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 Dust deposition on photovoltaic (PV) panels is a significant operational 
issue, often leading to power losses exceeding 15–30% in regions with high 
airborne particle concentrations. Although numerous studies have 
investigated either visual detection of dust or analytical estimation of 
performance loss, most approaches focus on a single task and provide 

limited practical insight for real-time maintenance. This work introduces a 
dual-task deep learning framework that simultaneously classifies dust 
severity and predicts the corresponding power loss from panel images. Five 
recent architectures vision transformer (ViT), swin transformer, GhostNet, 
DenseNet, and MobileNetV2 are employed as backbone feature extractors, 
with extracted embeddings processed by a multi-head multi-layer perceptron 
(MLP) combining shared representation learning with separate classification 
and regression outputs. The system is trained and evaluated on a real-world 

dataset of PV panels, and performance is assessed using accuracy and mean 
absolute error. DenseNet achieves the highest accuracy (94%) and lowest 
prediction error, while lightweight convolutional neural network (CNN) 
backbones demonstrate the best balance between precision and 
computational efficiency. By integrating hybrid processing and dual 
predictive capability, the proposed method offers a more comprehensive and 
deployable solution for automated PV monitoring compared to existing 
single-output approaches. 
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1. INTRODUCTION 

In recent years, renewable energy sources have gained significant global attention for their role in 

mitigating climate change, with photovoltaic (PV) systems emerging as a major contributor to sustainable 

power generation. However, the efficiency of PV panels is strongly affected by environmental conditions, 

particularly dust accumulation, which obstructs solar radiation and leads to measurable power losses [1]-[3]. 

PV modules consist of multiple p-n junction cells that convert photon energy into electrical current, and  

their behavior is commonly modeled using equivalent electrical circuits composed of a photocurrent  

source, diodes, and internal parasitic resistances. To accurately describe their behavior, equivalent circuit  
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(as shown in Figure 1) models are commonly used, incorporating a current source (Iph), two diodes  

(ID1, ID2), and resistors Rs and Rsh to represent internal and leakage resistances [4]. The output current is 

expressed as: 

 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 −
𝑉𝐷

𝑅𝑠ℎ
  

 

This model helps analyze PV electrical characteristics across various architectures monocrystalline, 

polycrystalline, dye-sensitized, and perovskite cells, including advanced types like PERC, HIT, and TOPCon. 
Their performance is strongly dependent on surface cleanliness, emphasizing the importance of regular 

inspection [5], [6]. 

 

 

 
 

Figure 1. Equivalent electrical circuit of a solar panel 

 

 

Dust accumulation is particularly problematic in arid and semi-arid environments where low rainfall 

prevents natural cleaning of the panels, resulting in reduced energy output, thermal hot spots, accelerated 

material degradation, and a shorter operational lifespan [7]-[9]. To mitigate these effects, recent research has 
investigated automated dust detection using deep learning. Onim et al. [10] proposed SolNet, a lightweight 

convolutional neural network (CNN) that outperformed AlexNet and visual geometry group (VGG) in 

classification tasks. Cruz-Rojas et al. [11] combined U-Net with extreme gradient boosting (XGBoost) and 

random forest (RF), achieving promising segmentation results. Cui et al. [12] used mask R-CNN to detect 

dusty areas with high precision on both real and synthetic datasets. Prova [13] demonstrated the capabilities 

of InceptionV3 for dust classification, while Oulefki et al. [14] introduced DeepSolarEye, reaching a dice 

coefficient of 92%. Alatwi et al. [15] proposed a low-cost solution based on DenseNet-169 coupled with 

support vector machine (SVM), suitable for edge deployment. 

Further studies also report high performance. Bassil et al. [16] compared several CNN architectures 

including VGG and MobileNet, while Mohammed and Alawi [17] leveraged EfficientNet for dust detection 

with excellent results. He et al. [18] and Shah et al. [19] employed MobileNet and InceptionV3 respectively, 

with strong accuracy. Detection-oriented methods such as YOLOv8 Xie et al. [20], YOLOv3 Karakan et al. 
[21], and ensemble CNNs Sefer and Kaya [22] also demonstrated high precision. Shao et al. [23] achieved 

one of the highest reported accuracies through an improved MobileNet architecture. 

Despite their effectiveness, many of these models are computationally intensive, which limits their 

real-time deployment on embedded or low-power devices. Moreover, existing studies generally focus on a 

single task either classification or segmentation without estimating the impact of soiling on actual power 

generation. To address these limitations, the present study introduces a novel dual-task deep learning 

framework capable of both dust-level classification and regression-based estimation of power loss.  

Five recent architectures vision transformer (ViT), swin transformer, GhostNet, DenseNet, and MobileNetV2 

are employed exclusively as feature extractors, with their embeddings processed through a multi-head multi-

layer perceptron (MLP). This design enables shared representation learning while performing two 

complementary tasks simultaneously. 
This article is organized as follows: section 2 describes the proposed approach, detailing the 

experimental setup, datasets, and analytical methods used to assess the impact of dust accumulation on solar 

panel performance. In section 3 presents and analyzes the obtained results. Finally, section 4 concludes the 

study by summarizing the key findings and providing perspectives for future work aimed at improving dust 

detection and maintenance strategies to enhance PV system performance. 
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2. METHOD 

To address both classification and regression tasks for PV panel monitoring, a hybrid deep learning 

framework was developed. It integrates multiple backbone networks for feature extraction with a lightweight 

MLP dual-head prediction module, enabling simultaneous classification of PV panel surface states (clean, 

dusty, soiled) and regression estimation of quantitative performance metrics, specifically power loss 

percentage and irradiance (see Figure 2). In the following section, the sequence of processing stages is 
presented in detail to describe the operation of the proposed algorithm. 
 

 

 
 

Figure 2. Hybrid deep learning architecture for PV panel health monitoring classification and regression 
 
 

2.1.  Dataset and preprocessing 

Due to the absence of public datasets coupling both semantic labels and performance measurements, 

we opted to fuse two complementary datasets at the training level (shared backbone). The roboflow dataset 

(2,323 images) is used exclusively for classification (as shown in Figure 3), with the detailed splits being 

1,619 for training, 469 for validation, and 235 for testing [24]. The DeepSolarEye dataset [25] is used 

exclusively for regression, leveraging the power loss (%) and irradiance values encoded in the filenames.  

For the latter, images were normalized to [0,1] and randomly split into training, validation, and test sets 

(following an 70:20:10 ratio). To prevent data leakage between the regression splits, we sanitized the 
DeepSolarEye filenames by removing timestamps and other non-essential metadata before proceeding with 

the random division. The test sets from both sources are strictly maintained separately, ensuring a valid and 

uncontaminated evaluation of the metrics. 
 
 

 
 

Figure 3. Clean, dusty and soiled samples of solar PV panel 
 
 

2.2.  Comparative evaluation of backbone networks 

To establish a robust and deployable system for PV panel health monitoring, a critical step involved 

the comparative evaluation of several leading deep learning backbone networks. The selection criteria were 

multidimensional, focusing not only on classification and regression accuracy but also on model complexity 

and suitability for deployment on resource-constrained embedded systems. The chosen models span both 

CNN architectures (DenseNet, MobileNetV2, GhostNet) and the more recent transformer-based models 

(ViT, swin transformer), allowing for a comprehensive assessment of feature extraction capabilities for  

PV surface analysis. Extracted features are globally pooled and fed into the dual-head MLP for joint 

classification and regression. 
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2.2.1. ViT 

ViT divides 224×224 images into 16×16 patches, embeds each patch into a 768-dimensional vector, 

and processes them through 12 transformer encoder layers. The [CLS] token is used as the feature 

representation. ViT was employed as a frozen feature extractor. 

 

2.2.2. Swin transformer 

Swin-tiny uses window-based self-attention with a shifting mechanism to capture local and global 
context. It outputs 768-dimensional features after four hierarchical stages, mean-pooled before MLP input. 

Swin provides a scalable trade-off between accuracy and computational cost. 

 

2.2.3. GhostNet 

Generates compact 1,280-dimensional feature vectors using efficient operations, enabling high-

speed inference with minimal memory footprint—ideal for real-time embedded deployment. 

 

2.2.4. DenseNet121 

Connects each layer to all subsequent layers to maximize feature reuse and gradient flow, improving 

extraction of fine-grained dust patterns. 

 

2.2.5. MobileNetV2 
Employs depthwise separable convolutions and squeeze-and-excitation modules to produce  

1,280-dimensional features efficiently, balancing speed and representation quality [26]. 

 

2.3.  MLP dual-head prediction 

Globally pooled backbone features are fed into two MLP heads simultaneously: 

 Classification head: predicts PV panel surface state (clean, dusty, soiled). Evaluated using accuracy, 

precision, recall, and F1-score. 

 Regression head: predicts power loss percentage and irradiance. Metrics include mean square error 

(MSE), root MSE (RMSE), and R². Outputs are reported in physically interpretable units, and error 

distributions are analyzed to ensure dataset comparability. 

This dual-head design allows joint learning of qualitative and quantitative degradation aspects. 
 

2.3.1. Training and hyperparameters 

All backbone layers were frozen, and only the MLP heads were trained. The hyperparameters used 

for training are summarized in Table 1. Evaluation was conducted on both datasets to ensure unbiased 

performance. This configuration allows reproducible training while focusing computational resources on the 

MLP heads for efficient dual-task learning. 
 
 

Table 1. Hyperparameters for MLP heads training 
Parameter Value 

Backbone layers Frozen (Only MLP heads trained) 

Optimizer Adam 

Learning rate 1×10⁻⁴ 

Batch size 32 

Number of epochs Model-dependent  

Data augmentation Random horizontal flip, small rotations (±15°), brightness/contrast jitter 

Random seeds Fixed for reproducibility 

 
 

3. RESULTS AND DISCUSSION 

This study proposes a multi-task learning framework for PV panel assessment, simultaneously 

performing surface condition classification (clean, dusty, soiled) and regression-based estimation of power 

loss and irradiance. The system integrates pre-trained backbones ViT transformer, swin transformer, 

GhostNet_100, DenseNet121, and MobileNetV2 whose extracted visual features are processed by a dual-

head MLP for joint learning. 

 

3.1.  Classification and regression performance 
Table 2 presents the comparative performance of all evaluated models. For classification, DenseNet 

achieved the highest accuracy (94.00%), closely followed by GhostNet (93.47%), while transformer-based 

models, ViT (88.00%) and swin transformer (87.50%), exhibited lower performance. In terms of regression, 

GhostNet outperformed all models, with MSE=0.00214, RMSE=0.0462, MAE=0.0316, and R²=0.8926, 
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demonstrating a favorable balance between predictive accuracy, model compactness (22M parameters), and 

computational efficiency. In contrast, transformer-based models, despite their higher complexity (up to 65M 

parameters), showed reduced regression performance (R²≈0.65). MobileNetV2 occupied an intermediate 

position, providing moderate accuracy and slightly less stable convergence. Importantly, these regression 

errors correspond to small deviations in predicted power loss percentages, indicating that the models can 

reliably estimate actual energy loss, which is critical for practical PV monitoring and maintenance decisions. 
 

 

Table 2. Comparative performance of hybrid architectures for classification and regression tasks 
Backbone Vector dimension Epoch Classification accuracy (%) MSE (%)² RMSE (%) MAE (%) R² 

ViT 768 65 88.00 0.01070 0.1035 0.0657 0.652 

Swin 768 31 87.50 0.02289 0.1513 0.1228 0.653 

GhostNet 1280 22 93.47 0.00213 0.0462 0.0316 0.893 

DenseNet 1024 14 94.00 0.00321 0.0567 0.0370 0.881 

MobileNetV2 1024 18 90.95 0.00302 0.0550 0.0390 0.875 

 

 

Figure 4 illustrates training and validation convergence curves obtained with different backbones, 

Figures 4(a) and 4(b) show that GhostNet and DenseNet exhibit strong generalization with closely aligned 

curves, in contrast, Figures 4(c) and 4(d) indicate that ViT and swin transformer display pronounced 

overfitting, characterized by high training accuracy but lower validation performance and diverging loss 

curves. Finally Figure 4(e) shows that MobileNetV2 demonstrates moderate generalization, with minor 
oscillations in its validation curve, suggesting slower convergence and higher sensitivity to data fluctuations. 
 

 

  
(a) 

 

(b) 
 

  
(c) 

 

(d) 
 

 
(e) 

 

Figure 4. Convergence and generalization of classification models with various backbones: (a) ViT training 

and validation curves, (b) swin transformer training and validation curves, (c) GhostNet training and 

validation curves, (d) DenseNet training and validation, and (e) MobileNetV2 training and validation curves 
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Figure 5 presents the confusion matrices of the evaluated models. Figures 5(a) and 5(b) show that 

ViT and swin transformer exhibit notable confusion, mainly between clean and dusty classes. Figure 5(c) 

indicates that GhostNet provides balanced performance. Figure 5(d) shows that DenseNet achieves the 

highest accuracy with minimal confusion, while Figure 5(e) illustrates that MobileNetV2 suffers from higher 

misclassification rates. 

 

 

  
(a) 

 

(b) 
 

  
(c) 

 

(d) 
 

 
(e) 

 

Figure 5. Final confusion matrix of various models: (a) ViT training, (b) swin transformer,  

(c) GhostNet, (d) DenseNet, and (e) MobileNetV2 
 

 

The evaluation of regression performance, presented in Figure 6, demonstrates the superior 

efficiency of lightweight convolutional architectures compared to transformer-based models in estimating 

power loss (in %). GhostNet proved to be the top-performing backbone, achieving an RMSE of only 

0.0021% and a near-perfect alignment of its predictions along the identity line (y=x), thereby confirming 

high fidelity and the absence of systemic bias. The DenseNet and MobileNetV2 models also showed 

excellent results (RMSE approx 0.003%). In contrast, ViT and swin revealed significantly lower 

performance, with notable dispersion (RMSE of 0.0107% for ViT) and weaknesses in modeling low-loss 

states. This suggests that the feature extraction mechanisms inherent to architectures optimized for local 
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efficiency (such as GhostNet) are better suited for accurately quantifying the surface degradation of PV 

panels. These observations confirm that lightweight CNN-based architectures, specifically GhostNet and 

DenseNet, are particularly effective for dual-task scenarios, combining accurate dirt classification with 

reliable regression of PV performance metrics. 

 

3.2.  Comparison with existing literature 
A comparative evaluation against previous approaches is presented in Table 3. Most prior studies 

focused on single-task models, either performing segmentation or classification of PV panel surfaces. 

Architectures such as InceptionV3, DenseNet-169, VGG, and MobileNet demonstrated effective dust 

detection but lacked quantitative regression outputs for performance degradation. Our proposed hybrid  

multi-task framework achieves a classification accuracy of 94%, surpassing many state-of-the-art models 

while simultaneously estimating power loss and irradiance. This dual-task capability provides a more 

comprehensive diagnostic of PV panel performance, supporting monitoring, maintenance planning, and solar 

energy optimization. 

 

 

 
 

 
 

Figure 6. Comparison of regression performance (power loss %) of different backbone  

models on the test dataset 

 

 

Table 3. Comparison of the accuracy of our proposed method with existing methods reported in the literature 
Reference Model (s) used Method Accuracy/mAP/IoU 

Cruz-Rojas et al. [11] U-Net, XGBoost, RF Segmentation 89.38% IoU 

Prova [13] InceptionV3 Classification 93.10% accuracy 

Oulefki et al. [14] DeepSolarEye Segmentation 92% dice 

Alatwi et al. [15] DenseNet-169 + SVM Classification 86.8% accuracy 

Bassil et al. [16] VGG and MobileNet Classification 89.8% accuracy 

Shah et al. [19] InceptionV3 Classification 92.34% accuracy 

Our method Vision transformer, swin transformer, 

DenseNet, GhostNet, MobileNetV2 

Classification and regression 94% accuracy 

 

 

4. CONCLUSION 

This study presents a hybrid deep learning framework for dual-task PV panel assessment, 

integrating image-based dirt classification with regression-based estimation of power loss and irradiance. 

Unlike prior approaches that focus on either classification or regression, the proposed method simultaneously 
addresses both tasks using a multi-head MLP with multiple backbone feature extractors, providing a more 

comprehensive and deployable solution for real-time PV monitoring. GhostNet and DenseNet demonstrated 

superior accuracy, computational efficiency, and generalization, outperforming heavier transformer-based 

models. 
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While the framework shows promising results, limitations include reliance on a limited dataset, 

constrained environmental diversity, and short-term evaluation. Future work should address large-scale 

validation across diverse climatic conditions, longitudinal monitoring to capture temporal degradation 

patterns, incorporation of additional predictive tasks such as fault detection, and benchmarking against 

emerging architectures in real-world deployments. Overall, this framework offers a practical, data-driven 

solution for sustainable, efficient, and reliable solar energy management. 
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