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 Smartphones increasingly rely on biometric authentication for access to 

financial and personal services, creating a need for palmprint recognition 

that is accurate, fast, and deployable on device. This paper proposes an end-

to-end smartphone palmprint authentication framework that integrates 

guided mobile image capture, landmark-based region-of-interest (ROI) 

extraction, and compact embedding inference. A ResNet-18 teacher is first 

trained with self-supervised contrastive learning to reduce dependence on 

labeled biometric data, then distilled into a lightweight MobileNetV3 student 

for efficient mobile deployment. The learned embeddings support both on-

device verification and large-scale identification using an approximate 

nearest neighbor index (FAISS). Experiments on a public Kaggle palm 

dataset achieve 99.2% accuracy with a 0.15% equal error rate (EER). On an 

iPhone 13, the end-to-end pipeline runs in 87.0 ms with a 12.4 MB student 

model. For a 1 million-entry gallery, FAISS provides 32 ms query latency 

while maintaining 99.5% Recall@1. Limitations include evaluation under 

mostly controlled capture conditions and the absence of an explicit liveness 

or presentation attack detection (PAD) module; future work will address 

unconstrained testing and anti-spoofing integration. 
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1. INTRODUCTION  

Smartphones have become the primary gateway to digital services such as mobile banking, 

electronic payments, telemedicine, and remote work platforms. As a result, authentication mechanisms must 

achieve both strong security and acceptable user experience under tight on-device constraints. Biometric 

authentication is attractive because it can reduce reliance on passwords and mitigate risks associated with 

credential theft; however, practical deployment also raises concerns about privacy, spoofing, and secure 

template storage. Within this context, palmprint recognition is a compelling modality because the palm 

contains dense and discriminative texture patterns (principal lines, wrinkles, and fine creases) that are 

relatively stable over time, and it can be captured in a contactless manner using commodity cameras. Recent 

surveys and reviews consistently report that modern palmprint systems especially deep-learning-based 

approaches have achieved substantial gains in recognition accuracy and robustness compared with earlier 

handcrafted pipelines, while also highlighting that realistic deployment remains challenging due to 

acquisition variability and operational constraints [1], [2]. 

From a technical perspective, two aspects strongly influence palmprint performance in real 

applications: reliable region-of-interest (ROI) extraction and discriminative feature learning. In unconstrained 

contactless capture, changes in hand pose, distance to camera, illumination, and partial occlusion can degrade 
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ROI consistency and downstream recognition. Recent research has therefore emphasized complete and stable 

ROI strategies for unconstrained palmprint recognition and demonstrated measurable robustness 

improvements under variable acquisition conditions [3]. In parallel, deep models with feature fusion or gating 

mechanisms have been introduced to enhance discriminative representation learning, particularly when intra-

class variation is non-trivial [4]. Nonetheless, many high-performing academic models still assume well-

controlled capture and do not explicitly report end-to-end system behavior for smartphone deployment. For 

mobile settings, efficiency-oriented palmprint designs have been explored, such as compact coding or 

hashing-based representations that reduce matching cost and storage overhead while maintaining competitive 

verification performance [5]. Classical coding approaches remain relevant as lightweight baselines and as a 

reference point for understanding what performance is achievable with low computational complexity [6]. In 

addition, interpretability is increasingly important for biometric systems used in security-sensitive 

applications; explainable palmprint recognition pipelines have been studied to provide human-understandable 

evidence about which regions or patterns contribute most to the decision [7]. 

Beyond recognition accuracy, real-world palmprint authentication must also address emerging 

security threats and privacy constraints. Generative modeling has been actively studied for palm imagery, 

including the use of GAN-based pipelines in palmprint recognition research and analysis [8], as well as the 

explicit problem of detecting synthetic or manipulated palm images [9]. Recent work has also shown that 

diffusion models can generate realistic contactless palmprints, which further motivates the need for 

systematic anti-spoofing evaluation when deploying palmprint authentication outside controlled 

environments [10]. More broadly, biometrics are known to be vulnerable to adversarial manipulation and 

presentation attacks, and recent studies on combined attacks against recognition and presentation attack 

detection (PAD) emphasize that strong verification accuracy alone is insufficient to guarantee security [11]. 

At the template level, once biometric templates are compromised, they cannot be “reset” like passwords; 

cancellable template generation is therefore an important direction to reduce the impact of template leakage 

and enable revocation and re-issuance [12]. In addition, since biometric data is sensitive, privacy-preserving 

training and updating paradigms such as federated learning have been proposed for palm verification to 

reduce the need to centralize raw data during model improvement cycles [13]. 

These considerations become more critical on mobile and edge platforms. Edge intelligence 

research emphasizes that the operational constraints of on-device AI latency, memory footprint, energy 

usage, and reliability under heterogeneous hardware often dominate system feasibility and user  

acceptance [14]. Therefore, mobile palmprint authentication requires a complete workflow that includes 

stable acquisition, fast preprocessing, and efficient inference, rather than an accuracy-only evaluation. 

Practical mobile vision deployment has benefited from real-time perception frameworks that support fast 

landmark detection and streamlined on-device pipelines, enabling robust ROI processing under interactive 

camera capture conditions [15]. At the same time, collecting large-scale labeled biometric datasets is 

expensive and raises ethical and legal challenges. Self-supervised learning (SSL) offers a promising approach 

to reduce label dependence by learning view-invariant representations from unlabeled data; contrastive 

learning frameworks such as SimCLR provide a widely adopted foundation for this paradigm [16]. SSL has 

also demonstrated value in biometric-adjacent domains such as face representation learning, motivating its 

use as a data-efficient pretraining strategy when labels are limited or costly [17]. Similar SSL principles have 

been applied in other structured recognition problems, supporting the broader claim that representation 

quality can be improved by learning from context and invariances rather than explicit labels alone [18]. 

In addition to data efficiency, mobile feasibility requires compact neural architectures and 

compression techniques. Mobile-optimized backbones (e.g., MobileNet-family models) have been designed 

explicitly to improve the accuracy–latency trade-off on smartphones and embedded devices [19]. 

Lightweight network design strategies that generate more features from inexpensive operations further 

strengthen this direction, providing an additional option for improving efficiency without prohibitive 

accuracy loss [20]. Knowledge distillation is a practical compression mechanism for transferring 

representational capability from a larger teacher to a smaller student model, often preserving verification 

performance while reducing model size and inference time [21]. Quantization and integer-only inference 

methods can further reduce runtime and memory costs, but must be applied carefully to avoid unacceptable 

accuracy degradation in biometric verification settings [22]. 

Finally, mobile palmprint systems must support both verification (1:1) and identification (1:N). 

While many academic studies focus on verification, real deployments may require searching a large 

enrollment database (e.g., campus access, enterprise identity, or multi-user device scenarios). At scale, naïve 

exhaustive matching becomes impractical, motivating approximate nearest neighbor (ANN) indexing. FAISS 

provides a practical and widely used toolkit for similarity search and indexing that supports high-throughput 

retrieval pipelines [23]. GPU-accelerated similarity search has demonstrated that large-scale matching can be 

achieved efficiently, enabling billion-scale retrieval under suitable indexing and hardware configurations 

[24]. Recent ANN research continues to study the trade-offs between recall, latency, and memory, which are 
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critical to system design when the gallery size grows significantly [25]. Related work in other smartphone 

biometrics, such as visible-light iris recognition, further confirms that high-accuracy biometric authentication 

can be feasible on consumer devices when system design is tightly aligned with mobile constraints [26]. 

 

 

2. THE PROPOSED METHOD 

This section presents the proposed end-to-end palmprint authentication framework, designed to 

jointly address three practical deployment requirements: (i) robust palm representation learning with reduced 

reliance on labeled biometric data, (ii) efficient on-device inference for real-time smartphone use, and (iii) 

scalable matching that supports both 1:1 verification and 1:N identification. The overall workflow is 

summarized in Figure 1, and the mobile acquisition interfaces and ROI localization outputs are shown in 

Figure 2 and Figure 3, respectively. 

 

2.1.  System workflow overview 

The system follows a mobile-first pipeline, as depicted in Figure 1. During enrollment, the user 

captures palm images using the smartphone camera with in-app guidance; the captured frames are 

preprocessed on-device to extract a standardized palm ROI, and a compact CNN generates a fixed-length 

embedding that is stored as the user template. During authentication, the same preprocessing and embedding 

steps are applied to the query sample. The query embedding is then matched either locally (1:1 verification) 

or sent to a cloud backend for large-scale retrieval (1:N identification). Offline, the feature extractor is trained 

in two stages: a self-supervised teacher model is first learned from unlabeled palm ROIs and then distilled 

into a lightweight student model suitable for deployment on resource-constrained devices [14]. 

 

 

 
 

Figure 1. Workflow pipeline 
 

 

2.2.  Mobile image acquisition and real-time user guidance 

The proposed system acquires contactless palm images using standard smartphone cameras. To 

standardize capture quality and reduce user-induced variation, the mobile application provides real-time 

feedback before allowing capture. Figure 2 illustrates three interface states used in this work: Figure 2(a) 

indicates that the palm is stable and correctly positioned for capture; Figure 2(b) warns that the palm ROI is 

too small (typically when the user is too far from the camera), prompting the user to move closer; and  

Figure 2(c) indicates that no palm has been detected in the current view. This guidance mechanism improves 

ROI consistency and reduces low-quality samples caused by motion blur, incorrect distance, or missing 

hands. 
 

2.3.  Preprocessing and ROI extraction 

After capture, each RGB frame is standardized on device to produce a consistent palm ROI for 

feature extraction. The preprocessing sequence is designed to be lightweight while preserving discriminative 

palm line structures. First, the input is converted to grayscale and contrast is normalized using contrast-

limited adaptive histogram equalization (CLAHE). A median filter is then applied to reduce sensor noise 

while maintaining edge and line details. ROI localization is performed using a lightweight hand landmark 

detector implemented in MediaPipe [15]. The detector returns 21 hand keypoints; a polygonal region is 

constructed from a subset of stable palm landmarks to isolate the central palm area. The cropped ROI is 

resized to 224×224 and intensity-normalized before being passed to the neural feature extractor. Figure 3 

shows an example of the landmark output used to compute the ROI. 

 

2.4.  Stage 1: self-supervised representation learning (teacher model) 

To reduce dependency on labeled biometric data, the framework trains a high-capacity teacher 

network using self-supervised contrastive learning. A ResNet-18 backbone is adopted as the teacher feature 

extractor, and each ROI sample is transformed into two augmented views (e.g., random crop, mild rotation, 

blur/noise) to form a positive pair. The objective encourages view-invariant representations by maximizing 

agreement between the two views while separating them from other samples in the batch. The training 

follows a SimCLR-style contrastive formulation using the normalized temperature-scaled cross-entropy  

(NT-Xent) loss [16]. To improve representation quality for contrastive learning, the loss is applied in a 
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projection space produced by a small MLP head attached to the backbone, consistent with standard SimCLR 

practice. 

The training is guided by the NT-Xent loss function (1), which is central to the SimCLR framework 

[16]. The objective of this loss is to maximize the similarity between the embeddings of the positive pair 

while simultaneously minimizing their similarity to all negative pairs. The NT-Xent loss for a positive pair 

(𝑖, 𝑗) is formulated as: 

 

𝐿𝑖,𝑗 =  − log
exp (𝑠𝑖𝑚(𝓏𝑖,𝓏𝑗) 𝜏⁄ )

∑ 1[𝓀≠𝑖]
2𝑁
𝑘=1 exp (𝑠𝑖𝑚(𝓏𝑖,𝓏𝑗) 𝜏⁄ )

  (1) 

 

where 𝓏𝑖 and 𝓏𝑗 are the embedding vectors of the positive pair, 𝑠𝑖𝑚(⋅) is the cosine similarity function, τ is a 

temperature parameter that controls the separation of negative samples, and N is the batch size. A lower 

temperature increases the penalty for hard-to-distinguish negative samples, forcing the model to learn more 

discriminative features. During this stage, a two-layer MLP projection head is added to the ResNet-18 

encoder. 

 

 

   
(a) (b) (c) 

 

Figure 2. Examples of real-time user guidance in the mobile application. From left to right (a) Successful 

detection with a green overlay indicating the palm is stable and ready (b) A warning that the palm area is too 

small, prompting the user to move closer and (c) A notification that no palm has been detected in the 

camera's view 

 

 

 
 

Figure 3. Palm landmark detection for ROI extraction 
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2.5.  Stage 2: knowledge distillation for mobile deployment (student model) 

After training the teacher network, its representation is transferred to a compact student model to 

enable low-latency inference on smartphones. A MobileNetV3 backbone is adopted as the student due to its 

favorable accuracy–latency trade-off on mobile hardware [19]. The student is trained to mimic the teacher 

embedding for the same ROI input using a distillation objective that aligns the student’s embedding space 

with the teacher’s embedding space. This approach is consistent with common deployment practice where 

distillation is used to preserve recognition capability while reducing model size and inference cost [21]. In 

addition, lightweight architectural principles (e.g., generating more features using inexpensive operations) 

can be incorporated to further improve mobile efficiency when needed [20]. If additional compression is 

required, integer-only quantization can be applied after training; however, quantization should be validated 

carefully because biometric verification accuracy can be sensitive to embedding perturbations [22]. 

 

2.6.  Hybrid matching for verification and scalable identification 

The deployed student model outputs a fixed-dimensional embedding (256-D in this work) for each 

ROI. This embedding size is selected as a balance between discriminative power and on-device efficiency. 

For local authentication, the system performs 1:1 verification by computing cosine similarity between the 

query embedding and the enrolled template, followed by a threshold decision. For applications requiring 

identification among many enrolled users, the query embedding is transmitted to a cloud backend that 

performs ANN search over the embedding database. Because exhaustive search becomes inefficient for large 

galleries, the backend uses FAISS indexing to support fast similarity search at scale [23]. The design follows 

established ANN practice for high-dimensional retrieval, where recall–latency trade-offs are tuned to meet 

application constraints [25]. For very large deployments, GPU-accelerated similarity search can be used to 

improve throughput when appropriate infrastructure is available [24]. 

 

 

3. METHOD 

This section describes the experimental design used to evaluate the proposed framework in a 

reproducible manner, including the dataset usage constraint, training configuration, evaluation metrics, and 

the measurement protocol for mobile latency and large-scale identification. 

 

3.1.  Dataset and experimental protocol 

All experiments in this study were conducted using only the public Kaggle dataset “Palm 

Recognition Dataset for Authentication System” (Palm Dataset). The dataset contains approximately 12,000 

palm images and is distributed primarily in TIFF format. Because public biometric datasets often lack a 

universally enforced protocol, we adopt a consistent enrollment–probe evaluation strategy that matches real 

authentication usage. Each identity is represented by multiple samples. One sample per identity is selected as 

the enrollment template, while the remaining samples are treated as probe attempts. Genuine comparisons are 

formed by matching each probe to its enrolled template of the same identity, and impostor comparisons are 

formed by matching probes against enrolled templates from other identities. This produces score distributions 

required for FAR/FRR analysis and EER computation. The same identity grouping is also used for reporting 

identification-style “accuracy” (top-1 match of a probe against the enrolled gallery) to keep the reported 

accuracy and EER logically consistent within a single protocol. 

 

3.2.  Implementation details 

All palm images were processed using the same on-device preprocessing and ROI extraction 

pipeline described in Section 2. Each input frame was converted to grayscale, enhanced using CLAHE, and 

denoised using a median filter. A lightweight MediaPipe hand landmark detector was then applied to obtain 

keypoints for constructing a polygonal palm region, which was cropped and resized to 224×224 before 

feature extraction [15]. For representation learning, a ResNet-18 teacher model was trained using a SimCLR-

style contrastive objective with NT-Xent loss, where two augmented views were generated per ROI and 

optimized to maximize agreement for positive pairs while separating negatives within the batch [16]. For 

mobile deployment, the learned teacher representation was transferred to a lightweight MobileNetV3 student 

network [19] using knowledge distillation by aligning student embeddings to teacher embeddings for the 

same ROI input (embedding-alignment loss) [21]. Unless otherwise stated, the student embedding dimension 

was fixed at 256 for verification and identification experiments. 

 

3.3.  Evaluation metrics 

Verification performance is quantified using (i) authentication accuracy under the enrollment–probe 

identification protocol and (ii) EER. EER is the operating point where the false acceptance rate (FAR) equals 
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the false rejection rate (FRR), and it is widely used in biometric verification studies [1]. For completeness, 

FAR and FRR are computed by sweeping the similarity threshold over the genuine and impostor score 

distributions; EER is the threshold where FAR and FRR intersect. 

For scalability, 1:N identification performance is evaluated using Recall@1, defined as the fraction 

of probes whose correct enrolled identity appears as the top-ranked retrieval result. This aligns with standard 

identification evaluation practice and supports a practical interpretation of system behavior at scale [23], [25]. 

 

3.4.  Mobile latency and large-scale identification measurement 

To evaluate deployability, on-device performance is measured on an Apple iPhone 13 (A15 Bionic 

chipset, 4 GB RAM), consistent with the deployment target described in the Results section. Latency is 

reported as end-to-end runtime (preprocessing + ROI extraction + model inference + similarity matching), 

and component-level timing is also recorded to attribute the total cost to each stage. 

To evaluate large-scale identification, we construct a simulated gallery of one million embeddings 

and compare exhaustive search against an ANN index. FAISS is used as the vector search backend, and the 

HNSW index is selected due to its practical speed–recall trade-off in medium-to-large scale settings [23]. The 

reported recall/latency trade-off is interpreted as an operational design choice, where a small loss in retrieval 

accuracy can yield large improvements in query time, consistent with established ANN behavior [25]. 

 

 

4. RESULTS AND DISCUSSION 

This section evaluates the proposed end-to-end palmprint authentication framework in terms of (i) 

verification performance (accuracy and EER), (ii) mobile deployability (end-to-end latency and model 

footprint), (iii) robustness under practical capture variations, and (iv) scalability for large-gallery 

identification. 

 

4.1.  Authentication accuracy and error rates 

Table 1 reports verification performance on the Kaggle palm dataset using the same enrollment–

probe protocol for both the supervised MobileNetV3 baseline and the proposed framework. The baseline 

achieves 97.5% accuracy with 1.80% EER, while the proposed self-supervised pretraining plus distilled 

MobileNetV3 improves accuracy to 99.2% and reduces EER to 0.15%. This corresponds to a +1.7 

percentage-point gain in accuracy and a 1.65 percentage-point absolute reduction in EER, indicating that the 

learned embedding becomes more discriminative and stable while remaining suitable for mobile deployment. 

For broader context, Table 1 also includes representative results reported in recent palmprint 

literature GLGANet [4] and a CCNet result summarized in the palmprint deep-learning survey [1]. These 

literature values are listed together with their original datasets/protocols (e.g., Tongji/PolyU-style 

benchmarks) and are provided for positioning rather than direct numerical comparison, because palmprint 

performance is strongly affected by dataset characteristics, capture conditions, and evaluation  

protocols [1], [2]. Within this framing, the contribution of this work is not limited to recognition accuracy; it 

is the demonstration of an end-to-end, smartphone-oriented pipeline that couples label-efficient 

representation learning and a compact deployed model with measurable on-device latency and a scalable 

identification backend, while maintaining verification performance within the high-accuracy regime reported 

by recent studies [1], [4]. 

 

 

Table 1. Comparison of authentication accuracy and EER with state-of-the-art methods 
Method Training Dataset Accuracy (%) EER (%) 

Supervised MobileNetV3 (Baseline) Supervised Kaggle 97.5 1.80 

Proposed SSL + Distilled MobileNetV3 SSL + distillation Kaggle 99.2 0.15 
GLGANet [4] Supervised Tongji/PolyU 98.5/99.5 Not reported 

CCNet [1] Supervised Tongji 100.0 0.00004 

 

 

4.2.  On-device performance and deployment relevance 

A mobile biometric system must be accurate and responsive under smartphone constraints. Table 2 

reports a full end-to-end latency of 87.0 ms on iPhone 13, including preprocessing/ROI extraction (48.0 ms), 

student inference (21.5 ms), and cosine matching (17.5 ms). Importantly, this measurement reflects the 

complete pipeline rather than model inference alone, which better represents real user experience in mobile 

authentication. 

The distillation stage is the key factor enabling deployability: the student model reduces inference 

time by approximately 3.5× relative to the teacher (75.2 ms to 21.5 ms) and reduces the model footprint from 
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45.1 MB to 12.4 MB. This is consistent with the broader edge intelligence perspective that model 

compression and system-level latency are primary feasibility constraints for real-world edge AI, not only 

accuracy [14]. While some palmprint studies emphasize recognition performance [4] or interpretability [7], 

many do not report complete on-device timing and memory measurements, making it difficult to assess 

deployment readiness. By reporting end-to-end runtime with explicit module breakdown, this work 

contributes operational evidence that the proposed framework can be integrated into a practical mobile 

application. 

 

 

Table 2. On-device performance evaluation on iPhone 13 
Component Latency (ms) Model Size (MB) 

Preprocessing Pipeline (incl. ROI Extraction) 48.0 - 

ResNet-18 Teacher (Theoretical Inference) 75.2 45.1 

MobileNetV3 Student (On-Device Inference) 21.5 12.4 
Cosine Similarity Matching 17.5 - 

Full End-to-End Authentication 87.0 - 

 

 

4.3.  Robustness to real-world conditions 

Table 3 evaluates robustness under variations that frequently occur in smartphone capture: low light, 

partial occlusion, and mild rotation. The proposed SSL model consistently outperforms the supervised 

baseline under all stress conditions, with particularly notable gains under partial occlusion and low light. This 

behavior aligns with the motivation of contrastive learning, which learns invariances through augmentation 

and encourages representations that remain stable under perturbations that resemble real capture noise [16]. 

From a literature perspective, ROI quality is widely recognized as a dominant factor in 

unconstrained palmprint recognition, and recent ROI research explicitly targets robustness under less 

controlled acquisition [3]. In our system, robustness improvements arise from two coupled design choices: 

guided acquisition (Figure 2) reduces severe capture errors before inference, and landmark-based ROI 

extraction (Figure 3) provides consistent palm alignment at low runtime cost. While our ROI method is 

designed to be lightweight for mobile deployment, the results in Table 3 suggest that combining stable ROI 

extraction with SSL is a practical path to improved robustness without increasing on-device computation. 

 

 

Table 3. Robustness evaluation under challenging conditions accuracy 
Condition Supervised MobileNetV3 (%)  Proposed SSL model (%) 

Normal lighting 97.5 99.2 
Low light 94.1 97.8 

Partial occlusion  92.7 97.8 

Rotation (±15 degrees) 95.2 98.5 

 

 

4.4.  Scalability for large-scale identification 

Table 4 evaluates the system in a large-scale identification setting using a one million embedding 

gallery. Exhaustive search requires approximately 3540 ms per query, which is not feasible for interactive 

identification. In contrast, FAISS with an HNSW index reduces latency to approximately 32 ms per query 

while maintaining 99.5% Recall@1. This is consistent with the fundamental ANN trade-off: a small and 

tunable reduction in exactness can yield orders-of-magnitude speedups for high-dimensional  

retrieval [23], [25]. Prior work also shows that similarity search throughput can be further improved with 

GPU acceleration when infrastructure permits, reinforcing that scalable identification is a tractable 

component of real deployments [24]. 

This scalability result is a key part of the contribution because many palmprint papers focus 

primarily on verification performance without demonstrating system behavior when the gallery size increases 

substantially. By integrating ANN-based retrieval into the architecture and quantifying latency/recall at a 

realistic scale, the proposed framework moves beyond accuracy-only evaluation toward deployment-grade 

identification capability. 

 

 

Table 4. Scalability performance for 1:N Identification (1 million gallery size) 
Search method Search latency (ms per query) Recall@1 (%) 

Brute-force (exhaustive) ~3540 100.0 

FAISS (HNSW Index) ~32 99.5 
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4.5.  Discussion, limitations, and future work 

Taken together, Tables 1-4 demonstrate that the framework achieves a balanced profile across 

accuracy, robustness, mobile efficiency, and scalability. The primary contribution relative to representative 

palmprint studies is not merely a marginal metric gain, but an end-to-end design that integrates (i) label-

efficient training via SSL [16], (ii) mobile-friendly inference via distillation (Table 2), and (iii) scalable 

identification via ANN indexing [23], [25]. This integration is rarely reported as a single validated pipeline in 

prior palmprint work, which tends to emphasize either recognition modeling [4], ROI robustness [3], or 

efficiency-oriented representations [5]. 

Nevertheless, limitations remain. First, the Kaggle dataset reflects mostly controlled or semi-

controlled acquisition, so generalization to fully unconstrained outdoor settings and cross-device variability is 

not yet established; ROI studies indicate this remains a core challenge in unconstrained palmprint  

recognition [3]. Second, the current system does not include an explicit liveness or PAD component. This is 

important because recent works demonstrate both the feasibility of detecting deepfake palm imagery [9] and 

the increasing realism of generated palmprints using diffusion models [10], while broader biometric security 

research shows that combined attacks can target both recognition and PAD modules [11]. Third, template 

protection is not yet implemented; cancellable templates provide a concrete direction for revocation and re-

issuance if templates are compromised [12]. Finally, privacy-preserving model updates are not yet explored 

in this implementation; federated learning is a relevant pathway for reducing centralized raw-biometric 

exposure during updates [13]. 

 

 

5. CONCLUSION 

This paper presented a smartphone-oriented palmprint authentication framework that integrates 

guided mobile acquisition, landmark-based ROI extraction, compact embedding inference, and hybrid 

matching for both on-device verification and large-scale identification. The results show that combining self-

supervised contrastive pretraining with knowledge distillation can yield a strong palm representation while 

meeting practical mobile constraints, and that ANN-based retrieval using FAISS provides a feasible path to 

low-latency identification when the gallery size becomes large. 

Several limitations should be acknowledged. First, the experimental evaluation relies on a public 

dataset that reflects mostly controlled or semi-controlled capture conditions; therefore, the reported 

performance may not fully represent more challenging real-world scenarios such as outdoor lighting, severe 

motion blur, large pose variation, and cross-device camera differences. Second, the current system does not 

include an explicit liveness or PAD module, which is important for security because synthetic or manipulated 

palm imagery is becoming increasingly realistic. Third, template protection and revocability are not yet 

implemented, which is a relevant consideration for any system that stores embeddings for authentication or 

identification. 

Future work will therefore focus on (1) broader validation under unconstrained and cross-device 

capture settings with a consistent protocol, (2) integrating a lightweight anti-spoofing component and 

quantifying its security–latency trade-off, and (3) strengthening template security through cancellable 

templates and privacy-preserving model update strategies, while also exploring additional compression (e.g., 

quantization) under careful verification stability checks. 
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