicle classification plays a vital part in the development of intelligent trans-
portation systems (ITS) and modern traffic management, where the ability to
detect and identify vehicles accurately in real time is essential for maintain-
ing road efficiency and safety. This paper presents an enhancement to the
YOLOv8m model by refining its activation function to achieve higher accuracy
and faster response in diverse traffic and environmental situations. In this study,
two alternative activation functions—Mish and Swish—were integrated into the
YOLOv8m structure and tested against the model’s default sigmoid linear unit
(SiLU). Training and evaluation were carried out using a comprehensive dataset
of vehicles captured under different lighting and weather conditions. The exper-
imental findings show that the modified activation design leads to better model
convergence, improved generalization, and a noticeable boost in detection per-
formance, recording up to 5.4% higher accuracy and 6.6% better mAP scores
than the standard YOLOv8m. Overall, the results confirm that fine-tuning acti-
vation behavior can make deep learning models more adaptive and reliable for
vehicle classification tasks in real-world intelligent transportation environments.
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1. INTRODUCTION
The rapid development of intelligent transportation systems (ITS) has become one of the defining fea-

tures of modern smart cities. As urban populations continue to expand, the ability to effectively monitor and
manage traffic flows has become crucial in ensuring road safety, reducing congestion, and improving urban
mobility. One of the core technologies supporting ITS is vehicle classification, which involves identifying and
grouping vehicles based on their physical and visual characteristics. Accurate classification plays an impor-
tant role in applications such as autonomous driving, real-time traffic monitoring, and toll collection, where
reliability and timely detection are critical [1], [2].

Over the last decade, deep learning has notably transformed computer vision by outperforming tradi-
tional image-processing approaches that rely on handcrafted features. Earlier models such as R-CNN and SSD
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provided robust detection results but suffered from high computational complexity and long inference times
[3]. The you only look once (YOLO) family of algorithms addressed these limitations by combining feature
extraction and classification into a single-stage detection pipeline, enabling real-time processing on embedded
systems [4], [5].

The latest version, YOLOv8, introduced by Ultralytics in 2023, features improved architectural com-
ponents such as decoupled detection heads, adaptive anchor boxes, and an enhanced backbone structure, which
collectively strengthen generalization and detection results [5]. Among its model variants, YOLOv8m of-
fers an optimal trade-off between computational efficiency and precision, making it particularly suitable for
deployment in real-time vehicle classification systems [6]. However, despite these architectural refinements,
YOLOv8’s results remains highly dependent on the activation function, a fundamental mechanism that influ-
ences nonlinear transformation and gradient propagation during network learning [7], [8].

Activation functions are vital for enabling neural networks to learn complex, nonlinear relationships
in visual data. Conventional functions such as rectified linear unit (ReLU) and LeakyReLU are widely used due
to their computational simplicity, yet they often suffer from problems such as neuron saturation and vanishing
gradients, which reduce convergence stability [9]. In contrast, modern activation functions—such as Swish,
Mish, and Gaussian error linear unit (GELU)—introduce smoother gradient transitions and self-regularization,
allowing the network to achieve better representation learning and generalization [10]–[12]. Empirical studies
demonstrate that these newer functions can strengthen image classification and object detection results by
improving convergence speed and robustness across varying data conditions [13], [14].

Despite these advancements, limited research has examined how activation function adjustment influ-
ences YOLOv8-based models, particularly for ITS applications where environmental conditions such as light-
ing, occlusion, and traffic density vary greatly [15]. These dynamic conditions present significant challenges
to real-time detection and classification results. Optimizing activation functions has also been found to reduce
oscillations during training, prevent gradient vanishing, and strengthen overall model reliability—especially
for edge-based implementations in traffic environments [16], [17].

Motivated by these challenges, this study explores the adjustment of the YOLOv8m activation function
to strengthen vehicle classification results and model generalization in diverse conditions. The research focuses
on integrating Mish and Swish functions into the YOLOv8m framework and further introduces a gradient-
normalized sigmoid (GNSig) activation that employs -scaling and bias correction to refine training stability.
The enhanced model is tested using a custom vehicle dataset gathered from various traffic scenarios in Batangas
City, Philippines, encompassing different weather and illumination conditions. The models were evaluated
using results, mean average precision (mAP), and inference speed to examine results improvements relative to
the baseline YOLOv8m.

This research aims to contribute both theoretically and practically: theoretically, by deepening under-
standing of how activation-level modifications affect learning dynamics in deep detection architectures; and
practically, by providing an adaptable and efficient framework for real-time vehicle classification in intelligent
transportation environments. The insights derived from this work serve as a foundation for future exploration
of adaptive activation mechanisms in deep learning and embedded computer vision systems.

To address the identified gaps in the literature and to advance the state-of-the-art in intelligent-transportation
object detection using YOLO-based architectures, this work contributes the following:
− We propose a novel α-scaled GNSig activation function for the YOLOv8m model, an activation variant

not previously explored in YOLO-family detectors.
− This conducts the first systematic evaluation of activation-function replacements (rather than architec-

tural modifications) within YOLOv8m targeted at intelligent transportation applications under real-world
Philippine traffic conditions.

− This will isolate the effect of activation-function substitution by retaining the base network architecture
unchanged, enabling clear attribution of performance gains to the activation alone.

− The proposed GNSig includes gradient-normalization, -scaling, and bias correction to enhance conver-
gence stability and reduce oscillations — features absent in conventional activations like SiLU, Swish,
or Mish.

− This demonstrates improved performance not only in the target in-domain ITS dataset but also in a cross-
domain pothole detection scenario, evidencing better generalization and robustness.
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2. METHOD
2.1. Conceptual framework

The conceptual framework of this study shows the logical flow and interconnection among the key
components involved in developing the modified YOLOv8m model for vehicle classification. As shown in
Figure 1, the framework follows a systematic pipeline composed of five major stages: dataset acquisition,
preprocessing and augmentation, image annotation, model training and activation function adjustment, and
model evaluation. Each stage helps to the enhancement of model results, efficiency, and generalization within
the context of ITS.

The process begins with dataset acquisition, which serves as the foundation of model development.
Real-world traffic videos were captured under varying conditions—different illumination levels, weather types,
and vehicle densities—to simulate complex environments typically encountered in urban road networks. This
step ensures dataset diversity, a key factor in achieving high generalization results [1], [2].

Next, preprocessing and augmentation are applied to prepare the dataset for model training. Images
are resized to a consistent resolution, and data cleaning ensures high-quality samples. Augmentation techniques
such as horizontal flipping, random cropping, brightness adjustment, and mosaic composition are employed to
expose the model to diverse visual contexts, reducing overfitting and improving robustness [13], [14].

The image annotation process is done using the Roboflow platform, where each vehicle instance is
labeled with bounding boxes and category identifiers. This stage enables supervised learning by associating
spatial coordinates with class labels across nine primary vehicle categories—car, bus, truck, jeepney, tricycle,
van, motorcycle, bicycle, and e-bike [6].

During model training, the YOLOv8m network learns spatial and contextual relationships among the
vehicle features. Hyperparameters such as learning rate, batch size, and momentum are tuned while monitoring
loss metrics including box loss, classification loss, and distribution focal loss [4], [5]. The activation function
plays a central role in model adjustment. This study modifies the default sigmoid linear unit (SiLU) activation
in YOLOv8m with alternative configurations such as Mish, Swish, and a newly proposed (GNSig) with -scaling
and bias adjustment to strengthen learning stability and convergence [7]–[12].

Finally, model evaluation involves assessing the results of both baseline and modified models on
unseen validation and test datasets. Metrics such as results, mAP@50, mAP@50–95, inference speed, and
validation loss are computed. A cross-dataset test on a pothole detection dataset is also done to examine the
modified model’s adaptability and transfer learning capability [15], [16].

Overall, the conceptual framework underscores how every component—from data collection to algo-
rithmic adjustment—helps to developing a robust, adaptive, and efficient vehicle classification system for ITS.
Through activation function adjustment, the framework improves detection precision, convergence behavior,
and real-time results under dynamic environmental conditions [17].

Figure 1. Conceptual framework of the modified YOLOv8m model for vehicle classification

2.2. Data collection and preprocessing
The dataset used in this study was developed to reflect the complexity and variability of real-world

traffic conditions in an urban setting. Traffic videos were collected by using a DJI Osmo Pocket 2 camera placed
along several sections of four-lane roads in Batangas City, Philippines. This setup in data acquisition closely
parallels the methodological approach pursued by Delmo [18], whose earlier work on YOLOv8-based vehicle
speed estimation provided both a structural reference and valuable insight into the capturing of dynamic multi-
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lane traffic environments. This current study extends that foundation through a focus on vehicle classification
and the integration of activation-level modifications to enhance the detection performance.

Multiple days and different environmental conditions have been sampled to ensure a high degree of
representativeness. The variation in illumination ranges from bright daylight to overcast, as well as light and
moderate rainfall; likewise, the captured atmospheric effects are also natural. Regarding traffic conditions,
the dataset contains scenes with a traffic density that ranges from free-flowing to heavy congestion, reflecting
typical fluctuations observed in roadways within an urban environment. All videos were recorded in 1080p HD
resolution, followed by segmenting the footage into single frames at a sampling rate of one frame every three
seconds. This processed dataset consists of 4,157 images that include various types of vehicles with a wide
range of orientations, scales, and visibility conditions.

The dataset was further divided into training, validation, and testing sets in a 70:20:10 ratio. This
stratification made certain that the training subset captured enough variation to facilitate informative learning
while the validation subset supported hyperparameter tuning and helped to avoid overfitting. In turn, the test
subset provided an independent benchmark in model generalization assessment. The partition strategy followed
established practices in deep learning, emphasizing balanced representation across environmental and vehicular
conditions [1], [2].

Once the raw frames were prepared, a rich preprocessing pipeline began to prepare the images by nor-
malizing the input characteristics and improving the quality of the training data. Noise reduction approaches
were utilized to remove any artifacts due to sensor limitations, motion-induced blur, or atmospheric interfer-
ence. All images were then resized to 640 × 640 pixels to meet the architectural needs of YOLOv8m and to
unify the shape of images for improved computational efficiency during training. The pixel intensities were
normalized to the range [0, 1], a pre-processing step linked to good gradient stability and faster convergence of
optimization.

Further strengthening the robustness of the model, an extensive augmentation process was imple-
mented by using both Roboflow preprocessing tools and the built-in augmentation module of YOLOv8. In-
stead of depending solely on the naturally occurring variability of the dataset, this work introduced synthetic
variations to simulate common real-world disturbances. These included geometric transformations of flipping,
cropping, rotation, and scaling, which helped the model learn the differences in camera angles, vehicle ori-
entations, and spatial composition. Photometric adjustments were also incorporated to simulate a wide range
of lighting conditions. For example, brightness and exposure variations allowed the model to deal with glare,
shadow transitions, and low light conditions typical of early morning or late afternoon traffic. Of particu-
lar importance was mosaic augmentation, where four images are merged into a single image, increasing the
scene complexity and exposing the model to a variety of object interactions within one frame [19], [20]. These
procedures for data collection and preprocessing together ensured that the resulting dataset was diverse and rep-
resentative of the various challenges commonly found in intelligent transportation environments. Integrating
real-world variability with synthetically enhanced augmentation, this study set a training foundation that will
support stable network convergence and reduced overfitting, enhancing the ability of the modified YOLOv8m
model to perform in a robust manner under complex traffic conditions.

2.3. Image annotation
Following the data preprocessing phase, all images were subjected to a detailed annotation process

to accurately label and localize vehicle objects within each frame. Annotation was done using the Roboflow
platform, a web-based system designed for efficient object detection dataset preparation. Each visible vehicle
was enclosed within a bounding box and assigned a corresponding class label, serving as ground-truth data for
model training and validation [21].

A total of nine vehicle categories were identified and annotated: car, truck, bus, van, motorcycle, tricy-
cle, jeepney, bicycle, and e-bike. These categories represent the most common vehicles observed in Philippine
roadways, ensuring the dataset’s contextual relevance to local ITS. Each image could contain multiple vehicle
types, mirroring the congestion and mixed traffic patterns found in real environments. This multi-class labeling
scheme allowed the YOLOv8m model to learn vehicle differentiation and scale variation, essential for real-time
classification under dynamic traffic scenes [18].

Figure 2 shows the image annotation workflow, illustrating the step-by-step process from frame ex-
traction to label export. The pipeline begins with the uploading of image frames to the Roboflow platform,
where annotation projects are created and versioned. Annotators then perform bounding box labeling and as-
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sign the appropriate vehicle category. Once annotation is completed, a quality control and verification stage
is done, where a secondary reviewer cross-checks the labels to identify and correct errors such as overlapping
boxes or misclassified objects. Finally, all verified annotations are exported in YOLOv8-compatible format,
containing normalized coordinates and class indices. This structured process ensures annotation consistency
and reproducibility across training iterations [21], [22].

Figure 2. Image annotation process using roboflow

To validate the results and quality of the labeling process, several sample annotated images were
reviewed. A total of 13,081 images were selected for the 9 vehicle categories that are mostly seen in the
Philippine setting of roads, such as car, motorcycle, tricycle, jeepney, truck, van, e-bike, bicycle, and bus. Each
vehicle instance is highlighted with color-coded bounding boxes corresponding to its class label, demonstrating
the dataset’s visual richness and class diversity. This visual inspection helped verify that all nine vehicle
categories were properly represented and that bounding boxes conformed to the model’s spatial expectations.
Additionally, the diversity in object positioning, lighting, and occlusion observed in the annotated images
supports the robustness of the model’s feature learning and generalization capabilities [23].

This rigorous annotation and validation process notably enhances model results by reducing label
noise and ensuring that every class is uniformly represented across different environmental contexts. As prior
studies confirm, datasets with high annotation precision and consistent labeling structure contribute directly to
improved mean average precision (mAP) in object detection systems [21], [24].

2.4. Data augmentation
To strengthen the YOLOv8m model’s generalization capability, a comprehensive data augmentation

process was implemented to strengthen the diversity and realism of the training dataset. This process artificially
expands the available data by introducing controlled visual variations, allowing the model to recognize vehicles
under different environmental and spatial conditions. Such augmentations are particularly essential for ITS
applications, where lighting, traffic density, and camera viewpoints change continuously [19], [25].

The augmentation pipeline, done using the Roboflow preprocessing system and YOLOv8’s built-in
augmentation module, simulated various real-world scenarios. As shown in Figure 3, several transformations
were applied to the dataset to strengthen robustness. Horizontal flipping was used to represent vehicles moving
in opposite directions, while random rotation and scaling allowed the model to adapt to diverse camera angles
and distances. In addition, random zooming and cropping—applied between 0% and 20%—enabled the model
to accurately detect vehicles of different apparent sizes and positions within the frame. This technique is
especially useful for simulating vehicles that suddenly appear closer or farther away, a common occurrence in
dynamic traffic scenes.

Similarly, brightness and exposure corrections, ranging from (-)15% to (+)15%, were applied to sim-
ulate different illumination conditions such as daytime glare, dusk transitions, and low-light nighttime scenes.
These variations ensured that the model remained resilient to lighting inconsistencies, which are often a limit-
ing factor in real-world deployments [26]. Random translation and cropping were further introduced to mimic
occlusions, where parts of a vehicle might be blocked by other vehicles or roadside elements.

Among the implemented techniques, mosaic augmentation proved highly effective. It merges four
different images into one, allowing the model to learn from multiple objects and background contexts in a
single training sample. This not only increases class diversity but also enhances spatial awareness and reduces
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overfitting [20]. Additionally, HSV color-space adjustments were utilized to generate subtle variations in hue,
saturation, and value, reflecting the impact of environmental lighting and camera sensor differences on visual
perception [26].

The overall impact of these transformations is visually illustrated in Figure 4, where augmented sam-
ples demonstrate the variations introduced by each technique. The combination of geometric, photometric, and
compositional augmentations contributed notably to model robustness, enabling YOLOv8m to maintain detec-
tion results even in visually challenging environments. By systematically applying these augmentations, the
model reached more stable training behavior, better convergence, and reduced overfitting, ultimately leading to
improved real-time results across diverse traffic conditions.

Figure 3. Data augmentation techniques applied to vehicle images

2.5. Activision function
Activation functions play a vital role in enabling deep networks to learn complex, non-linear map-

pings. They affect gradient flow, convergence speed, and feature extraction across convolutional layers. The
baseline YOLOv8m network originally used the SiLU, which was compared with two modern functions—Mish
and Swish—and a newly proposed α-scaled GNSig. These modifications were introduced to strengthen learn-
ing stability and classification helps real-time vehicle detection.

The default SiLU (Swish-1) activation is defined as: f(x) = xsigmoid(x), SiLU offers smooth and
continuous gradient propagation, which prevents abrupt activations seen in ReLU-based functions. However,
test-based results from earlier studies indicate that SiLU may underperform when dealing with rapid illumina-
tion changes or high intra-class variance, as its output tends to saturate for extreme negative inputs [8], [14].
To address this limitation, the Mish and Swish functions were integrated into the YOLOv8m structure for
comparative evaluation.

The Mish function, expressed as f(x) = xtanh(softplus(x)), introduces a self-regularizing property
through its smooth non-monotonic curve. This feature enables deeper layers to capture subtle visual cues
such as vehicle contours, edges, and reflections without destabilizing gradient updates. Prior studies have
demonstrated that Mish can outperform SiLU in tasks involving fine-grained feature learning due to its stronger
gradient flow and adaptive representation capabilities [8], [10]. The Swish function, on the other hand, is
defined as f(x) = xsigmoid(x), introduces a learnable parameter that adjusts the slope dynamically. This
adaptability allows Swish to maintain gradient sensitivity even in low-activation regions, resulting in smoother
convergence during training and improved overall helps visual recognition tasks [11], [27].

Building upon these principles, this research also explores a custom α-scaled GNSig activation, de-
signed to balance gradient flow and avoid neuron saturation. The GNSig function modifies the classical sigmoid
by introducing two additional parameters: an -scaling factor and a bias correction term (b), formulated as:

f(x) = α ·
(

1

1 + e−x

)
+ b

The term amplifies the activation response to mid-range input signals, while the bias correction shifts
the activation threshold, improving sensitivity to subtle feature variations. This adjustment aims to prevent
the vanishing gradient problem commonly observed in deep networks, particularly during prolonged training
on high-resolution image data. The design was inspired by the findings of Xu and Wang [28], who empha-
sized that scaled-sigmoid activations strengthen both gradient consistency and training stability across diverse
learning tasks.
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During implementation, the YOLOv8m model architecture was kept structurally identical across all
experiments, with the activation function as the sole modified component. This ensured a fair comparative
analysis of how activation dynamics affect detection results. The modified functions were integrated into the
C2f blocks and detection heads within the YOLOv8m architecture, maintaining consistent training conditions,
including batch size, learning rate, and optimizer settings. The comparative results was evaluated through
metrics such as mean Average Precision (mAP@50–95), convergence rate, and validation loss reduction.

Empirical observations revealed that both Mish and Swish activations provided smoother loss curves
and higher mAP compared to the default SiLU, confirming their effectiveness in capturing complex vehicle fea-
tures under varied lighting and occlusion conditions. Additionally, the proposed GNSig activation exhibited the
most stable training behavior, minimizing oscillations in validation loss and demonstrating improved adaptabil-
ity to unseen traffic scenes. These outcomes affirm that proper activation tuning can notably strengthen model
convergence, feature richness, and generalization capability, contributing to more reliable real-time vehicle
classification.

2.6. Model training and evaluation
The modified YOLOv8m models were trained and evaluated under controlled test-based conditions

to ensure a consistent and fair comparison among the four activation functions: SiLU, Mish, Swish, and the
proposed α-scaled GNSig. All experiments were done using an NVIDIA RTX 4060 GPU with 8 GB VRAM,
operating under Python 3.10 and PyTorch 2.2 within the Ultralytics YOLOv8 framework. Identical training
parameters and dataset splits were maintained across all experiments to eliminate external variability.

The dataset was divided into 70% for training, 20% for validation, and 10% for testing. Each model
was trained using a batch size of 16, an initial learning rate of 0.001, and a momentum coefficient of 0.937.
The stochastic gradient descent (SGD) optimizer with a cosine annealing learning rate scheduler was employed
to ensure smooth convergence. Training was done for 100 epochs, and early stopping was implemented to
automatically terminate the process when no significant improvement in validation loss was observed for 15
consecutive epochs [29].

The YOLOv8m architecture was selected due to its balance between detection results and compu-
tational efficiency, which makes it suitable for real-time vehicle classification tasks. The model consists of
three principal components: the Backbone, responsible for extracting hierarchical visual features; the Neck,
which performs multi-scale feature fusion using the PAN-FPN structure; and the Head, which predicts object
classes and bounding boxes. The activation function modifications—SiLU, Mish, Swish, and GNSig—were in-
tegrated into the C2f convolutional blocks and the detection head layers while preserving all other architectural
and training parameters. This configuration ensured that any results differences observed could be attributed
primarily to the effects of the activation functions [8], [27].

Performance was quantitatively assessed using the mean Average Precision (mAP) metric at two
Intersection-over-Union (IoU) thresholds: mAP@50 and mAP@50–95. The mAP is defined as the mean
of the Average Precision (AP) values across all classes:

mAP =
1

N

N∑
i=1

Ai

Where denotes the Average Precision for class and N represents the total number of vehicle categories. A
higher mAP shows superior helps both localization and classification results [30].

Complementary results indicators such as Precision (P), Recall (R), and the F1-score were also com-
puted to provide a more comprehensive evaluation. The F1-score, representing the harmonic mean of precision
and recall, is defined as:

F1 =
2PR

P +R

These metrics collectively examine the reliability of the model, ensuring that improvements in mAP do not
come at the expense of increased false detections [30], [31]. Additionally, inference speed, measured in frames
per second (FPS), was evaluated to determine the trade-off between results and real-time applicability—an
essential factor in ITS.

To analyze convergence patterns, both training and validation loss curves were examined across all
activation function variants. Models utilizing Mish and Swish demonstrated smoother convergence and higher
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mAP values compared to the baseline SiLU, suggesting that their smoother non-linearities enable better gra-
dient flow and improved representation learning. The proposed α-scaled GNSig activation reached the most
stable training results, exhibiting minimal oscillations in loss and the fastest convergence rate. These results
confirm that proper activation function tuning can notably strengthen model robustness, training efficiency,
and classification reliability—contributing to the advancement of real-time computer vision systems for traffic
analysis and vehicle classification.

3. RESULTS AND DISCUSSION
This section shows the comprehensive results and comparative analysis of the modified YOLOv8m

models using various activation functions—SiLU, Mish, GELU, LeakyReLU, and the proposed α-scaled GN-
Sig. The evaluation covers detection results, convergence stability, inference speed, and real-world deployment
results.

The results indicate that the modified model, equipped with the proposed GNSig activation, reached
the highest results improvements across all metrics. Each figure and table in this section shows the effects of
activation function choice and architectural modifications on YOLOv8m’s overall behavior.

3.1. Quantitative evaluation
Table 1 shows the comparative results of the YOLOv8m models using different activation functions,

including the baseline SiLU, Swish, Mish, and the proposed α-scaled GNSig. The GNSig variant reached
the highest overall results, obtaining an mAP@50–95 of 86.7%, surpassing Mish (85.9%) and Swish (84.8%),
while maintaining a real-time inference rate of 94 FPS. These outcomes indicate that the gradient normalization
and bias scaling introduced in GNSig improved feature discrimination without compromising speed. Table 1
comparative results of YOLOv8m activation function variants.

Table 1. Results of the YOLOv8m models using different activation functions
Activation function Precision (%) Recall (%) F1-Score mAP@50 mAP@50-95 Interface speed (FPS)

SiLU (Baseline) 83.2 81.7 0.82 90.5 82.4 97.3
Swish 85.6 83.4 0.84 91.9 84.8 95.1
Mish 86.8 85.1 0.86 93.4 85.9 92.8

α-scaled GNSig (Proposed) 88.2 86.9 0.87 94.6 86.7 94.0

When compared with existing YOLO-based ITS research, the achieved improvements are notably
higher. Prior enhancement studies such as Li et al. [15] and Al-Kaf et al. [16] typically report mAP gains
ranging from 1% to 3% through architectural modules or attention mechanisms. In contrast, the proposed
GNSig activation alone produced up to 6.6% improvement in mAP50–95, exceeding the gains documented in
Mish- and Swish-based studies like Liu et al. [12] and Gao et al. [14]. This demonstrates that activation-
level optimization—without additional architectural changes—can yield performance improvements greater
than those achieved through heavier model modifications.

The results confirm that adaptive activation scaling enhances gradient consistency and model general-
ization. While Mish and Swish provided smoother learning curves than SiLU, GNSig’s stability in maintaining
precision and recall balance makes it the most reliable activation for real-time intelligent transportation systems.

3.2. Comparative model behavior across activations
The series of visual comparisons shows the detection behavior of YOLOv8m under different activa-

tion configurations. The baseline SiLU model, as seen in Figure 4(a), reached a result of 0.907, showing stable
detection but limited adaptability to varying lighting and occlusion. The Mish variant (Figure 4(b)) yielded
0.863 results, revealing better feature extraction at edges but slightly slower training due to increased compu-
tational load. The GELU-based model (Figure 4(c)) reached 0.854 results and smoother activation gradients
but displayed weaker sensitivity to low-contrast objects such as small or partially hidden vehicles. LeakyReLU
(Figure 4(d)) offered early-stage gradient stability with 0.863 results, yet plateaued in later epochs, indicating
reduced learning flexibility for overlapping objects. Finally, the proposed GNSig model (Figure 4(e)) reached
the highest results at 0.961, demonstrating superior convergence behavior and feature sensitivity due to its gra-
dient normalization and -bias correction mechanism. These visual results collectively highlight that activation
function selection directly affects YOLOv8m’s learning dynamics. GNSig’s smoother and more controlled
gradients led to improved feature retention and reduced overfitting compared to the other tested functions.
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These qualitative differences align with reports in prior activation-function literature. For instance,
Mish and Swish have been shown to improve edge sensitivity and soft-feature retention [8], [10], [12]. How-
ever, the proposed GNSig surpasses these by showing smoother convergence and stronger boundary precision,
which has not been previously documented in YOLOv8m-based implementations. The higher sensitivity to
occluded and low-contrast vehicles confirms the superior gradient consistency offered by GNSig relative to
traditional activations used in YOLO systems as shown in Figure 5.

Figure 4. YOLOv8 medium comparative model behavior: (a) default sigmoid linear unit, accuracy = 0.907,
(b) mish activation, accuracy = 0.863, (c) GELU activation, accuracy = 0.854, (d) LeakyReLU activation,

accuracy = 0.863, and (e) gradient normalization α and bias adjustments, accuracy = 0.961

Figure 5. Modified YOLOv8 medium (gradient normalization, α, and bias adjustments, accuracy = 0.961)
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3.3. Domain transfer and generalization performance
To examine the robustness of the modified model, an additional evaluation was done using a pot-

hole detection dataset (Figures 6). The baseline YOLOv8m with SiLU reached a result of 0.711 as shown in
Figure 6(a), revealing limitations in capturing irregular surface features. In contrast, the modified GNSig model
reached 0.759 results as shown in Figure 6(b), representing a 4.8% improvement. The GNSig variant effectively
captured subtle textural variations and fine structural edges of potholes, confirming its enhanced generalization
capability beyond vehicle datasets.

Figure 6. YOLOv8 medium on pothole dataset accuracy (a) default YOLOv8 medium on pothole dataset
(accuracy = 0.711) and (b) modified YOLOv8 medium on pothole dataset (accuracy = 0.759)

This domain transfer experiment confirms the versatility of the proposed activation scheme. It shows
that the improved gradient flow not only enhances in-domain classification results but also helps to stabil-
ity and adaptability in heterogeneous visual domains. Compared with previous cross-domain YOLO studies,
which typically observe performance drops when transferring from traffic datasets to road-surface datasets [15],
the proposed GNSig activation maintained strong generalization. The 4.8% improvement over the baseline
YOLOv8m outperforms the 2–3% generalization improvements reported in related transfer-learning studies,
suggesting that gradient-normalized activations enhance feature abstraction beyond vehicle-specific training as
shown in Table 2.

Table 2. Comparative results on the pothole detection dataset
Model Activation function Accuracy Remarks

YOLOv8m (Default) Sigmoid linear unit 0.711 Slower convergence
YOLOv8m (Modified) Gradient-normalized sigmoid 0.759 Improved feature discrimination

3.4. Convergence, precision–recall, and validation analysis
The convergence behavior of all models was examined using precision–recall curves and validation

loss tracking. The GNSig model reached consistent precision (88%) and recall (87%) values throughout train-
ing, while maintaining the smoothest mAP convergence curve among all variants. Figure 4 shows that GNSig
stabilized approximately 30 epochs earlier than the baseline SiLU, indicating faster and more stable learning.
The confusion matrix patterns revealed higher diagonal dominance for GNSig, demonstrating better class sep-
aration for visually similar vehicle categories such as vans and sedans, or motorcycles and e-bikes. These
findings emphasize that the proposed activation not only enhances numerical results metrics but also improves
model stability as shown in Table 3. The lower validation loss and early convergence confirm efficient gradient
propagation, reducing oscillations and preventing overfitting during prolonged training.

In comparison, activation-focused studies such as Misra [10] and Hendrycks and Gimpel [11] empha-
size smoother gradients as the primary factor for improved convergence but report marginal gains in detection
performance. The GNSig activation integrates gradient normalization and -scaling, producing larger reductions
in validation loss (negetive 30.8%) than those documented for GELU and Mish, indicating a more substantial
stabilization effect during training. This level of convergence improvement has not been previously achieved
in YOLOv8m-based research.
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Table 3. Comparative results metrics between baseline and modified YOLOv8m models
Metric Default YOLOv8m Default YOLOv8m Default YOLOv8m

Accuracy 0.907 0.961 +5.4%
mAP50 0.876 0.934 +5.8%

mAP50–95 0.851 0.917 +6.6%
Validation Loss 1.417 0.981 –30.8%

3.5. Real-time evaluation and system implications
Field testing was done at the Alangilan Overpass, Batangas City (Figure 7), to examine real-time de-

tection results under varying lighting and motion conditions. The modified YOLOv8m demonstrated smoother
object tracking, clearer boundary delineation, and reduced false positives compared to the default model. Small
and partially obscured vehicles were detected with higher confidence levels, reflecting the model’s improved
generalization to complex visual scenarios.

The proposed modifications reached a balanced trade-off between results and inference speed (94
FPS at 86.7% mAP), making the model suitable for embedded ITS applications. The activation refinement
directly improved detection reliability in urban environments, where rapid illumination and motion variations
frequently challenge vision-based systems. Most YOLOv8-based ITS studies conduct only offline evaluations
and rarely validate in operational road environments [15], [16]. The real-world performance achieved by the
proposed GNSig model—detecting small, partially occluded vehicles with higher confidence—surpasses the
field-testing observations reported in past works. This practical deployment evidence highlights the uniqueness
of this study in demonstrating activation-level improvements that translate reliably to real traffic scenarios.

Figure 7. Real-time testing at Alangilan Overpass, Batangas City

3.6. Summary of findings
This study successfully enhanced the YOLOv8m model through activation function adjustment, demon-

strating that careful adjustment of non-linear transformations can notably strengthen object detection results and
stability. By integrating a custom α-scaled GNSig activation, the proposed approach reached higher conver-
gence stability, faster learning, and improved generalization compared to conventional functions such as SiLU,
Mish, GELU, and LeakyReLU.

Experimental results revealed that the modified YOLOv8m model reached 96.1% results on the vehi-
cle dataset and 75.9% on the pothole dataset—representing 5.4% and 4.8% improvements, respectively, over
the baseline configuration. These gains were supported by lower validation losses, smoother precision–recall
curves, and increased mean Average Precision across all thresholds. The GNSig activation provided consistent
gradient flow and prevented saturation, enabling better representation of fine visual features such as vehicle
edges and surface irregularities. Additionally, real-time tests at the Alangilan Overpass confirmed that these
improvements translate effectively into real-world deployment, where lighting variations and motion blur often
degrade detection results.

The findings affirm that activation-level refinements can yield practical benefits for intelligent trans-
portation systems by enhancing model reliability under complex environmental conditions. Future work may
extend this research by exploring dynamic or hybrid activation schemes that adapt during training, applying
similar adjustments to other YOLO architectures, or integrating attention-based modules to further strengthen
contextual understanding in high-speed detection tasks.
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Relative to existing YOLO-enhancement literature, the performance gains documented in this work
are significantly larger and more consistent across diverse evaluation conditions. While earlier studies report
incremental improvements through complex feature modules or architectural redesign, this work demonstrates
that a refined activation alone can achieve comparable or superior results. This highlights an underexplored but
highly effective direction for model optimization within ITS applications.

4. CONCLUSION
This study presented a systematic enhancement of the YOLOv8m model through activation function

adjustment, aiming to strengthen detection precision, convergence stability, and adaptability in real-world in-
telligent transportation applications. By integrating and evaluating various activation functions—SiLU, Mish,
GELU, LeakyReLU, and the proposed α-scaled GNSig—the research established that fine-tuning activation
dynamics notably influences learning efficiency and model reliability. Experimental results confirmed that the
proposed GNSig activation consistently outperformed all tested functions, attaining 96.1% results on the ve-
hicle dataset and 75.9% results on the pothole dataset, with corresponding mAP improvements of 5.8% and
4.8% over the baseline. These results gains were supported by lower validation losses, smoother convergence
patterns, and improved precision–recall balance, demonstrating the activation’s ability to preserve gradient
flow and mitigate saturation. Additionally, real-world testing at the Alangilan Overpass validated the model’s
practical applicability, revealing enhanced localization of small and partially occluded vehicles, fewer false
detections, and stable classification under varying illumination and motion conditions.

The results underscore that optimizing activation mechanisms at the architectural level can yield sub-
stantial improvements in both detection results and computational efficiency. The α-scaled GNSig activation
introduced in this study enhances gradient consistency while maintaining real-time results, marking it as a vi-
able solution for embedded computer vision systems deployed in intelligent transportation networks. Future
research may explore adaptive or hybrid activation strategies capable of adjusting dynamically during train-
ing, as well as integrating attention or transformer-based modules to further strengthen contextual awareness.
Extending this approach to other YOLO variants and traffic-related tasks—such as vehicle tracking, speed es-
timation, and anomaly detection—may lead to more robust, adaptive, and sustainable AI-driven transportation
solutions.
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