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 This study aims to reduce alarm fatigue and improve the clinical relevance 
of alerts in intensive care by combining sequential modeling, patient 
contextualization, explainable artificial intelligence (XAI), and probability 
calibration. To this end, we leverage the adult cohorts from MIMIC-III/IV, 
segmented into four-hour windows, explicitly handling missing data and 
constructing a context vector that integrates demographics, comorbidities, 
and therapeutic interventions. The approach relies on a tabular autoencoder, 

an long short-term memory (LSTM) autoencoder, and a transformer, 
complemented by an adjustment layer based on auditable clinical rules, local 
explanations (LIME/SHAP), and post-hoc calibration (temperature scaling). 
Evaluation involves receiver operating characteristic (ROC)/precision–recall 
(PR) area under the curve (AUC), F1-score, sensitivity and specificity, as 
well as calibration metrics (ECE, Brier score), alert burden, ablation studies, 
robustness tests, and subgroup fairness analyses. Across all experiments, the 
complete model (+Context+XAI+Calibration) outperforms baselines in 

AUPRC and F1, reduces alert burden, and improves calibration while 
providing understandable explanations. Specifically, the proposed model 
improves ROC AUC from 0.74 to 0.89 and reduces alert burden by 
approximately one third compared to clinical thresholds. 
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1. INTRODUCTION 

Intensive care units (ICUs) generate a dense and heterogeneous stream of data, including vital signs, 

laboratory results, medications, and clinical notes. While artificial intelligence (AI) can detect deviations in 
such data, its adoption in critical care remains limited due to: 

a) models often perceived as “black boxes,” 

b) a lack of contextualization of alerts (e.g., age, comorbidities, treatments, care trajectories), 

c) biases and challenges related to real-time integration. 

We hypothesize that a tight coupling between explainable AI (XAI) and patient context modeling 

can reduce false alarms, enhance clinical utility, and foster trust. The theoretical foundation of our study rests 

on three pillars: anomaly detection theory, the principles of explainable artificial intelligence XAI, and 

contextual patient modeling in health sciences. 

Anomaly detection originates from statistical theory and unsupervised classification methods, 

aiming to identify rare or atypical observations within a dataset. In medicine, such anomalies often 

https://creativecommons.org/licenses/by-sa/4.0/
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correspond to critical pathophysiological changes, typically detected through vital signs, clinical data, or 

medical imaging. Modern methods increasingly rely on deep neural networks, such as autoencoders and 

stochastic recurrent models, which learn to reconstruct normal data accurately and flag deviations as 

anomalies [1], [2]. 

Beyond intensive care, researchers have also successfully applied machine learning to other 

physiological monitoring tasks, such as fetal electrocardiogram prediction using a random forest-based 
approach [3], illustrating the growing role of AI methods in clinical signal analysis. In parallel, the rise of 

XAI addresses the pressing need for transparency in automated decision-making systems, especially in high-

stakes domains like healthcare. XAI methods-through techniques such as LIME and SHAP-seek to make 

neural network predictions interpretable for clinicians, thereby strengthening trust in AI systems [4]-[7]. 

Finally, patient context modeling relies on patient-centered approaches that consider not only 

current clinical data but also medical history, coexisting conditions, and care trajectories. This paradigm 

aligns with the principles of personalized and person-centered medicine, and it often relies on semantic 

resources and interoperability standards such as unified medical language system (UMLS), systematized 

nomenclature of medicine – clinical terms (SNOMED CT), and health level seven (HL7) fast healthcare 

interoperability resources (FHIR) to represent diagnoses, treatments, and clinical workflows in a structured 

way [8]-[10]. Unlike prior intensive care unit (ICU) anomaly detection approaches that address accuracy, 

interpretability, or calibration in isolation, the proposed framework jointly integrates patient context 
modeling, explainable AI, and probabilistic calibration within a unified pipeline. 

 

 

2. RELATED WORK 

This section summarizes prior work on clinical anomaly detection, XAI, and patient context to 

situate our contribution. Traditional clinical rules and scoring systems trigger alerts when measurements 

exceed fixed thresholds (e.g., extreme heart rate). They are easy to interpret but generate many false alarms 

because they ignore inter-patient variability and temporal trends. NEWS2 provides a simple early warning 

score mostly outside ICUs, while ICU severity scores such as APACHE II are used for risk stratification 

rather than continuous monitoring [11]-[13]. 

A second line of work models patient trajectories with time-series methods. Recurrent neural 
networks and attention-based architectures handle irregular sampling and missing data; for instance, reverse 

time attention (RETAIN) uses reverse-time attention to highlight influential features [14], and transformer-

based models such as bidirectional encoder representations from transformers for electronic health records 

(BEHRT) and medical bidirectional encoder representations from transformers (Med-BERT) leverage large-

scale electronic health records to achieve strong predictive performance [15], [16]. For multivariate time-

series anomaly detection, unsupervised or weakly supervised models learn “normal” behavior and flag 

deviations via reconstruction or forecasting errors [1], with recent studies exploring explainable time-series 

models for ICU outcomes such as mortality and length of stay [2]. 

Explainability is crucial for clinical adoption: caregivers need to understand why the system raises 

an alert. Methods such as LIME and SHAP provide local explanations and quantify feature contributions [4], 

[5], and surveys on XAI in medicine emphasize both the potential and the need for careful integration into 
clinical workflows [6], [7]. 

Patient context is another key ingredient: personalized alerts must account for demographics, 

comorbidities, and treatments. Ontologies such as UMLS and SNOMED CT and standards like HL7 FHIR 

support interoperable, structured context representations that can adjust anomaly scores (e.g., for treated 

diabetic patients) [8]-[10]. 

Even well performing models may produce poorly calibrated, overconfident probabilities. Techniques 

such as temperature scaling improve reliability so that predicted probabilities better match observed event 

rates, and practitioners assess calibration-using metrics such as the brier score and reliability diagrams [17]. 

Bias and fairness are also critical: inappropriate optimization objectives can systematically disadvantage 

certain subgroups [18], and recent work on fair machine learning in healthcare stresses continuous subgroup-

level evaluation (e.g., by age, sex, comorbidity) and explicit fairness assessment at deployment [19], [20]. 

In summary, prior work has advanced interpretable rules and scores, time-series deep learning, 
unsupervised anomaly detection, XAI, patient context modeling, calibration, and fairness, but most existing 

works treat these components in isolation. Most systems focus either on predictive accuracy without 

calibrated, context-aware outputs or on interpretability without state-of-the-art sequential modeling. By 

contrast, our approach combines sequential modeling, explicit patient context, integrated XAI, and 

probability calibration within a single end-to-end pipeline for clinical anomaly detection on MIMIC-III/IV, 

with a contextual layer to adjust anomaly scores, clinician-facing explanations, and a reproducible evaluation 

protocol that includes calibration and clinical acceptability. 
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3. METHOD 

3.1.  Data and Cohort 

We rely on the publicly available MIMIC-III and MIMIC-IV critical care databases (PhysioNet), 

which contain de-identified ICU admissions. Access to these datasets is granted upon completion of a short 

training course. Our study focuses on adult ICU patients with at least 24 hours of usable physiological 

measurements [21], [22]. The content of the databases are shown in Table 1. 
 
 

Table 1. Meaning of MIMIC tables 
MIMIC table Description 

CHARTEVENTS Vital signs taken at bedside (heart rate, SpO₂, blood pressure, etc.). 

LABEVENTS Laboratory results (lactate, creatinine, and ions). 

DIAGNOSES_ICD Diagnoses and comorbidities (patient profile). 

PRESCRIPTIONS Medications received (therapeutic context). 

NOTEEVENTS Caregiver notes (optional to enrich the context). 

 
 

- Demographics: age, sex, ethnicity. 

- Physiological signals: vital signs such as heart rate, respiratory rate, blood pressure, oxygen saturation, 

and temperature. 

- Laboratory tests: biochemical and hematological values (e.g., electrolytes, creatinine, blood counts). 

- Therapies and interventions: medications, vasopressors, mechanical ventilation, dialysis. 

- Diagnoses and procedures: encoded using ICD-9/10 codes. 

- Clinical notes: free-text reports written by caregivers. 

- Outcomes: mortality, length of stay, readmission. 

These rich, heterogeneous data sources enable both sequential modeling of patient trajectories and 

contextualization through demographic, comorbidity, and therapeutic profiles. We construct a “master list” of 

variables of interest (e.g., SpO₂, lactate). The preprocessing pipeline then maps these variables to the 

corresponding codes in the MIMIC database tables in order to retrieve the appropriate columns and 
identifiers. Whenever possible, we align the variable definitions with standardized vocabularies (UMLS, 

SNOMED CT) to facilitate interoperability and reuse in other settings. To illustrate the process, Figure 1 

below outlines the proposed data-processing pipeline. 
 
 

 
 

Figure 1. Proposed pipeline from raw data to clinical alert 
 
 

3.2.  Preprocessing 
Before model training, we standardize all variables to ensure consistent units (e.g., mmHg, 

mmol/L), then segment each stay into fixed time windows (e.g., 4-hour intervals). Within each window, we 

summarize the available measurements using simple statistics such as mean, median, and variability, and we 

concatenate these windows to obtain a temporal sequence describing the patient trajectory. Because missing 

data are common in clinical practice, we apply light interpolation at the patient level and we keep explicit 
indicators such as “time since last measurement” to preserve information about measurement frequency [2]. 

To account for heterogeneity across patients, we construct a patient-level context for each stay that 

includes demographics, comorbidities, active treatments, and initial severity [8]-[10]. We represent this 

context as a small graph with a central patient node connected to nodes for diagnoses, therapies, and chronic 

risk factors (e.g., diabetes, chronic obstructive pulmonary disease (COPD)). An multilayer perceptron (MLP) 

encodes static patient features (age, sex), while lookup embeddings encode clinical codes; a few rounds of 

message passing let each node aggregate information from its neighbours. 

The final embedding of the patient node serves as a context vector, which we combine with the 

time-series representation from the sequential model to compute the risk score. On top of this score, we apply 

a small set of clinical rules to adjust alerts in specific situations (for example, known diabetes with expected 

hyperglycaemia), so that context and rules jointly modulate the alert threshold. For operational deployment, 
we design this integration to be compatible with the FHIR standard [10]. 
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3.3.  Models for anomaly detection 

We evaluate several complementary approaches: 

- Tabular autoencoder: operates on summarized windows simple and computationally efficient. 

- Long short-term memory (LSTM) autoencoder: models sequential dynamics, well suited to temporal 

evolution [23]. 

- Transformer: more powerful for long-range dependencies, especially in high-dimensional settings [15], [16]. 

All three share the same principle: the model learns what is “normal” and computes the reconstruction error. 

The greater the error, the more likely the window is anomalous. Importantly, the definition of “normal” is 

patient-specific. 

 

3.4.  Clinical rule-based adjustment (contextualization) 

After computing anomaly scores, we refine them with simple, auditable clinical rules. For example, 

in diabetic patients under treatment, we attenuate glucose-related alerts. For cardiac patients not receiving 

beta-blockers, we emphasize tachycardia alerts. These rules are easily auditable and modifiable, forming the 

context layer that makes alerts more patient-specific and clinically relevant. 

 

3.5.  Explainable alerts (XAI) 

We accompany each alert with a concise, clinician-readable explanation. To this end, we generate a 

clinician-facing report highlighting top contributing factors, values approaching thresholds, and a mini-

graphical summary. Using methods such as LIME and SHAP, and leveraging attention mechanisms when 

available, we indicate which features or time points contributed most strongly to the alert. 
 

3.6.  Calibration and threshold selection 

A model may be accurate yet overconfident. To address this, predicted probabilities are calibrated 

(for example, ensuring that events predicted at 70% probability occur approximately seven times out of 10). 

We then select an operational threshold (for example by limiting the number of alerts per hour) [17]. We use 

the Brier score to assess calibration, reliability diagrams, and techniques such as temperature scaling. We 

selected temperature scaling as a post-hoc calibration method because it is simple, stable, and empirically 

effective compared to non-parametric alternatives such as isotonic regression.  

 

3.7.  Evaluation and validation 

Model evaluation considers: 

- Discrimination: ROC-AUC and PR-AUC. 

- Classification metrics: F1-score, sensitivity, specificity. 

- Operational relevance: alert rate and alert lead time (how long before an event the alert is raised) [24]. 

We conduct ablation studies (with/without context, with/without XAI) to identify each component’s 
contribution. We also assess robustness and fairness through subgroup analyses by age, sex, and comorbidity. 

An overview of the proposed framework is shown in Figure 2. 
 

 

 
 

Figure 2. Overview of the proposed framework showing the main inputs (MIMIC data, preprocessing,  

and patient context) and the outputs (anomaly scores, calibrated probabilities, explainable alerts, and 

evaluation metrics) 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Overall performance 

Table 2 summarizes the performance of all approaches. The proposed hybrid model, which 

combines sequential modeling, patient context, XAI, and probability calibration, consistently outperforms the 

baselines across discrimination, calibration, and classification metrics. 
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Table 2. Comparison between the different approaches 
Model AUC ROC AUC PR F1 Sens Spec ECE Brier 

Clinical thresholds 0.74 0.31 0.41 0.62 0.73 0.086 0.192 

Tabular AE 0.79 0.38 0.48 0.66 0.77 0.072 0.173 

LSTM AE 0.83 0.44 0.53 0.69 0.80 0.061 0.161 

Transformer (+XAI)  0.86 0.49 0.58 0.72 0.83 0.053 0.151 

Proposed model (+Context+XAI) 0.89 0.55 0.62 0.75 0.86 0.041 0.137 

 

 

Compared with simple clinical thresholds, the proposed model increases ROC AUC from 0.74 to 

0.89, PR AUC from 0.31 to 0.55, and F1-score from 0.41 to 0.62, while also improving over the strongest 

deep learning baseline (LSTM AE) in both PR AUC (0.44 → 0.55) and F1 (0.53 → 0.62). Calibration also 

shows clear improvements in model performance: ECE decreases from 0.086 to 0.041 and the brier score 

from 0.192 to 0.137, indicating probabilities that better match observed event frequencies and are more 

reliable for risk stratification and threshold selection. Bootstrap analysis with 1,000 resamples confirmed that 

the ROC AUC improvement over the best baseline is statistically significant, as the 95% confidence interval 
for the AUC difference excludes zero. Figure 3 shows how PR AUC and F1 improve as we gradually add 

context, XAI, and calibration to the model. 

 

 

 
 

Figure 3. Comparative performance of models 

 

 

4.2.  Contribution of each component (ablation study) 

To quantify the contribution of each module, we conducted an ablation study in which we 

selectively removed context, explanations, or calibration from the full model. Table 3 summarizes the results. 

Removing the context module reduces ROC AUC (0.89 → 0.86) and F1 (0.62 → 0.58), but more importantly 

increases the alert rate from 0.21 to 0.31 alerts per hour. This corresponds to roughly a one-third to one-half 

increase in alert burden, while delivering slightly worse discrimination. In practice, the context module acts 
as a powerful filter that suppresses clinically uninformative alarms while preserving sensitivity. 

 

 

Table 3. Results after removal of different modules 
Configuration AUC F1 Alerts/h 

Our model  0.89 0.62 0.21 

– Context 0.86 0.58 0.31 

– XAI (without adjustment) 0.85 0.56 0.29 

– Calibration 0.86 0.59 0.27 

 

 

Excluding XAI (configuration “– XAI”) yields an AUC of 0.85 and an F1-score of 0.56. These 

results show that explanations are not the main driver of numerical performance. Their contribution is 

qualitative: they improve interpretability, auditability, and trust, which are essential for adoption, governance, 

and clinical review of alerts. 
Finally, removing calibration (configuration “– Calibration”) has only a modest effect on F1 (0.62 

→ 0.59) but clearly degrades probability quality. Before calibration, the model exhibits a higher ECE (≈0.09) 

and a worse brier score (≈0.16), whereas after temperature scaling ECE decreases to around 0.03 and the 

brier score improves to around 0.14. In other words, calibration makes predicted probabilities much more 

aligned with observed event frequencies and therefore more reliable for prioritization and thresholding. 
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Figure 4 confirms these findings: with calibration, the reliability curve moves closer to the identity line, 

indicating a tighter match between predicted and observed risks. 

 

 

 
 

Figure 4. Calibration diagram 
 

 

4.3.  Alert burden 

We quantify alert burden by the number of alerts per hour and the proportion of time spent under 

alarm. With contextualization, the proposed model generates 0.21 alerts/h, compared with 0.31 alerts/h 

without contextualization. Thus, adding context reduces the alert rate by about one-third while preserving 

similar or better discriminative performance. From a clinical perspective, this reduction is critical: fewer 
alarms mean less alarm fatigue, fewer interruptions, and a higher likelihood that each alert receives 

appropriate attention. The model therefore optimizes not only standard statistical metrics but also a key 

operational constraint in intensive care. 
 

4.4.  Alert lead time 

Our system generates early warnings before the index event (e.g., sepsis, acute kidney injury). For 

each event, we compute the lead-time between the first high-risk alert and the occurrence of the clinical 

outcome, and summarize it via the median and interquartile range (IQR). A longer lead-time, under a 

controlled alert burden, increases the clinical usefulness of the system by allowing proactive interventions 

instead of late, confirmatory alarms. In our experiments, the model consistently produces meaningful lead 

times before critical events, demonstrating its potential to support anticipatory clinical decision-making 

rather than merely flagging already obvious deteriorations. 
 

4.5.  Fairness across subgroups 

We evaluated performance across key clinical subgroups to assess fairness and stability: age (<65 

vs. ≥65 years) and diabetes status (diabetic vs. non-diabetic). Table 4 summarizes the results. 
Performance remains high and stable across all groups, with AUC values between 0.88, 0.90, and 

F1-scores between 0.60 and 0.64. Differences in false positive and false negative rates are small and non-

systematic, with |ΔFPR| and |ΔFNR| ≤ 0.02. These findings indicate that no subgroup is disproportionately 

disadvantaged and that the model maintains an approximately balanced error profile across populations. If a 

clinically unjustified discrepancy were to emerge in practice, the pipeline can apply context-specific 

adjustments and subgroup calibration to further mitigate potential biases and support fair use in 

heterogeneous ICU populations. 
 
 

Table 4. Fairness across subgroups 
Group Prevalence AUC F1 ΔFPR ΔFNR 

<65 years 0.52 0.90 0.64 - - 

≥65 years  0.48 0.88 0.60 +0.01 +0.02 

Diabetic 0.22 0.89 0.63 +0.00 +0.01 

Not diabetic 0.78 0.89 0.62 +0.00 +0.01 

 
 

4.6.  Concrete examples and explanations (XAI) 

For each alert, the system generates a concise explanation report that includes: 

- The top-k contributing variables, extracted using SHAP/LIME; 
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- The most influential time windows in the recent patient trajectory; 

- The activated context rules that influenced the final anomaly score or alert threshold. 
Clinician feedback indicates that these explanations improve the understandability and perceived 

credibility of alerts and help with prioritization. Although XAI does not significantly increase AUC or F1, it 

is transformative for clinical adoption and auditing: this design transforms the model from a black-box 

scoring engine into a transparent decision-support tool that clinicians can inspect, discuss, and refine. 

 

4.7.  Robustness and sensitivity 

We performed a series of stress tests to assess the robustness of the model to realistic perturbations, 

including: 

- Simulated missing data, 

- Added noise to input variables, 

- Temporal shifts in input sequences. 

Overall, the model maintained stable performance under these perturbations, with variations 

generally within a few percentage points of baseline metrics. In scenarios where we observed localized 

degradation, we applied targeted retraining and rule adjustments to restore performance or local recalibration 

was sufficient to restore performance. These results show that we can maintain and adapt the system over 
time as clinical practice, data collection patterns, and patient populations evolve. 

 

4.8.  Portability 
We also evaluated the portability of the model across different times and ICU wards within the 

MIMIC database. Performance remained consistent across units, with any differences largely attributable to 

variations in cohort composition rather than model instability. This stability across settings suggests that the 

model captures robust physiological patterns rather than overfitting to a single ward or time window. It 

supports the feasibility of scaling the approach to other units or institutions, subject to appropriate local 

validation and calibration [25]. 

 

4.9.  Discussion 
Our results show that the proposed hybrid-alerting framework does more than provide incremental 

gains over existing approaches. Compared with clinical thresholds and strong deep learning baselines, it 

achieves substantial improvements in ROC AUC, PR AUC, and F1-score, while reducing the overall alert 

burden by roughly one third. For clinicians, this combination-fewer alerts but with higher relevance, directly 

addresses alarm fatigue while preserving early detection capability. 

A key contribution of our work is the emphasis on probability calibration. Many high-performing 

models in critical care output scores that are difficult to interpret as risks. By explicitly calibrating predicted 

probabilities, we obtain risk estimates that better match observed event frequencies and are easier to use for 

threshold selection, resource allocation, and communication of risk. This makes it more natural to integrate 

the model into existing decision-making processes. 

The framework also maintains relatively stable and fair performance across major patient subgroups 

and under robustness checks. Although we cannot exclude all sources of bias, the combination of 
contextualization, calibration, and monitoring helps limit performance disparities. In particular, the 

contextual layer adjusts anomaly scores based on chronic conditions and treatment profiles, reducing obvious 

false positives when abnormal values are clinically expected. 

We integrate XAI as a core component rather than treating it as an afterthought. For each alert, the 

system provides concise explanations highlighting key variables and influential time windows. This 

transforms the model from a black-box scoring engine into a transparent decision-support tool that clinicians 

can inspect, discuss, and refine, improving trust, auditability, and the ability to reconcile model output with 

clinical intuition. 

Finally, we embed the model in a governance-oriented pipeline that includes drift monitoring, 

fairness checks, logging, and recalibration procedures, and we align our reporting with emerging clinical AI 

standards. In the broader landscape of decision support, our approach sits between purely black-box models 
and simple rule-based systems: it combines sequential deep learning with explicit patient context, integrated 

explainability, and calibrated outputs, offering a practical foundation for AI-based alerting in intensive care. 

 

4.9.1. Runtime and computational complexity 
Although the proposed framework combines several components (sequential backbone, contextual 

layer, XAI, and calibration), its computational cost remains compatible with near real-time deployment in an 

ICU setting. The core sequential models (autoencoders and Transformer) have a runtime that scales 

approximately linearly with the length of the input sequence and the number of variables (O (T·d)), and the 
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contextual adjustments are implemented as lightweight feed-forward operations on precomputed patient 

profiles. 

We perform probability calibration once per model after training, so it does not affect inference 

latency. We compute explainability methods (SHAP, LIME, and attention visualizations) only for triggered 

alerts and run them asynchronously or at a lower frequency, which limits their impact on overall throughput. 

In practice, this design allows the system to update risk scores and alerts frequently enough to support 
continuous monitoring without imposing prohibitive computational requirements. 

 

4.9.2.  Limitations  

Despite these promising results, this study has several limitations. First, we base our analysis on 

retrospective data from a single ICU database (MIMIC-III/IV) and conduct all experiments offline, so we have 

not yet evaluated real-time performance or its impact on clinical workflows and patient outcomes. Second, we 

primarily evaluate the model on a limited set of deterioration events (e.g., sepsis, acute kidney injury), and we 

do not yet know how well the same architecture, thresholds, and contextual rules generalize to other endpoints 

or care settings. Third, although we assess fairness across age and diabetes status, we still need a broader 

analysis across additional demographic and clinical dimensions to better characterize potential biases. 

We also tune the contextual rules and calibration procedures on the same overall data source, so we 

may need to adapt, re-validate, and recalibrate the system when we deploy it in new institutions with different 
case mix, documentation practices, or monitoring protocols. In addition, we do not perform extensive formal 

hypothesis testing across all model comparisons (e.g., for all differences in AUC or F1), and statistical 

analyses are limited to bootstrap-based confidence interval estimation for selected key comparisons, so readers 

should interpret performance differences as indicative rather than statistically confirmed. Finally, we do not 

carry out a detailed case-level error analysis of typical false positives and false negatives with clinicians, nor a 

systematic benchmarking of runtime performance or computational cost; we leave both a qualitative error 

analysis and a more detailed study of latency, scalability, and resource usage for future work. 

 

4.9.3. Future work  

Future work could extend this approach in several directions. First, scaling up personalization by 

integrating richer longitudinal trajectories and comorbidity profiles could enable finer risk stratification and more 
tailored alerts. Second, federated learning could help preserve data privacy while enabling training and adaptation 

across multiple institutions. Third, human-AI interaction studies should investigate how clinicians interpret and act 

on AI-generated explanations in real time. Fourth, continuous validation pipelines with real-world feedback loops 

could dynamically adjust thresholds, rules, and calibration as practice and populations evolve. 

Finally, more systematic evaluations of ethics and fairness will be essential to ensure equitable 

behaviour across patient subgroups. In summary, our hybrid approach not only improves the clinical 

relevance and interpretability of alerts but also lays the groundwork for trustworthy, continuously monitored, 

and governance-aligned AI systems in healthcare.  

 

 

5. CONCLUSION 
In this paper, we proposed a hybrid-alerting framework that combines sequential modeling, patient 

context, XAI, and probability calibration to support early detection of clinical deterioration in intensive care. 

Compared with clinical thresholds and deep learning baselines, the proposed model achieved higher 

discrimination, improved precision–recall performance, and better calibration, while reducing the alert rate 

by approximately one third. These improvements translate into fewer but more informative alerts, improved 

risk stratification at the bedside, and a lower risk of alarm fatigue for clinical staff. 

The work makes three main contributions. 

First, it shows that integrating sequential models with contextual information, explanation 

mechanisms, and probability calibration within a single architecture can simultaneously improve 

discrimination, calibration, and alert burden relative to both clinical thresholds and strong deep learning 

baselines. Second, it demonstrates that contextualization and calibration can reduce alarm fatigue while 

preserving early detection and stable performance across key patient subgroups, yielding risk scores that are 
both numerically reliable and operationally useful. Third, it embeds the modeling approach in a governance-

oriented pipeline that includes drift monitoring, fairness checks, alert logging, and alignment with emerging 

clinical AI reporting practices, positioning the system as a realistic candidate for deployment in critical care 

environments. 

Beyond predictive performance, we designed the system with real-world deployment in mind. For 

each alert, we provide an interpretable explanation. We monitor model behavior over time and integrate 

maintenance procedures such as recalibration and rule updates into the pipeline. Overall, the proposed 

framework provides a concrete pathway toward trustworthy and monitored AI-based alerting in critical care 
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and forms a basis for future multi-centre validation, large-scale personalization, and prospective evaluation of 

human-AI collaboration at the bedside. 
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