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Dust deposition on photovoltaic (PV) panels is a significant operational
issue, often leading to power losses exceeding 15-30% in regions with high
airborne particle concentrations. Although numerous studies have
investigated either visual detection of dust or analytical estimation of
performance loss, most approaches focus on a single task and provide
limited practical insight for real-time maintenance. This work introduces a
dual-task deep learning framework that simultaneously classifies dust
severity and predicts the corresponding power loss from panel images. Five
recent architectures vision transformer (ViT), swin transformer, GhostNet,
DenseNet, and MobileNetV2 are employed as backbone feature extractors,
with extracted embeddings processed by a multi-head multi-layer perceptron
(MLP) combining shared representation learning with separate classification
and regression outputs. The system is trained and evaluated on a real-world
dataset of PV panels, and performance is assessed using accuracy and mean

absolute error. DenseNet achieves the highest accuracy (94%) and lowest
prediction error, while lightweight convolutional neural network (CNN)
backbones demonstrate the best balance between precision and
computational efficiency. By integrating hybrid processing and dual
predictive capability, the proposed method offers a more comprehensive and
deployable solution for automated PV monitoring compared to existing
single-output approaches.
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1. INTRODUCTION

In recent years, renewable energy sources have gained significant global attention for their role in
mitigating climate change, with photovoltaic (PV) systems emerging as a major contributor to sustainable
power generation. However, the efficiency of PV panels is strongly affected by environmental conditions,
particularly dust accumulation, which obstructs solar radiation and leads to measurable power losses [1]-[3].
PV modules consist of multiple p-n junction cells that convert photon energy into electrical current, and
their behavior is commonly modeled using equivalent electrical circuits composed of a photocurrent
source, diodes, and internal parasitic resistances. To accurately describe their behavior, equivalent circuit
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(as shown in Figure 1) models are commonly used, incorporating a current source (Iph), two diodes
(ID1, ID2), and resistors Rs and Rsh to represent internal and leakage resistances [4]. The output current is
expressed as:

Vp

Rsh

Ipv = Iph —Ipy—Ipy —

This model helps analyze PV electrical characteristics across various architectures monocrystalline,
polycrystalline, dye-sensitized, and perovskite cells, including advanced types like PERC, HIT, and TOPCon.

Their performance is strongly dependent on surface cleanliness, emphasizing the importance of regular
inspection [5], [6].
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Figure 1. Equivalent electrical circuit of a solar panel

Dust accumulation is particularly problematic in arid and semi-arid environments where low rainfall
prevents natural cleaning of the panels, resulting in reduced energy output, thermal hot spots, accelerated
material degradation, and a shorter operational lifespan [7]-[9]. To mitigate these effects, recent research has
investigated automated dust detection using deep learning. Onim et al. [10] proposed SolNet, a lightweight
convolutional neural network (CNN) that outperformed AlexNet and visual geometry group (VGG) in
classification tasks. Cruz-Rojas et al. [11] combined U-Net with extreme gradient boosting (XGBoost) and
random forest (RF), achieving promising segmentation results. Cui et al. [12] used mask R-CNN to detect
dusty areas with high precision on both real and synthetic datasets. Prova [13] demonstrated the capabilities
of InceptionV3 for dust classification, while Oulefki et al. [14] introduced DeepSolarEye, reaching a dice
coefficient of 92%. Alatwi et al. [15] proposed a low-cost solution based on DenseNet-169 coupled with
support vector machine (SVM), suitable for edge deployment.

Further studies also report high performance. Bassil et al. [16] compared several CNN architectures
including VGG and MobileNet, while Mohammed and Alawi [17] leveraged EfficientNet for dust detection
with excellent results. He et al. [18] and Shah et al. [19] employed MobileNet and InceptionV3 respectively,
with strong accuracy. Detection-oriented methods such as YOLOV8 Xie et al. [20], YOLOv3 Karakan et al.
[21], and ensemble CNNs Sefer and Kaya [22] also demonstrated high precision. Shao et al. [23] achieved
one of the highest reported accuracies through an improved MobileNet architecture.

Despite their effectiveness, many of these models are computationally intensive, which limits their
real-time deployment on embedded or low-power devices. Moreover, existing studies generally focus on a
single task either classification or segmentation without estimating the impact of soiling on actual power
generation. To address these limitations, the present study introduces a novel dual-task deep learning
framework capable of both dust-level classification and regression-based estimation of power loss.
Five recent architectures vision transformer (ViT), swin transformer, GhostNet, DenseNet, and MobileNetV2
are employed exclusively as feature extractors, with their embeddings processed through a multi-head multi-
layer perceptron (MLP). This design enables shared representation learning while performing two
complementary tasks simultaneously.

This article is organized as follows: section 2 describes the proposed approach, detailing the
experimental setup, datasets, and analytical methods used to assess the impact of dust accumulation on solar
panel performance. In section 3 presents and analyzes the obtained results. Finally, section 4 concludes the
study by summarizing the key findings and providing perspectives for future work aimed at improving dust
detection and maintenance strategies to enhance PV system performance.
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2. METHOD

To address both classification and regression tasks for PV panel monitoring, a hybrid deep learning
framework was developed. It integrates multiple backbone networks for feature extraction with a lightweight
MLP dual-head prediction module, enabling simultaneous classification of PV panel surface states (clean,
dusty, soiled) and regression estimation of quantitative performance metrics, specifically power loss
percentage and irradiance (see Figure 2). In the following section, the sequence of processing stages is
presented in detail to describe the operation of the proposed algorithm.

Dataset(Fusion)
(Roboflow+ D 1 l

1t

! Multi-Head Output
Préprocessing Classification Head (MLP)
(Auto-orient Resize)
Préprocessing Image

(224x224, 3 canaux)

eature Extraction

VIT Transformer

Swin Transformer
GhostNet 100

Regression Head

DenseNet121
MobileNetv2 — —_—

l,ass power % lrrad.i:mce

Figure 2. Hybrid deep learning architecture for PV panel health monitoring classification and regression

2.1. Dataset and preprocessing

Due to the absence of public datasets coupling both semantic labels and performance measurements,
we opted to fuse two complementary datasets at the training level (shared backbone). The roboflow dataset
(2,323 images) is used exclusively for classification (as shown in Figure 3), with the detailed splits being
1,619 for training, 469 for validation, and 235 for testing [24]. The DeepSolarEye dataset [25] is used
exclusively for regression, leveraging the power loss (%) and irradiance values encoded in the filenames.
For the latter, images were normalized to [0,1] and randomly split into training, validation, and test sets
(following an 70:20:10 ratio). To prevent data leakage between the regression splits, we sanitized the
DeepSolarEye filenames by removing timestamps and other non-essential metadata before proceeding with
the random division. The test sets from both sources are strictly maintained separately, ensuring a valid and
uncontaminated evaluation of the metrics.

Clean

Dusty

Soiled

Figure 3. Clean, dusty and soiled samples of solar PV panel

2.2. Comparative evaluation of backbone networks

To establish a robust and deployable system for PV panel health monitoring, a critical step involved
the comparative evaluation of several leading deep learning backbone networks. The selection criteria were
multidimensional, focusing not only on classification and regression accuracy but also on model complexity
and suitability for deployment on resource-constrained embedded systems. The chosen models span both
CNN architectures (DenseNet, MobileNetV2, GhostNet) and the more recent transformer-based models
(VIT, swin transformer), allowing for a comprehensive assessment of feature extraction capabilities for
PV surface analysis. Extracted features are globally pooled and fed into the dual-head MLP for joint
classification and regression.

Intelligent dust monitoring and cleaning optimization on photovoltaic panels (Souaad Belhia)
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2.2.1.ViT

VIT divides 224x224 images into 16x16 patches, embeds each patch into a 768-dimensional vector,
and processes them through 12 transformer encoder layers. The [CLS] token is used as the feature
representation. ViT was employed as a frozen feature extractor.

2.2.2. Swin transformer

Swin-tiny uses window-based self-attention with a shifting mechanism to capture local and global
context. It outputs 768-dimensional features after four hierarchical stages, mean-pooled before MLP input.
Swin provides a scalable trade-off between accuracy and computational cost.

2.2.3. GhostNet
Generates compact 1,280-dimensional feature vectors using efficient operations, enabling high-
speed inference with minimal memory footprint—ideal for real-time embedded deployment.

2.2.4. DenseNet121
Connects each layer to all subsequent layers to maximize feature reuse and gradient flow, improving
extraction of fine-grained dust patterns.

2.2.5. MobileNetV2
Employs depthwise separable convolutions and squeeze-and-excitation modules to produce
1,280-dimensional features efficiently, balancing speed and representation quality [26].

2.3. MLP dual-head prediction
Globally pooled backbone features are fed into two MLP heads simultaneously:

— Classification head: predicts PV panel surface state (clean, dusty, soiled). Evaluated using accuracy,
precision, recall, and F1-score.

— Regression head: predicts power loss percentage and irradiance. Metrics include mean square error
(MSE), root MSE (RMSE), and R2 Outputs are reported in physically interpretable units, and error
distributions are analyzed to ensure dataset comparability.

This dual-head design allows joint learning of qualitative and quantitative degradation aspects.

2.3.1. Training and hyperparameters

All backbone layers were frozen, and only the MLP heads were trained. The hyperparameters used
for training are summarized in Table 1. Evaluation was conducted on both datasets to ensure unbiased
performance. This configuration allows reproducible training while focusing computational resources on the
MLP heads for efficient dual-task learning.

Table 1. Hyperparameters for MLP heads training

Parameter Value
Backbone layers Frozen (Only MLP heads trained)
Optimizer Adam
Learning rate 1x107*
Batch size 32
Number of epochs Model-dependent
Data augmentation ~ Random horizontal flip, small rotations (+15°), brightness/contrast jitter
Random seeds Fixed for reproducibility

3. RESULTS AND DISCUSSION

This study proposes a multi-task learning framework for PV panel assessment, simultaneously
performing surface condition classification (clean, dusty, soiled) and regression-based estimation of power
loss and irradiance. The system integrates pre-trained backbones ViT transformer, swin transformer,
GhostNet_100, DenseNet121, and MobileNetV2 whose extracted visual features are processed by a dual-
head MLP for joint learning.

3.1. Classification and regression performance

Table 2 presents the comparative performance of all evaluated models. For classification, DenseNet
achieved the highest accuracy (94.00%), closely followed by GhostNet (93.47%), while transformer-based
models, ViT (88.00%) and swin transformer (87.50%), exhibited lower performance. In terms of regression,
GhostNet outperformed all models, with MSE=0.00214, RMSE=0.0462, MAE=0.0316, and R2=0.8926,
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demonstrating a favorable balance between predictive accuracy, model compactness (22M parameters), and
computational efficiency. In contrast, transformer-based models, despite their higher complexity (up to 65M
parameters), showed reduced regression performance (R?~0.65). MobileNetV2 occupied an intermediate
position, providing moderate accuracy and slightly less stable convergence. Importantly, these regression
errors correspond to small deviations in predicted power loss percentages, indicating that the models can
reliably estimate actual energy loss, which is critical for practical PV monitoring and maintenance decisions.

Table 2. Comparative performance of hybrid architectures for classification and regression tasks
Backbone Vector dimension  Epoch  Classification accuracy (%) MSE (%)? RMSE (%) MAE (%) R?

VIiT 768 65 88.00 0.01070 0.1035 0.0657 0.652
Swin 768 31 87.50 0.02289 0.1513 0.1228 0.653
GhostNet 1280 22 93.47 0.00213 0.0462 0.0316 0.893
DenseNet 1024 14 94.00 0.00321 0.0567 0.0370 0.881
MobileNetV2 1024 18 90.95 0.00302 0.0550 0.0390 0.875

Figure 4 illustrates training and validation convergence curves obtained with different backbones,
Figures 4(a) and 4(b) show that GhostNet and DenseNet exhibit strong generalization with closely aligned
curves, in contrast, Figures 4(c) and 4(d) indicate that ViT and swin transformer display pronounced
overfitting, characterized by high training accuracy but lower validation performance and diverging loss
curves. Finally Figure 4(e) shows that MobileNetV2 demonstrates moderate generalization, with minor
oscillations in its validation curve, suggesting slower convergence and higher sensitivity to data fluctuations.
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Figure 4. Convergence and generalization of classification models with various backbones: (a) ViT training
and validation curves, (b) swin transformer training and validation curves, (c) GhostNet training and
validation curves, (d) DenseNet training and validation, and () MobileNetV/2 training and validation curves

Intelligent dust monitoring and cleaning optimization on photovoltaic panels (Souaad Belhia)



414 a ISSN: 2502-4752

Figure 5 presents the confusion matrices of the evaluated models. Figures 5(a) and 5(b) show that
VIiT and swin transformer exhibit notable confusion, mainly between clean and dusty classes. Figure 5(c)
indicates that GhostNet provides balanced performance. Figure 5(d) shows that DenseNet achieves the

highest accuracy with minimal confusion, while Figure 5(e) illustrates that MobileNetV2 suffers from higher
misclassification rates.
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Figure 5. Final confusion matrix of various models: (a) ViT training, (b) swin transformer,
(c) GhostNet, (d) DenseNet, and (e) MobileNetV2

The evaluation of regression performance, presented in Figure 6, demonstrates the superior
efficiency of lightweight convolutional architectures compared to transformer-based models in estimating
power loss (in %). GhostNet proved to be the top-performing backbone, achieving an RMSE of only
0.0021% and a near-perfect alignment of its predictions along the identity line (y=x), thereby confirming
high fidelity and the absence of systemic bias. The DenseNet and MobileNetVV2 models also showed
excellent results (RMSE approx 0.003%). In contrast, ViT and swin revealed significantly lower
performance, with notable dispersion (RMSE of 0.0107% for ViT) and weaknesses in modeling low-loss
states. This suggests that the feature extraction mechanisms inherent to architectures optimized for local
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efficiency (such as GhostNet) are better suited for accurately quantifying the surface degradation of PV
panels. These observations confirm that lightweight CNN-based architectures, specifically GhostNet and
DenseNet, are particularly effective for dual-task scenarios, combining accurate dirt classification with
reliable regression of PV performance metrics.

3.2. Comparison with existing literature

A comparative evaluation against previous approaches is presented in Table 3. Most prior studies
focused on single-task models, either performing segmentation or classification of PV panel surfaces.
Architectures such as InceptionVV3, DenseNet-169, VGG, and MobileNet demonstrated effective dust
detection but lacked quantitative regression outputs for performance degradation. Our proposed hybrid
multi-task framework achieves a classification accuracy of 94%, surpassing many state-of-the-art models
while simultaneously estimating power loss and irradiance. This dual-task capability provides a more
comprehensive diagnostic of PV panel performance, supporting monitoring, maintenance planning, and solar
energy optimization.
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Figure 6. Comparison of regression performance (power loss %) of different backbone
models on the test dataset

Table 3. Comparison of the accuracy of our proposed method with existing methods reported in the literature

Reference Model (s) used Method Accuracy/mAP/loU
Cruz-Rojas et al. [11] U-Net, XGBoost, RF Segmentation 89.38% loU
Prova [13] InceptionV3 Classification 93.10% accuracy
Oulefki et al. [14] DeepSolarEye Segmentation 92% dice
Alatwi et al. [15] DenseNet-169 + SVM Classification 86.8% accuracy
Bassil et al. [16] VGG and MobileNet Classification 89.8% accuracy
Shah et al. [19] InceptionV3 Classification 92.34% accuracy
Our method Vision transformer, swin transformer, Classification and regression 94% accuracy

DenseNet, GhostNet, MobileNetV2

4. CONCLUSION

This study presents a hybrid deep learning framework for dual-task PV panel assessment,
integrating image-based dirt classification with regression-based estimation of power loss and irradiance.
Unlike prior approaches that focus on either classification or regression, the proposed method simultaneously
addresses both tasks using a multi-head MLP with multiple backbone feature extractors, providing a more
comprehensive and deployable solution for real-time PV monitoring. GhostNet and DenseNet demonstrated
superior accuracy, computational efficiency, and generalization, outperforming heavier transformer-based
models.

Intelligent dust monitoring and cleaning optimization on photovoltaic panels (Souaad Belhia)
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While the framework shows promising results, limitations include reliance on a limited dataset,
constrained environmental diversity, and short-term evaluation. Future work should address large-scale
validation across diverse climatic conditions, longitudinal monitoring to capture temporal degradation
patterns, incorporation of additional predictive tasks such as fault detection, and benchmarking against
emerging architectures in real-world deployments. Overall, this framework offers a practical, data-driven
solution for sustainable, efficient, and reliable solar energy management.
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