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Dyslexia is a specific learning disability (SLD) associated with word-level
reading difficulties and often manifests in childhood handwriting through
irregular spacing and inconsistent letter sizing, due to shared phonological
and orthographic processing. Early identification is critical; however,
traditional diagnostic procedures are time-consuming and unsuitable for
large-scale screening. This study aimed to develop a handwriting analysis at
the paragraph-level using a DenseNet121 convolutional neural network
(CNN) model as a low-cost dyslexia screening tool for resource-constrained
educational settings. One hundred English handwriting images were
preprocessed and standardized into two hundred samples, with 70% of the
dataset evaluated using 4-fold cross-validation and the remaining 30% used
for testing. The model achieved 90% test accuracy and 92.86% training
accuracy, significantly outperforming a random forest baseline that reached
83.57% train accuracy and 63.33% test accuracy, with statistical significance

confirmed by McNemar’s test. The main contribution of this study is the
demonstration that a lightweight, single-architecture DenseNet121 using
paragraph-level analysis can achieve competitive performance compared to
prior studies that relied on more complex hybrid models and character-level
analysis, while requiring substantially lower computational resources and
simplified pipeline. These findings indicate that DenseNet121 provides a
robust and low-cost solution for preliminary dyslexia screening in resource-
limited educational environments.
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1. INTRODUCTION

Dyslexia as a specific learning disability (SLD) is primarily characterized by difficulties with
accurate or fluent word recognition and decoding of unfamiliar words [1]-[3], stemming from deficits in
phonological and orthographic processing, which are essential for literacy acquisition [4]. These difficulties
arise independently of cognitive abilities and often persist despite effective classroom instruction [2], [3].
Developmental dyslexia affect approximately 7-10% of primary school children worldwide [5], [6], with
significant numbers remaining undiagnosed [6]. Beyond literacy difficulties, children with dyslexia tend to
exhibit negative self-perception and poor academic performance [7]; however, early identification and
tailored educational interventions can improve both self-concept and academic outcomes [2], [4], [7].
Traditional dyslexia identification involves comprehensive psychoeducational evaluations with varying
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protocols due to long-standing debates over dyslexia markers [3], making these assessments costly and

inefficient for mass screening. Recent consensus emphasizes core characteristics—difficulty with accurate

and fluent word-level reading [3] and advocates for screening models that prioritize early assessment based

on reading and spelling performance [2].

To support accessible early identification, recent studies have explored machine learning (ML) and
deep learning (DL) approaches for automated dyslexia detection across diverse modalities [8], such as
electroencephalogram (EEG), eye-tracking, and magnetic resonance imaging (MRI). Seshadri et al. [9]
achieved a mean accuracy of 96.7% using K-nearest neighbor (KNN) on EEG data, although their study
focused on cognitive and attentional measures rather than reading or literacy-related skills. Eye-tracking
studies include Svaricek et al. [10] achieved 86.65% accuracy using fixation-image visualizations with
ResNet18 on a limited dataset, and Vaitheeshwari et al. [11], who reported 98% accuracy using virtual
reality-based eye-tracking features with a fusion model combining convolutional neural networks (CNN),
deep neural networks (DNN), and bidirectional encoder representations from transformers (BERT). Multi-
modality studies have also been conducted. Alkhurayyif and Sait [12] applied multiple DL models
(MobileNetV3, EfficientNetB7 and Bi-directional long short-term memory/Bi-LSTM) to MRI, functional
MRI (fMRI), and EEG data, achieving 98.6%, 98.9%, and 98.8% accuracy, respectively. Although highly
effective, these modalities require specialized equipment and expertise, making them unsuitable for large-
scale, low-cost educational screening [8], [12]. Furthermore, recent study suggests that despite
neurobiological differences in individuals with dyslexia, it is more effective and reliable to identified
dyslexia by behavioral indicators of literacy difficulties instead of neuroimaging [3].

Given that reading and writing are strongly correlated [13], and research confirms children with
dyslexia exhibit poorer handwriting legibility and slower writing speed even in simple tasks [14], both skills
reflect shared deficits in phonological and orthographic processing [4]. Therefore, handwriting analysis has
emerged as a practical tool for behavioral screening. Handwriting samples exhibiting spatial features—such
as inconsistent spacing, irregular letter formation, and overall disorganization [15], [16] can be easily
collected in educational settings without high-cost equipment [17]. Several DL studies have explored this
modality. Patil et al. [16] achieved 95.6% accuracy using a CNN-Bi-LSTM hybrid architecture for holistic
handwritten analysis on the IAM dataset and a primary school dataset. Algahtani et al. [18] achieved 99.33%
accuracy classifying three categories of handwriting characters (normal, reversed, and corrected) using a
CNN-SVM hybrid model. DysDiTect [19] employed a CNN-LSTM hybrid model, achieving an accuracy of
83.2% on a Chinese character dataset. Zaibi and Bezine [20] achieved 99% accuracy with both gradient
boosting (GB) and random forest (RF) models on the “Handyg23” Arabic paragraph/text dataset.
Additionally, a cross-modality study by Sait and Alkhurayyif [21] combined handwriting characters data with
MRI and EEG data, achieving 99.1%-99.2% accuracy using hybrid transformer-based models.

Despite these advances, significant research gaps remain. First, very few handwriting-based studies
perform paragraph-level analysis; most state-of-the-art approaches rely on character-level [18], [19], [21] or
sequential analysis [16], which require complex hybrid architectures and limit the development of models
capable of learning holistic graphomotor patterns instead of isolated character shapes. Second, paragraph-
level dyslexic handwriting datasets in alphabetic languages are scarce. Studies using non-alphabetic scripts
such as Chinese [19] and Arabic [20] may not generalize to alphabetic systems due to different graphomotor
demands. Third, many existing datasets are small and proprietary, making reproducibility challenging and
necessitating models that can maintain stable performance under small-data conditions. Finally, although
hybrid architectures achieve high accuracy, their complexity hinders real-world deployment in typical
schools with limited hardware.

To address these gaps, the objective of this study is to develop a computationally efficient, single-
architecture dyslexia screening model using a CNN-based DenseNet121 that performs classification through
paragraph-level handwriting analysis, enabling low-cost, scalable preliminary screening in resource-
constrained educational environments. DenseNet121 was selected for its robustness against overfitting,
particularly on small datasets [22]. This study uses an open-source dataset of English paragraph-level
handwriting samples to ensure reproducibility and practical relevance for alphabetic writing systems. The
main contributions of this study are:

i) Introducing a single-architecture DenseNet121 model with a preprocessing pipeline for dyslexia
classification, demonstrating that a lightweight CNN can achieve accuracy competitive with prior studies
that used hybrid or ensemble models, while requiring significantly lower computational resources.

i) Implementing paragraph-level analysis on alphabetic handwriting to capture holistic spatial features;
unlike most prior studies that focus on character-level or word-level segmentation, this approach
addresses the dataset scarcity and removes the need for time-intensive segmentation pipelines.

iii) Demonstrating DenseNet121’s robustness on a small alphabetic handwriting dataset, addressing a
critical challenge in medical and educational DL applications where large datasets are often unavailable.
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For a clear and coherent flow, the remainder of this paper is organized as follows: section 2 presents
the materials and main methods. Section 3 presents the results and discussion. Section 4 concludes the study
and provides directions for future work.

2. METHOD
Figure 1 illustrates the overall research workflow adopted in this study, starting from data

acquisition to final performance evaluation. The workflow begins with dataset acquisition (section 2.1) and a
structured preprocessing pipeline designed to produce clean and standardized scan-like handwriting images
(section 2.2). The DenseNet121 model architecture and configuration are detailed in section 2.3., while
section 2.4 covers the complete training and validation pipeline, including dataset splitting, defining 4-fold
cross-validation (CV), model compilation, and the training and validation process. Model testing,
performance metric evaluation, as well as statistical and comparative analysis are explained in section 2.5.
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Figure 1. Research workflow

2.1. Dataset acquisition
The dataset was acquired from the open-source GitHub repository “Dyslexia_Detection” by user

dlsathvik04. It contains one hundred English handwritten images, equally divided between dyslexia and non-
dyslexia classes. Figure 2 shows samples of non-dyslexic (left) and dyslexic (right) handwriting, which
consist of one to two paragraphs. Although this dataset lacks controlled participant metadata (e.g., age, grade
level), it was selected for its balanced classes, public availability, and suitability for holistic handwriting
binary classification tasks.
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Figure 2. Dataset samples
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2.2. Dataset preprocessing

To transform raw data into clean and standardized inputs [23], this study employed preprocessing
techniques suitable for image data, including grayscale conversion, noise reduction, binarization,
augmentation, and standardization (resize and normalization). This study applied a specific sequence of
grayscale conversion, noise reduction, and binarization, to produce cleaner, scan-like images. Grayscale
conversion reduces color complexity and simplifies computations [24]. Noise reduction with a median blur
removes noise that can be introduced or emphasized during grayscale conversion [25], [26]. Binarization
with adaptive thresholding converts a grayscale image into a clean black—white image, based on the local
intensity distribution [27], [28]. After that sequence, augmentation methods such as random rotation and
brightness adjustment were then applied, adding another 100 images to the dataset (total images are 200), for
enhancing training data and improving generalization [29], [30]. Finally, images were resized to 200x200
pixels with 3 channels and then normalized to ensure pixel values within a reasonable range [23].

2.3. Model architecture definition

CNNs, as a DL algorithm, utilize multiple hidden layers to detect complex patterns in data through
convolution and pooling operations [23], [31]. The convolution operation extracts spatial features by
replacing traditional matrix multiplications. In most DL frameworks, the convolution is implemented as
cross-correlation, without flipping the kernel [23]. It is defined in (1).

S =U*K)(@)) =Zm2n I +m,j +n) - K(m,n) o))

Where S is the feature map, | is the input, K is the kernel, (m, n) is the kernel position, and (i, j) is the output
pixel position [23]. Meanwhile, pooling operations reduce spatial dimensions by summarizing local features.
Max pooling returns the maximum value in each patch, while average pooling returns the mean of elements
in a patch [23]. This study utilized average pooling, defined as:

fave (X) = S0, xi @

where X is a feature patch, xi is the i-th element in the patch, and N is total number of elements [32].

DenseNet, as a CNN model, employs densely connected layers within dense block, where each layer
receives all preceding feature maps and passes its outputs to all subsequent layers. This structure improves
information flow, encourages feature reuse, and mitigates the vanishing gradient problem [22]. The dense
connectivity is defined as:

x; = Hy([x0, %1, %,-1]) (3)

with x, is a feature map of [-th layer, H;(.) is a composite function, and [x,,x;, -, x;_] is the concatenation
of all preceding feature maps [22].

Each composite function H, consists of batch normalization (BN), rectified linear unit (ReLU)
activation, and convolutions arranged as BN — ReLU — 1x1 Conv (bottleneck) — ReLU — 3x3 Conv [22].
BN stabilizes training by normalizing activations [23], [33], and ReLU introduces non-linearity to learn
complex pattern [23], [34], the bottleneck layer reduces parameters, while the final convolution extracts
spatial features [22]. The BN and ReL.U core equations are defined consecutively in equations (4) and (5).

H ="t @)

g(2) = max{0, z} ®)

H is a mini-batch of activations, x is the mean activation per unit, and o is the standard deviation per unit
[23], [33]. While g(z) represent ReLU as identity function and z is the input [23], [34].

Transition layers between dense blocks include BN, 1x1 convolution, and 2x2 average pooling to
reduce spatial dimensions and control model complexity [22], [35]. While DenseNet generally employs
global average pooling followed by a softmax layer, this study used a sigmoid activation with a 0.5 threshold
for binary classification of dyslexic and non-dyslexic handwriting. The sigmoid function maps any real-value
(2) to the interval [0,1], as defined in (6) [23].

1

o(2) = == (6)
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Given these advantages, the pretrained DenseNet121 backbone was selected for its efficiency and relatively
small number of parameters, and implemented in TensorFlow/Keras within Google Colab. The model was
adapted for binary classification under limited data and computational constraints, as summarized in
Pseudocode 1.

2.4. Training and validation pipeline

The dataset of 200 handwriting images was divided into a 70:30 split, with 70% (140 images) for
training and validation, and 30% (60 images) for testing. This holdout ratio was selected to mitigate
optimistic bias from an overly small test set and to ensure sufficient unseen samples. The 70% portion was
evaluated using 4-fold CV with shuffled splits and a fixed random state (42) for reproducibility [36]. Each
fold used approximately 105 training and 35 validation samples.

The DenseNet121 model was compiled with the AdamW optimizer (learning rate=1x107*, weight
decay=1x107%) and binary cross-entropy loss. Training was performed for 15 epochs per fold with a batch
size of 16, and model checkpoints were used to save the best-performing weights based on validation
accuracy. This 4-fold CV setup mitigates overfitting and bias, ensuring better generalization for small
datasets [23]. The complete training process is outlined in Pseudocode 1.

Pseudocode 1. Training algorithm for DenseNet121 with 4-fold CV

Input: Preprocessed train dataset D (140 images, 200x200x3), class labels y, number of
folds K=4, epochs E=15, batch size B=16, 1 earning rate p=le-4, weight decay A=le-5,
dropout rates (0.2, 0.4), L2 regularization parameter o, random seed s=42.

Output: Best models {My,...,Ms}, validation metrics {Acc, Prec, Rec, F1l} for each fold,
training histories H.

1: Load DenseNetl2l backbone with ImageNet pretrained weights and exclude top layers)
2: Freeze all base layers in DenseNetl2l
3: Construct classification head:

e Add GlobalAveragePooling2D layer

e Add Dropout layer (0.2)

e Add Dense layer (16, RelU, L2 = «)

e Add Dropout layer (0.4)

e Add Batch Normalization layer

e Add Dense layer (1 unit, Sigmoid)
4: Initialize 4-Fold CV (shuffle=True, random state=s)
5: Split D into 4 folds {Fi,..., Fa}

For fold i=1 to 4 do:

6: Split Fi into training set D _train (~105 images) and validation set D _val (~35
images)

7: Initialize model Mi with DenseNetl2l backbone and classification head

8: Compile M:i with AdamW optimizer (p, A) and binary cross-entropy loss

9: Define model checkpoint based on validation accuracy

Repeat for epoch e=1 to E:

e Train M:i on D train (batch size = B)

e Evaluate Mi on D val

e Save best weights if validation accuracy improves
until epoch E is reached
10: Load best saved weights for Mi
11: Evaluate M: on D val and record metrics (Acc, Prec, Rec, Fl)
12: Save best model Mi and training history
End For

13: Aggregate validation metrics across all K folds
14: Return {M;, M;, M3, M}, validation metrics, training histories

2.5. Model testing and evaluation

The best-performing model from the 4-fold cross-validation was evaluated on the test set, which
consisted of 60 images. The primary evaluation tool was the confusion matrix, which captures the types of
misclassifications and overall model performance [37]. There are four values used in the confusion matrix, as
shown in Table 1. From those values, four evaluation metrics were derived: (i) accuracy measures the ratio of
correct predictions to the total predictions; (ii) precision measures the proportion of true positives among
predicted positive; (iii) recall measures the proportion of true positives among actual positives; and
(iv) F1-score represents the harmonic mean of precision and recall [37]. Each metric is shown in (7) to (10).
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Table 1. Confusion matrix values for binary classification [37]
Prediction class

Actual class " .
Positive Negative
Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)
TP+TN
Accuracy = —————— )
TP+FP+FN+TN
Precision = (8)
TP+FP
TP
Recall = 9)
TP+FN
F1— score = 2(PrecisionxRecall) (10)

Precision+Recall

Additionally, other measurements were also included to strengthen the research. Area under the
receiver operating characteristic curve (AUC-ROC) was computed to evaluate classification performance
across all decision thresholds, providing a threshold-independent measure of discriminative ability [38].
Confidence scores derived from the sigmoid activation function (6) were analyzed to assess individual
classification certainty [39]. To provide a range of plausible population accuracy values, 95% confidence
intervals (CI) for test accuracy were calculated using the Wilson score method [40]. CV stability was
assessed by computing the mean and standard deviation of accuracy across the 4 folds, with the coefficient of
variation (CV%=SD/Meanx100), to evaluate performance consistency [41].

Statistical evaluation was also performed using McNemar’s test at 0=0.05, to compare DenseNet
and the baseline model on the same dataset, with the null hypothesis that both models have equal error rates
[42]. The test statistic is:

(b=c)*

X? = Gre) (11)
where b=cases where DenseNet correct and RF wrong, c=cases where RF correct and DenseNet wrong.
Baseline model used in this study is RF model, with 100 trees, 10 max_depth and 2 min_samples_leaf,
trained with identical 4-fold CV settings as DenseNet for fair comparison. RF was selected as a baseline due
to its robustness and computational efficiency in classification tasks [43]. Before training the RF, the
preprocessed data was flattened into 1D vectors, and reduced to 100 components with principal component
analysis (PCA) [23]. If DenseNet’s performance failed to exceed the RF baseline in accuracy, preprocessing
and hyperparameters were re-evaluated.

2.5.1. Comparative analysis with state-of-the-art models

To evaluate the competitiveness of the proposed approach, this study compared recent handwriting-
based dyslexia detection studies using the following criteria: classification performance, model complexity,
computational efficiency, data requirements, and practical deployability (hardware requirements,
implementation complexity). The comparison focuses on studies published between 2020 and 2025,
specifically Patil et al. [16], Algahtani et al. [18], DysDiTect [19], and Zaibi and Bezine [20]. These studies
represent current state-of-the-art approaches with similar objectives but different methodological choices.

3. RESULTS AND DISCUSSION
3.1. Models’ performance results
3.1.1. DenseNet model performance in training and testing

The DenseNet model training histories across 4 folds is illustrated in Figure 3. Each fold
demonstrates consistent convergence patterns, with both training and validation accuracy (blue lines)
increasing, while training and validation loss (red lines) generally decrease. Training accuracies steadily
increased in each fold, ranging from around 80% to over 90%, while validation accuracies consistently
exceeded 88%. However, relatively high training/validation losses (>50%) and fold-to-fold variations reflect
the challenge of training deep networks on small datasets (200 images). The robust architecture of
DenseNet121 can caused model to be overconfident, necessitating aggressive regularization to constrained
feature learning capacity while preventing overfitting. Thus, making minor fluctuations and unsmoothed
training histories.
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Figure 3. Training and validation history on each fold

The DenseNet model achieved 90.0% test accuracy, as well as the additional metrics, as shown in
Table 2. The 95% confidence interval indicates reliable performance estimation despite the relatively small
test set, with the interval width of 15.49% reflecting the inherent uncertainty associated with limited sample
sizes in educational datasets. Low CV%=3.44% (<5%) demonstrated good stability, shown in mean training
accuracy of 92.86% + 3.19%, confirming robust performance across data splits. The AUC-ROC of 98.44%
indicates strong discriminative capacity to separate classes across all classification thresholds. Analysis of
prediction confidence scores revealed that dyslexic samples showed broader confidence ranges (8-49%) with
consistently low scores, reflecting high model certainty in identifying dyslexic spatial patterns, while non-
dyslexic samples exhibited narrower but overlapping ranges (42-64%) with some predictions falling below
the 50% classification threshold. This asymmetric confidence distribution explains the model’s conservative
classification behavior and perfect precision—the model confidently identifies dyslexic patterns but shows
uncertainty with some non-dyslexic samples that may exhibit atypical spatial features.

Table 2. Overall DenseNet metrics performances

Metrics Values
Test accuracy 90%
Test precision 100%
Test recall 80%
Test F1-score 88.89%
Train accuracy 92.86%
Train precision 89.01%
Train recall 98.33%
Train F1-score 93.13%
95% confidence interval [79.85%, 95.34%]
AUC-ROC 98.44%
CV variability 3.44%
Confidence score (dyslexia) 8-49%
Confidence score (non dyslexia) 42-64%

3.1.2. Comparative performance against baseline

Table 3 presents the metrics performances from proposed DenseNet and baseline RF models, with
“Diff” column that represent metric differences between both models. During training, DenseNet
demonstrated superior performance across all metrics, achieved 9.29% more accuracy, 19.28% more recall,
10.40 more F1-score and slight 0.32% more in precision. DenseNet also demonstrated superior stability with
lower standard deviations across metrics compared to baseline RF (SD: 3.19% vs. 8.42%), indicating more
consistent learning. The performance gap widened substantially in testing, where DenseNet outperformed RF
by 26.67 % in accuracy, 33.33 % in precision, 26.67 % in recall, and 29.63 % in F1-score, further supporting
that the DL approach not only learned more effectively but also generalized better to unseen data.
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Table 3. Metrics performances comparison of DenseNet and baseline model

Metric DenseNet RF DenseNet RF Diff DenseNet RF Diff
(train) (train) SD SD (Train) (Test) (Test) (Test)
Accuracy 92.86% 83.57% 3.19% 8.42% +9.29% 90% 63.33%  +26.67%
Precision 89.01% 88.69% 8.01% 7.93% +0.32% 100% 66.67%  +33.33%
Recall 98.33% 79.05% 2.89% 14.24% +19.28% 80% 53.33%  +26.67%
F1-score 93.13% 82.73% 3.49% 8.97% +10.40% 88.89% 59.26%  +29.63%

To ensure DenseNet model exceed the baseline RF model, the McNemar’s statistical test were
applied (Table 4). McNemar’s test confirmed statistical significance (y>=11.25, p=0.000796), with DenseNet
correctly classifying 18 additional cases that RF misclassified while RF only corrected 2 cases DenseNet
missed (9:1 ratio). This 9:1 ratio of disagreement cases favoring DenseNet demonstrates substantial and
statistically significant superiority over machine learning approaches. The p-value of 0.000796 indicates that
the probability of observing this performance difference by random chance is less than 0.08%, providing
strong evidence that the improvement is genuine rather than artifactual.

Table 4. McNemar’s test summary (DenseNet121 vs RF)

Statistic Value
Both correct 36
DenseNet only correct (b) 18
RF only correct (c) 2
Both wrong 4

¥ (Chi-square) 11.25

p-value 0.000796
a (significance level) 0.05

Figure 4 presents the confusion matrix visualizations for the CNN-DenseNet and RF models.
The confusion matrix in Figure 4(a) illustrates that DenseNet model’s DenseNet achieved perfect
identification of all 30 dyslexic samples (zero false positives) but misclassified 6 non-dyslexic samples as
dyslexic (false negatives), yielding 80% recall. This conservative bias, where the model preferentially erring
toward dyslexia when uncertain, is reflected in overlapping non-dyslexia confidence scores (42-64%,
some below 50%). In contrast, Figure 4(b) showed RF bidirectional confusion (8 false positives, 14 false
negatives), misclassifying 27% of dyslexic and 47% of non-dyslexic cases, indicating fundamental feature
representation limitations.

Confusion Matrix Confusion Matrix

dyslexic
dyslexic

._.
&
True

True

non_dyslexic
non_dyslexic
|

dyslexic non_dyslexic dyslexic non_dyslexic
Predicted Predicted

(@) (b)

Figure 4. CNN-DenseNet (a) baseline RF and (b) confusion matrix visualization

3.2. Discussions
3.2.1. Ablation analysis

To validate component contributions, ablation experiments was conducted by systematically
removing key elements from the proposed pipeline.

1) Preprocessing pipeline impact: the scan-like image conversion, data augmentation, and standardization
proved critical for robust performance. Removing these steps—retaining only basic resizing and
normalization—degraded training accuracy from 92.86% to 75.57% (+14.67%) and test accuracy from
90% to 83.33%. More critically, training stability increasing by 360% (SD: 3.19%—14.67%), indicating
inconsistent learning across folds. Test precision dropped from 100% to 77.78%, introducing false
positives that undermine screening reliability. Raw handwriting images contain excessive noise,
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inconsistent lighting, and background artifacts that interfere with spatial feature extraction.
The preprocessing pipeline’s operations (grayscale conversion, noise reduction, and binarization)
standardize inputs into scan-like formats, enabling DenseNet to focus on spatial organization patterns
rather than image quality confounds. This 6.67% accuracy improvement and 360% stability increase
justify the preprocessing overhead as essential for deployment consistency.

2) Architecture choice: DenseNet121’s dense connectivity patterns preserve spatial features, particularly
important for capturing subtle disorganization patterns characteristic of dyslexic handwriting. Its 7.06
million parameters balance expressiveness with computational efficiency (208.57 ms/image), unlike
hybrid models requiring sequential processing stages (Table 5).

3) Data augmentation: with only 100 original images, augmentation was essential for generalization [29],
[30]. The augmentation increased effective training samples and helped the model learn rotation-invariant
spatial features, though the small base sample size remains a limitation reflected in the 15.49%
confidence interval width.

3.2.2. State-of-the-art comparison

Table 5 presents a comparative analysis between the proposed method against recent handwriting-
based approaches. The proposed approach achieved competitive performance while offering distinct practical
advantages in deployability and resource efficiency. Unlike hybrid or multi-stage architectures employed in
prior works—such as the CNN-BIiLSTM model by Patil et al. [16] and the CNN-positional-LSTM-attention
network in DysDiTect—the proposed model utilizes a single DenseNet121 architecture with 7.06 million
parameters. Despite this simpler configuration, our model achieved 6.8% higher accuracy than DysDiTect
[19] and maintained competitive performance with Patil et al. [16], while demonstrating superior
generalization stability through 4-fold cross-validation (CV%=3.44%). Although Algahtani et al. [18]
achieved the highest accuracy (99.33% with CNN-SVM), their character-level approach requires
substantially more complex implementation. Similarly, Zaibi and Bezine [20] reported 99% accuracy using
ensemble models, but required multiple model pipelines and specialized data acquisition tools.

Table 5. Comparing state-of-the-art models

Practical deployability

Relevan Classification Model Computational HW (hardware requirments)
. - - Dataset used
studies performance complexity efficiency and Impl
(implementation complexity)
Proposed Acc: 90%, Single- 208.57 ms/img 200 English HW: 12 GB RAM, Core i3
method Prec: 100%, architecture paragraph images 2.00 GHz CPU, 128 MB
Rec: 80%, DenseNet121, (240 for train in 4- GPU, 500 GB storage
F1:88.89%, total parameter: fold CV, 60 for Impl: single model,
AUC: 98.44% 7,058,017 test), balanced preprocessing pipeline, direct
classes 50:50 extraction and classification
in one model
Patil et al. Acc: 95.6%, Hybrid (CNN- (not stated) IAM dataset: HW: (not stated)
[16] Prec: 94.38%, BiLSTM with 1,539 pages, 657 Impl: hybrid model,
Rec: 91.51%, CTC loss), total individuals, preprocessing and word
F1:92.61% parameter: character-level segmentation, CNN +
8,743,247 analysis BIiLSTM for extraction and
sequential analysis
Algahtani CNN: 98.59%, Single and (not stated) 176,673 English HW: (not stated)
etal. [18] CNN-RF: Hybrid (CNN, character images Impl: multiple models,
98.44%, CNN-SVM, and (70/15/15 split) preprocessing +
CNN-SVM: CNN-RF), segmentation, CNN +
99.33% (stating total parameter: classifier
accuracy only) (not stated)
DysDiTect ~ Handwriting only: Hybrid CNN- Max 50 epochs 100,000 Chinese HW: (not stated)
[19] Acc: 83.2%, positional- with early characters, 1,064 Impl: complex hybrid,
Sens: 79.2%, LSTM- stopping children (483 DD, character segmentation,
Spec: 86.4%, attention, total 581 TD), sequential features, transfer
AUC: 91.2% parameter: word-level learning
With grade: (not stated)
Acc: 85%,
Sens: 83.3%,
AUC: 89.7%
Zaibi and Best:99% Ensemble (GB, (not stated) 120 Arabic HW: Wacom tablet +
Bezine [20] (GB, RF), RF, AdaBoost, samples MovAlyzer software
AdaBo0st:97%, SVM), total (ages 7-12), Impl: multiple ensemble
SVM-RBF:94% parameter: 12 handwriting models, 12-task protocol
(stating accuracy (not stated) tasks

only)
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A key distinguishing factor is the proposed method’s paragraph-level analysis approach, compared
to character-level or word-level methods that require significantly larger datasets: Algahtani et al. [18],
DysDiTect [19], and Patil et al. [16]. Paragraph-level analysis offers greater ecological validity for screening
contexts where educators collect naturalistic writing samples without requiring time-intensive word
segmentation. The perfect precision (100%) is particularly valuable for preliminary screening, ensuring that
when the model flags potential dyslexia, it is avoiding false positives that cause unnecessary anxiety and
inappropriate resource allocation in educational settings.

The proposed method demonstrates superior practical deployability with inference time of only
208.57 ms per image on modest hardware (Intel Core i3 CPU, 12 GB RAM, 128 MB GPU). In contrast,
prior studies either did not report computational metrics or required more resource-intensive architectures.
The single-model design eliminates the complexity of hybrid pipelines that require separate feature
extraction, sequential processing, and ensemble classification stages. This straightforward implementation
enables direct deployment via cloud platforms (Google Colab), where educators can upload handwriting
photographs, apply the automated preprocessing pipeline, and obtain immediate preliminary screening results
without specialized hardware or technical expertise, making it a practical and accessible alternative for
real-world dyslexia screening in resource-constrained educational environments.

3.2.3. Limitations

Several technical limitations stem from the experimental design and dataset constraints. The small
dataset (200 images) when used on robust DL model caused the need for aggressive regularization
(L2, dropout, batch normalization) to prevent overfitting, which also constrained the model’s feature learning
capacity. This manifested as relatively high training/validation losses (>50%), less smooth learning curves,
and potential underfitting despite achieving 90% test accuracy. The 15.49% confidence interval width
reflects this sample size limitation, indicating that performance estimates carry inherent uncertainty.
Additionally, some handwriting format variations—such as longer or shorter paragraphs, print or cursive
styles—introduced uncontrolled variability that may have affected classification consistency. Some students
produced brief single-paragraph samples while others wrote extensive multi-paragraph texts, creating
heterogeneous spatial complexity across samples. The model’s conservative classification bias resulted in six
false negatives (non-dyslexic students misclassified as potentially dyslexic), likely representing cases with
atypical spatial features such as naturally irregular handwriting, fatigue effects, or rushed writing. Paragraph-
level spatial analysis alone cannot capture word-level spelling errors, letter reversals, or phonological
patterns that provide complementary diagnostic information in clinical dyslexia assessment. Consequently,
the model should be interpreted only as a preliminary assistive tool for research—not as a standalone
diagnostic instrument in educational settings.

Although the full preprocessing, training, and testing pipeline is consolidated into a single Google
Colab notebook—making the model technically deployable in real educational settings—the current
implementation is not yet user-friendly for teachers, school staff, or parents without an IT background.
Running the notebook still requires basic familiarity with Python, Google Colab, and file management.
Without a graphical interface or automated input/output workflow, non-technical users may struggle to
upload handwriting samples, interpret outputs, or troubleshoot runtime errors. As a result, even though the
model is executable and reproducible, it is not immediately accessible for practical screening use and would
require additional design work (e.g., a web interface or mobile application) to support real-world adoption in
primary education contexts.

4. CONCLUSION

This study proposed a DenseNet121-based approach for preliminary dyslexia screening through
paragraph-level handwriting analysis, achieving 92.86% train accuracy and 90% test accuracy, despite the
small dataset. The model demonstrated statistically significant superiority over traditional ML RF baseline
(McNemar’s test: x> = 11.25, p<0.001) and competitive performance relative to more complex state-of-the-art
methods, while maintaining practical advantages such as low computational cost (208.57 ms/image),
a single-architecture workflow, and ease of deployment (modest hardware requirements and easy writing
sample collection), making it accessible for resource-constrained educational settings. Given that handwriting
variability occurs across various specific learning disabilities and can be influenced by multiple non-
diagnostic factors, this tool is designed as an early screening support system rather than a definitive
diagnostic instrument. The perfect precision ensures that flagged cases warrant follow-up assessment, while
the 80% recall indicates that negative screenings should not preclude further evaluation when other dyslexic
indicators are present. However, the small dataset (200 images) and free-form writing format introduce
limitations that future work must address. Despite these constraints, the proposed method demonstrates the
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feasibility of deep learning-based dyslexia screening as a practical, efficient, and accessible preliminary
assessment tool for educational contexts.

Future work should pursue three integrated directions. First, standardized writing protocols would
reduce confounding variability and enable clinical validation studies that directly compare model outputs
with professional diagnostic assessments. Second, expanding the dataset with larger and more balanced
samples would strengthen generalization and support the exploration of advanced architectures—such as
attention mechanisms or transformer-based models—to capture and integrate more detailed sequence-level
graphomotor patterns from word- and character-level analyses into the paragraph-level representation.
Third, the model should be translated into accessible screening tools, such as teacher-friendly interfaces or
mobile applications for at-home early screening, to facilitate practical adoption by educators and parents.
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