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Smartphones increasingly rely on biometric authentication for access to
financial and personal services, creating a need for palmprint recognition
that is accurate, fast, and deployable on device. This paper proposes an end-
to-end smartphone palmprint authentication framework that integrates
guided mobile image capture, landmark-based region-of-interest (ROI)
extraction, and compact embedding inference. A ResNet-18 teacher is first
trained with self-supervised contrastive learning to reduce dependence on
labeled biometric data, then distilled into a lightweight MobileNetV3 student
for efficient mobile deployment. The learned embeddings support both on-
device verification and large-scale identification using an approximate
nearest neighbor index (FAISS). Experiments on a public Kaggle palm
dataset achieve 99.2% accuracy with a 0.15% equal error rate (EER). On an
iPhone 13, the end-to-end pipeline runs in 87.0 ms with a 12.4 MB student
model. For a 1 million-entry gallery, FAISS provides 32 ms query latency
while maintaining 99.5% Recall@1. Limitations include evaluation under
mostly controlled capture conditions and the absence of an explicit liveness

or presentation attack detection (PAD) module; future work will address
unconstrained testing and anti-spoofing integration.
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1. INTRODUCTION

Smartphones have become the primary gateway to digital services such as mobile banking,
electronic payments, telemedicine, and remote work platforms. As a result, authentication mechanisms must
achieve both strong security and acceptable user experience under tight on-device constraints. Biometric
authentication is attractive because it can reduce reliance on passwords and mitigate risks associated with
credential theft; however, practical deployment also raises concerns about privacy, spoofing, and secure
template storage. Within this context, palmprint recognition is a compelling modality because the palm
contains dense and discriminative texture patterns (principal lines, wrinkles, and fine creases) that are
relatively stable over time, and it can be captured in a contactless manner using commodity cameras. Recent
surveys and reviews consistently report that modern palmprint systems especially deep-learning-based
approaches have achieved substantial gains in recognition accuracy and robustness compared with earlier
handcrafted pipelines, while also highlighting that realistic deployment remains challenging due to
acquisition variability and operational constraints [1], [2].

From a technical perspective, two aspects strongly influence palmprint performance in real
applications: reliable region-of-interest (ROI) extraction and discriminative feature learning. In unconstrained
contactless capture, changes in hand pose, distance to camera, illumination, and partial occlusion can degrade
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ROI consistency and downstream recognition. Recent research has therefore emphasized complete and stable
ROI strategies for unconstrained palmprint recognition and demonstrated measurable robustness
improvements under variable acquisition conditions [3]. In parallel, deep models with feature fusion or gating
mechanisms have been introduced to enhance discriminative representation learning, particularly when intra-
class variation is non-trivial [4]. Nonetheless, many high-performing academic models still assume well-
controlled capture and do not explicitly report end-to-end system behavior for smartphone deployment. For
mobile settings, efficiency-oriented palmprint designs have been explored, such as compact coding or
hashing-based representations that reduce matching cost and storage overhead while maintaining competitive
verification performance [5]. Classical coding approaches remain relevant as lightweight baselines and as a
reference point for understanding what performance is achievable with low computational complexity [6]. In
addition, interpretability is increasingly important for biometric systems used in security-sensitive
applications; explainable palmprint recognition pipelines have been studied to provide human-understandable
evidence about which regions or patterns contribute most to the decision [7].

Beyond recognition accuracy, real-world palmprint authentication must also address emerging
security threats and privacy constraints. Generative modeling has been actively studied for palm imagery,
including the use of GAN-based pipelines in palmprint recognition research and analysis [8], as well as the
explicit problem of detecting synthetic or manipulated palm images [9]. Recent work has also shown that
diffusion models can generate realistic contactless palmprints, which further motivates the need for
systematic anti-spoofing evaluation when deploying palmprint authentication outside controlled
environments [10]. More broadly, biometrics are known to be vulnerable to adversarial manipulation and
presentation attacks, and recent studies on combined attacks against recognition and presentation attack
detection (PAD) emphasize that strong verification accuracy alone is insufficient to guarantee security [11].
At the template level, once biometric templates are compromised, they cannot be “reset” like passwords;
cancellable template generation is therefore an important direction to reduce the impact of template leakage
and enable revocation and re-issuance [12]. In addition, since biometric data is sensitive, privacy-preserving
training and updating paradigms such as federated learning have been proposed for palm verification to
reduce the need to centralize raw data during model improvement cycles [13].

These considerations become more critical on mobile and edge platforms. Edge intelligence
research emphasizes that the operational constraints of on-device Al latency, memory footprint, energy
usage, and reliability under heterogeneous hardware often dominate system feasibility and user
acceptance [14]. Therefore, mobile palmprint authentication requires a complete workflow that includes
stable acquisition, fast preprocessing, and efficient inference, rather than an accuracy-only evaluation.
Practical mobile vision deployment has benefited from real-time perception frameworks that support fast
landmark detection and streamlined on-device pipelines, enabling robust ROl processing under interactive
camera capture conditions [15]. At the same time, collecting large-scale labeled biometric datasets is
expensive and raises ethical and legal challenges. Self-supervised learning (SSL) offers a promising approach
to reduce label dependence by learning view-invariant representations from unlabeled data; contrastive
learning frameworks such as SimCLR provide a widely adopted foundation for this paradigm [16]. SSL has
also demonstrated value in biometric-adjacent domains such as face representation learning, motivating its
use as a data-efficient pretraining strategy when labels are limited or costly [17]. Similar SSL principles have
been applied in other structured recognition problems, supporting the broader claim that representation
quality can be improved by learning from context and invariances rather than explicit labels alone [18].

In addition to data efficiency, mobile feasibility requires compact neural architectures and
compression techniques. Mobile-optimized backbones (e.g., MobileNet-family models) have been designed
explicitly to improve the accuracy-latency trade-off on smartphones and embedded devices [19].
Lightweight network design strategies that generate more features from inexpensive operations further
strengthen this direction, providing an additional option for improving efficiency without prohibitive
accuracy loss [20]. Knowledge distillation is a practical compression mechanism for transferring
representational capability from a larger teacher to a smaller student model, often preserving verification
performance while reducing model size and inference time [21]. Quantization and integer-only inference
methods can further reduce runtime and memory costs, but must be applied carefully to avoid unacceptable
accuracy degradation in biometric verification settings [22].

Finally, mobile palmprint systems must support both verification (1:1) and identification (1:N).
While many academic studies focus on verification, real deployments may require searching a large
enrollment database (e.g., campus access, enterprise identity, or multi-user device scenarios). At scale, naive
exhaustive matching becomes impractical, motivating approximate nearest neighbor (ANN) indexing. FAISS
provides a practical and widely used toolkit for similarity search and indexing that supports high-throughput
retrieval pipelines [23]. GPU-accelerated similarity search has demonstrated that large-scale matching can be
achieved efficiently, enabling billion-scale retrieval under suitable indexing and hardware configurations
[24]. Recent ANN research continues to study the trade-offs between recall, latency, and memory, which are
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critical to system design when the gallery size grows significantly [25]. Related work in other smartphone
biometrics, such as visible-light iris recognition, further confirms that high-accuracy biometric authentication
can be feasible on consumer devices when system design is tightly aligned with mobile constraints [26].

2. THE PROPOSED METHOD

This section presents the proposed end-to-end palmprint authentication framework, designed to
jointly address three practical deployment requirements: (i) robust palm representation learning with reduced
reliance on labeled biometric data, (ii) efficient on-device inference for real-time smartphone use, and (iii)
scalable matching that supports both 1:1 verification and 1:N identification. The overall workflow is
summarized in Figure 1, and the mobile acquisition interfaces and ROI localization outputs are shown in
Figure 2 and Figure 3, respectively.

2.1. System workflow overview

The system follows a mobile-first pipeline, as depicted in Figure 1. During enrollment, the user
captures palm images using the smartphone camera with in-app guidance; the captured frames are
preprocessed on-device to extract a standardized palm ROI, and a compact CNN generates a fixed-length
embedding that is stored as the user template. During authentication, the same preprocessing and embedding
steps are applied to the query sample. The query embedding is then matched either locally (1:1 verification)
or sent to a cloud backend for large-scale retrieval (1:N identification). Offline, the feature extractor is trained
in two stages: a self-supervised teacher model is first learned from unlabeled palm ROIls and then distilled
into a lightweight student model suitable for deployment on resource-constrained devices [14].

Cloud
Integration

Image
Acquisition

! Feature
Extraction

Y

Y
Y

Preprocessing

Y

Training Inference »  Matching

Figure 1. Workflow pipeline

2.2. Mobile image acquisition and real-time user guidance

The proposed system acquires contactless palm images using standard smartphone cameras. To
standardize capture quality and reduce user-induced variation, the mobile application provides real-time
feedback before allowing capture. Figure 2 illustrates three interface states used in this work: Figure 2(a)
indicates that the palm is stable and correctly positioned for capture; Figure 2(b) warns that the palm ROl is
too small (typically when the user is too far from the camera), prompting the user to move closer; and
Figure 2(c) indicates that no palm has been detected in the current view. This guidance mechanism improves
ROI consistency and reduces low-quality samples caused by motion blur, incorrect distance, or missing
hands.

2.3. Preprocessing and ROI extraction

After capture, each RGB frame is standardized on device to produce a consistent palm ROI for
feature extraction. The preprocessing sequence is designed to be lightweight while preserving discriminative
palm line structures. First, the input is converted to grayscale and contrast is normalized using contrast-
limited adaptive histogram equalization (CLAHE). A median filter is then applied to reduce sensor noise
while maintaining edge and line details. ROI localization is performed using a lightweight hand landmark
detector implemented in MediaPipe [15]. The detector returns 21 hand keypoints; a polygonal region is
constructed from a subset of stable palm landmarks to isolate the central palm area. The cropped ROI is
resized to 224x224 and intensity-normalized before being passed to the neural feature extractor. Figure 3
shows an example of the landmark output used to compute the ROI.

2.4. Stage 1: self-supervised representation learning (teacher model)

To reduce dependency on labeled biometric data, the framework trains a high-capacity teacher
network using self-supervised contrastive learning. A ResNet-18 backbone is adopted as the teacher feature
extractor, and each ROI sample is transformed into two augmented views (e.g., random crop, mild rotation,
blur/noise) to form a positive pair. The objective encourages view-invariant representations by maximizing
agreement between the two views while separating them from other samples in the batch. The training
follows a SIimCLR-style contrastive formulation using the normalized temperature-scaled cross-entropy
(NT-Xent) loss [16]. To improve representation quality for contrastive learning, the loss is applied in a
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projection space produced by a small MLP head attached to the backbone, consistent with standard SimCLR
practice.

The training is guided by the NT-Xent loss function (1), which is central to the SImMCLR framework
[16]. The objective of this loss is to maximize the similarity between the embeddings of the positive pair
while simultaneously minimizing their similarity to all negative pairs. The NT-Xent loss for a positive pair
(i, ) is formulated as:

exp(sim(z;,;)/7) 1)
Y2V 1p2iexp(sim(zi,35) /1)

Li,j = — lOg

where z; and z; are the embedding vectors of the positive pair, sim(-) is the cosine similarity function, t is a
temperature parameter that controls the separation of negative samples, and N is the batch size. A lower
temperature increases the penalty for hard-to-distinguish negative samples, forcing the model to learn more
discriminative features. During this stage, a two-layer MLP projection head is added to the ResNet-18
encoder.

(b) ©

Figure 2. Examples of real-time user guidance in the mobile application. From left to right (a) Successful
detection with a green overlay indicating the palm is stable and ready (b) A warning that the palm area is too
small, prompting the user to move closer and (c) A notification that no palm has been detected in the
camera's view

Figure 3. Palm landmark detection for ROI extraction

Robust palmprint biometric solution for secure mobile authentication (Son Nguyen)



684 a ISSN: 2502-4752

2.5. Stage 2: knowledge distillation for mobile deployment (student model)

After training the teacher network, its representation is transferred to a compact student model to
enable low-latency inference on smartphones. A MobileNetV/3 backbone is adopted as the student due to its
favorable accuracy—latency trade-off on mobile hardware [19]. The student is trained to mimic the teacher
embedding for the same ROI input using a distillation objective that aligns the student’s embedding space
with the teacher’s embedding space. This approach is consistent with common deployment practice where
distillation is used to preserve recognition capability while reducing model size and inference cost [21]. In
addition, lightweight architectural principles (e.g., generating more features using inexpensive operations)
can be incorporated to further improve mobile efficiency when needed [20]. If additional compression is
required, integer-only quantization can be applied after training; however, quantization should be validated
carefully because biometric verification accuracy can be sensitive to embedding perturbations [22].

2.6. Hybrid matching for verification and scalable identification

The deployed student model outputs a fixed-dimensional embedding (256-D in this work) for each
ROI. This embedding size is selected as a balance between discriminative power and on-device efficiency.
For local authentication, the system performs 1:1 verification by computing cosine similarity between the
query embedding and the enrolled template, followed by a threshold decision. For applications requiring
identification among many enrolled users, the query embedding is transmitted to a cloud backend that
performs ANN search over the embedding database. Because exhaustive search becomes inefficient for large
galleries, the backend uses FAISS indexing to support fast similarity search at scale [23]. The design follows
established ANN practice for high-dimensional retrieval, where recall-latency trade-offs are tuned to meet
application constraints [25]. For very large deployments, GPU-accelerated similarity search can be used to
improve throughput when appropriate infrastructure is available [24].

3. METHOD

This section describes the experimental design used to evaluate the proposed framework in a
reproducible manner, including the dataset usage constraint, training configuration, evaluation metrics, and
the measurement protocol for mobile latency and large-scale identification.

3.1. Dataset and experimental protocol

All experiments in this study were conducted using only the public Kaggle dataset “Palm
Recognition Dataset for Authentication System” (Palm Dataset). The dataset contains approximately 12,000
palm images and is distributed primarily in TIFF format. Because public biometric datasets often lack a
universally enforced protocol, we adopt a consistent enrollment—probe evaluation strategy that matches real
authentication usage. Each identity is represented by multiple samples. One sample per identity is selected as
the enrollment template, while the remaining samples are treated as probe attempts. Genuine comparisons are
formed by matching each probe to its enrolled template of the same identity, and impostor comparisons are
formed by matching probes against enrolled templates from other identities. This produces score distributions
required for FAR/FRR analysis and EER computation. The same identity grouping is also used for reporting
identification-style “accuracy” (top-1 match of a probe against the enrolled gallery) to keep the reported
accuracy and EER logically consistent within a single protocol.

3.2. Implementation details

All palm images were processed using the same on-device preprocessing and ROl extraction
pipeline described in Section 2. Each input frame was converted to grayscale, enhanced using CLAHE, and
denoised using a median filter. A lightweight MediaPipe hand landmark detector was then applied to obtain
keypoints for constructing a polygonal palm region, which was cropped and resized to 224x224 before
feature extraction [15]. For representation learning, a ResNet-18 teacher model was trained using a SimCLR-
style contrastive objective with NT-Xent loss, where two augmented views were generated per ROI and
optimized to maximize agreement for positive pairs while separating negatives within the batch [16]. For
mobile deployment, the learned teacher representation was transferred to a lightweight MobileNetV3 student
network [19] using knowledge distillation by aligning student embeddings to teacher embeddings for the
same ROI input (embedding-alignment loss) [21]. Unless otherwise stated, the student embedding dimension
was fixed at 256 for verification and identification experiments.

3.3. Evaluation metrics
Verification performance is quantified using (i) authentication accuracy under the enrollment—probe
identification protocol and (ii) EER. EER is the operating point where the false acceptance rate (FAR) equals
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the false rejection rate (FRR), and it is widely used in biometric verification studies [1]. For completeness,
FAR and FRR are computed by sweeping the similarity threshold over the genuine and impostor score
distributions; EER is the threshold where FAR and FRR intersect.

For scalability, 1:N identification performance is evaluated using Recall@1, defined as the fraction
of probes whose correct enrolled identity appears as the top-ranked retrieval result. This aligns with standard
identification evaluation practice and supports a practical interpretation of system behavior at scale [23], [25].

3.4. Mobile latency and large-scale identification measurement

To evaluate deployability, on-device performance is measured on an Apple iPhone 13 (A15 Bionic
chipset, 4 GB RAM), consistent with the deployment target described in the Results section. Latency is
reported as end-to-end runtime (preprocessing + ROI extraction + model inference + similarity matching),
and component-level timing is also recorded to attribute the total cost to each stage.

To evaluate large-scale identification, we construct a simulated gallery of one million embeddings
and compare exhaustive search against an ANN index. FAISS is used as the vector search backend, and the
HNSW index is selected due to its practical speed—recall trade-off in medium-to-large scale settings [23]. The
reported recall/latency trade-off is interpreted as an operational design choice, where a small loss in retrieval
accuracy can yield large improvements in query time, consistent with established ANN behavior [25].

4. RESULTS AND DISCUSSION

This section evaluates the proposed end-to-end palmprint authentication framework in terms of (i)
verification performance (accuracy and EER), (ii) mobile deployability (end-to-end latency and model
footprint), (iii) robustness under practical capture variations, and (iv) scalability for large-gallery
identification.

4.1. Authentication accuracy and error rates

Table 1 reports verification performance on the Kaggle palm dataset using the same enrollment—
probe protocol for both the supervised MobileNetV3 baseline and the proposed framework. The baseline
achieves 97.5% accuracy with 1.80% EER, while the proposed self-supervised pretraining plus distilled
MobileNetV3 improves accuracy to 99.2% and reduces EER to 0.15%. This corresponds to a +1.7
percentage-point gain in accuracy and a 1.65 percentage-point absolute reduction in EER, indicating that the
learned embedding becomes more discriminative and stable while remaining suitable for mobile deployment.

For broader context, Table 1 also includes representative results reported in recent palmprint
literature GLGANet [4] and a CCNet result summarized in the palmprint deep-learning survey [1]. These
literature values are listed together with their original datasets/protocols (e.g., Tongji/PolyU-style
benchmarks) and are provided for positioning rather than direct numerical comparison, because palmprint
performance is strongly affected by dataset characteristics, capture conditions, and evaluation
protocols [1], [2]. Within this framing, the contribution of this work is not limited to recognition accuracy; it
is the demonstration of an end-to-end, smartphone-oriented pipeline that couples label-efficient
representation learning and a compact deployed model with measurable on-device latency and a scalable
identification backend, while maintaining verification performance within the high-accuracy regime reported
by recent studies [1], [4].

Table 1. Comparison of authentication accuracy and EER with state-of-the-art methods

Method Training Dataset Accuracy (%) EER (%)
Supervised MobileNetV3 (Baseline) Supervised Kaggle 97.5 1.80
Proposed SSL + Distilled MobileNetV3  SSL + distillation Kaggle 99.2 0.15
GLGANEet [4] Supervised Tongji/PolyU 98.5/99.5 Not reported
CCNet [1] Supervised Tongji 100.0 0.00004

4.2. On-device performance and deployment relevance

A mobile biometric system must be accurate and responsive under smartphone constraints. Table 2
reports a full end-to-end latency of 87.0 ms on iPhone 13, including preprocessing/ROI extraction (48.0 ms),
student inference (21.5 ms), and cosine matching (17.5 ms). Importantly, this measurement reflects the
complete pipeline rather than model inference alone, which better represents real user experience in mobile
authentication.

The distillation stage is the key factor enabling deployability: the student model reduces inference
time by approximately 3.5x relative to the teacher (75.2 ms to 21.5 ms) and reduces the model footprint from
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45.1 MB to 12.4 MB. This is consistent with the broader edge intelligence perspective that model
compression and system-level latency are primary feasibility constraints for real-world edge Al, not only
accuracy [14]. While some palmprint studies emphasize recognition performance [4] or interpretability [7],
many do not report complete on-device timing and memory measurements, making it difficult to assess
deployment readiness. By reporting end-to-end runtime with explicit module breakdown, this work
contributes operational evidence that the proposed framework can be integrated into a practical mobile
application.

Table 2. On-device performance evaluation on iPhone 13

Component Latency (ms)  Model Size (MB)
Preprocessing Pipeline (incl. ROI Extraction) 48.0 -
ResNet-18 Teacher (Theoretical Inference) 75.2 451
MobileNetV/3 Student (On-Device Inference) 21.5 12.4
Cosine Similarity Matching 175 -
Full End-to-End Authentication 87.0

4.3. Robustness to real-world conditions

Table 3 evaluates robustness under variations that frequently occur in smartphone capture: low light,
partial occlusion, and mild rotation. The proposed SSL model consistently outperforms the supervised
baseline under all stress conditions, with particularly notable gains under partial occlusion and low light. This
behavior aligns with the motivation of contrastive learning, which learns invariances through augmentation
and encourages representations that remain stable under perturbations that resemble real capture noise [16].

From a literature perspective, ROl quality is widely recognized as a dominant factor in
unconstrained palmprint recognition, and recent ROI research explicitly targets robustness under less
controlled acquisition [3]. In our system, robustness improvements arise from two coupled design choices:
guided acquisition (Figure 2) reduces severe capture errors before inference, and landmark-based ROI
extraction (Figure 3) provides consistent palm alignment at low runtime cost. While our ROI method is
designed to be lightweight for mobile deployment, the results in Table 3 suggest that combining stable ROI
extraction with SSL is a practical path to improved robustness without increasing on-device computation.

Table 3. Robustness evaluation under challenging conditions accuracy

Condition Supervised MobileNetV3 (%)  Proposed SSL model (%)
Normal lighting 97.5 99.2
Low light 94.1 97.8
Partial occlusion 92.7 97.8
Rotation (+15 degrees) 95.2 98.5

4.4. Scalability for large-scale identification

Table 4 evaluates the system in a large-scale identification setting using a one million embedding
gallery. Exhaustive search requires approximately 3540 ms per query, which is not feasible for interactive
identification. In contrast, FAISS with an HNSW index reduces latency to approximately 32 ms per query
while maintaining 99.5% Recall@1. This is consistent with the fundamental ANN trade-off: a small and
tunable reduction in exactness can yield orders-of-magnitude speedups for high-dimensional
retrieval [23], [25]. Prior work also shows that similarity search throughput can be further improved with
GPU acceleration when infrastructure permits, reinforcing that scalable identification is a tractable
component of real deployments [24].

This scalability result is a key part of the contribution because many palmprint papers focus
primarily on verification performance without demonstrating system behavior when the gallery size increases
substantially. By integrating ANN-based retrieval into the architecture and quantifying latency/recall at a
realistic scale, the proposed framework moves beyond accuracy-only evaluation toward deployment-grade
identification capability.

Table 4. Scalability performance for 1:N Identification (1 million gallery size)

Search method Search latency (ms per query)  Recall@1 (%)
Brute-force (exhaustive) ~3540 100.0
FAISS (HNSW Index) ~32 99.5
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4.5. Discussion, limitations, and future work

Taken together, Tables 1-4 demonstrate that the framework achieves a balanced profile across
accuracy, robustness, mobile efficiency, and scalability. The primary contribution relative to representative
palmprint studies is not merely a marginal metric gain, but an end-to-end design that integrates (i) label-
efficient training via SSL [16], (ii) mobile-friendly inference via distillation (Table 2), and (iii) scalable
identification via ANN indexing [23], [25]. This integration is rarely reported as a single validated pipeline in
prior palmprint work, which tends to emphasize either recognition modeling [4], ROI robustness [3], or
efficiency-oriented representations [5].

Nevertheless, limitations remain. First, the Kaggle dataset reflects mostly controlled or semi-
controlled acquisition, so generalization to fully unconstrained outdoor settings and cross-device variability is
not yet established; ROI studies indicate this remains a core challenge in unconstrained palmprint
recognition [3]. Second, the current system does not include an explicit liveness or PAD component. This is
important because recent works demonstrate both the feasibility of detecting deepfake palm imagery [9] and
the increasing realism of generated palmprints using diffusion models [10], while broader biometric security
research shows that combined attacks can target both recognition and PAD modules [11]. Third, template
protection is not yet implemented; cancellable templates provide a concrete direction for revocation and re-
issuance if templates are compromised [12]. Finally, privacy-preserving model updates are not yet explored
in this implementation; federated learning is a relevant pathway for reducing centralized raw-biometric
exposure during updates [13].

5. CONCLUSION

This paper presented a smartphone-oriented palmprint authentication framework that integrates
guided mobile acquisition, landmark-based ROI extraction, compact embedding inference, and hybrid
matching for both on-device verification and large-scale identification. The results show that combining self-
supervised contrastive pretraining with knowledge distillation can yield a strong palm representation while
meeting practical mobile constraints, and that ANN-based retrieval using FAISS provides a feasible path to
low-latency identification when the gallery size becomes large.

Several limitations should be acknowledged. First, the experimental evaluation relies on a public
dataset that reflects mostly controlled or semi-controlled capture conditions; therefore, the reported
performance may not fully represent more challenging real-world scenarios such as outdoor lighting, severe
motion blur, large pose variation, and cross-device camera differences. Second, the current system does not
include an explicit liveness or PAD module, which is important for security because synthetic or manipulated
palm imagery is becoming increasingly realistic. Third, template protection and revocability are not yet
implemented, which is a relevant consideration for any system that stores embeddings for authentication or
identification.

Future work will therefore focus on (1) broader validation under unconstrained and cross-device
capture settings with a consistent protocol, (2) integrating a lightweight anti-spoofing component and
quantifying its security—latency trade-off, and (3) strengthening template security through cancellable
templates and privacy-preserving model update strategies, while also exploring additional compression (e.g.,
quantization) under careful verification stability checks.
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