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 This study reviews the use of machine learning (ML) techniques to improve 

propensity score (PS) estimation in high-dimensional socioeconomic data. 

Traditional logistic regression (LR) often performs poorly under nonlinear 

and complex covariate structures, leading to bias and model 

misspecification. Across the reviewed studies, ensemble methods such as 

random forests (RF) and gradient boosting, and deep learning models 

consistently achieved better covariate balance, lower bias, and greater 

flexibility than conventional approaches, while classification-based methods 

improved performance in imbalanced datasets. The review also highlights 

practical considerations, including calibration, transparent reporting, and 

integration with doubly robust estimators to strengthen causal inference. The 

findings show that ML-based propensity score estimation (PSE) can 

substantially enhance the validity and reliability of socioeconomic 

evaluations, provided that its implementation is carefully guided by 

appropriate expertise and best-practice standards. 
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1. INTRODUCTION 

Impact evaluations assess the causal effects of interventions by comparing observed outcomes with 

a counterfactual scenario-what would have occurred in the absence of the intervention. The difference 

between these outcomes represents the intervention's impact, which may be measured at multiple levels and 

is not limited to long-term effects, contrary to common assumptions. Nonetheless, impact evaluation remains 

the primary approach capable of providing credible evidence of long-term outcomes. When properly 

designed and executed, impact evaluations can inform policy decisions, shape public opinion, and improve 

program operations [1]. 

Impact evaluation is embedded within the broader shift toward evidence-based policymaking, which 

emphasizes outcomes over inputs in public policy and organizational decision-making. This results-oriented 

approach supports the monitoring of national and international targets and strengthens accountability, budget 

allocation, and program design [1]. By providing credible evidence of performance, impact evaluations 

determine whether programs have achieved or are achieving their intended objectives and quantify 

improvements in beneficiaries' quality of life attributable to the intervention. However, a persistent challenge 

in socioeconomic evaluation is the lack of high-quality baseline data, which undermines the reliability of 

causal estimates [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Propensity score (PS) methods are widely applied in socioeconomic evaluation to address 

incomplete or missing baseline data. By creating balanced comparison groups, PS methods enable more 

credible causal inference even when baseline information is limited [3]. PS also reduce multidimensional 

covariate information into a single scalar measure, facilitating covariate balance when full baseline data are 

unavailable [4]. As noted by Austin et al. [5], PS approaches are particularly valuable in large-scale 

socioeconomic evaluations where consistent baseline data collection is difficult. Cham and West [6] further 

demonstrated that machine learning (ML) models can improve propensity score estimation (PSE) under 

missing data conditions by capturing nonlinear and nonadditive relationships that traditional logistic 

regression (LR) fails to model effectively. These advantages are especially important in high-dimensional 

socioeconomic datasets [7]. Ensemble methods and deep neural networks (DNNs) have likewise shown 

strong performance in handling missing data and complex covariate structures [7], [8]. 

Recent advances in causal inference extend beyond conventional PSE through the integration of ML 

with frameworks such as double/debiased machine learning (DML), meta-learning approaches (e.g.,  

T-learners, S-learners, X-learners), and heterogeneous treatment effect (HTE) models. These methods enable 

estimation not only of average treatment effects but also of subgroup-specific impacts, which is critical for 

public policy and development programs [9]-[11]. Situating ML-based PSE within this broader causal 

inference landscape highlights its relevance for addressing complex real-world evaluation challenges. 

Despite the growing adoption of ML-based PSE, existing studies remain fragmented, with limited 

synthesis across socioeconomic domains, insufficient comparison across ML model families, and inadequate 

discussion of practical issues such as calibration, fairness, and interpretability. This gap constrains 

researchers' ability to select appropriate ML models for high-dimensional socioeconomic evaluation and 

motivates the need for a comprehensive review. This paper aims to review literature on the viability of ML 

models in predicting and estimating PSs. Specifically, this literature review will focus on the following: 

1. Explore the development of ML model applications in PS analysis. 

2. Highlight the practical implications of ML in predicting PSs for researchers and accreditors in 

socioeconomic evaluation. 

3. Provide a summary of how ML models and PS can improve the effectiveness of socioeconomic 

evaluation. 

 

 

2. LITERATURE REVIEW 

2.1.  Propensity score and its usage 

PS methodology provides a framework for achieving covariate balance in observational studies by 

adjusting for systematic differences between treated and control groups. Estimated PSs are commonly 

applied through stratification into subclasses, matching treated and control units with similar scores, or 

inverse probability of treatment weighting (IPTW), each aiming to approximate randomized experimental 

conditions. To address limitations of traditional parametric models used in PSE, ML algorithms have been 

increasingly adopted to improve flexibility and robustness in modeling complex treatment assignment 

mechanisms [12]. 

PS methods are widely used across disciplines to support causal inference from observational data. 

In healthcare and epidemiology, they are applied to evaluate treatment effectiveness and safety using real-

world data sources such as electronic health records and insurance claims [13]. In social science research, 

PSs are used to assess the impacts of social programs, educational interventions, and workforce training 

initiatives by balancing baseline characteristics between participants and non-participants [14]. Economists 

employ PS analysis to estimate the causal effects of policy interventions, including unemployment benefits, 

minimum wage policies, and development programs, on labor and income outcomes [15]. Beyond these 

areas, PS techniques are increasingly applied in marketing analytics to evaluate advertising and loyalty 

programs [16], as well as in environmental science, public policy evaluation, and other quasi-experimental 

research settings. 

 

2.2.  Various common and conventional methods on getting propensity score 

 The traditional way of estimating PSs mostly uses statistical models, with LR being the most 

common method. LR models the log-odds of treatment assignment as a linear function of the observed 

variables. Once we estimate these PSs, we apply them through several established methods. Stratification, or 

subclassification, involves dividing the study population into groups, often quintiles, based on the estimated 

PSs. We then compare outcomes between treated and control units within each group. The overall treatment 

effect is usually calculated as a weighted average across these groups [17]. 

Matching techniques pair each treated unit with one or more control units that have very similar PSs, 

such as nearest-neighbor matching and caliper matching. This creates a matched sample where covariate 
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distributions are balanced. IPTW assigns weights to everyone based on their PS. Treated units receive a 

weight of *1/e(X)*, while control units get a weight of *1/(1-e(X))*. These weights create a pseudo-

population where the distribution of covariates does not depend on treatment assignment. This allows for 

estimating the average treatment effect in the population (ATE) or the average treatment effect on the treated 

(ATT) through weighted analyses. Although these methods are well-known and widely used in statistical 

software, they rely heavily on correctly specifying the LR model. Misspecification, such as omitting relevant 

confounders or failing to include necessary interaction or non-linear terms, can result in residual confounding 

and biased effect estimates. Additionally, conventional LR finds it challenging to handle high-dimensional 

covariate data [18]. 

 

2.3.  Machine learning and propensity score 

PSs can be estimated using ML algorithms to address limitations of traditional LR, particularly 

under nonlinear, nonadditive, and high-dimensional covariate structures. ML-based approaches offer greater 

flexibility by automatically capturing complex relationships and interactions without requiring explicit model 

specification, and they are generally more effective when many potential confounders are present. However, 

increased model flexibility also introduces risks, as highly complex algorithms—such as DNNs and flexible 

tree ensembles—may overfit treatment assignment models, leading to suboptimal covariate balance and 

biased causal estimates. Consequently, careful model implementation, tuning, and validation are essential 

when applying ML to PSE [19]. 

Tree-based ensemble methods, including gradient boosting machines (GBM) and random forests 

(RF), are among the most commonly used ML approaches for PSE. These methods demonstrate strong 

performance by accommodating nonlinearities and interactions while maintaining robustness through 

aggregation across multiple decision trees [20]. Penalized regression methods, such as Lasso and Ridge 

regression, extend LR by introducing regularization to improve stability in high-dimensional settings. Lasso 

performs variable selection by shrinking some coefficients to zero, enhancing model parsimony, while Ridge 

regression stabilizes estimates by shrinking coefficients without exclusion, which is particularly beneficial 

under multicollinearity [21]. 

Neural networks offer high representational capacity for modeling complex treatment–covariate 

relationships but are less frequently applied in PSE due to their sensitivity to sample size, tuning 

requirements, and risk of overfitting [22]. Their limited interpretability and reliance on extensive 

hyperparameter optimization further complicate validation in applied socioeconomic studies [23]. 

Ensemble learning approaches that combine multiple algorithms through cross-validation—such as 

super learner frameworks integrating LR, GBM, Lasso, and support vector machines—provide a flexible and 

robust alternative to single-model estimation. These methods often outperform individual learners, 

particularly in high-dimensional and heterogeneous datasets, by balancing predictive performance with 

improved covariate balance [19]. 

 

2.4.  Other considerations for ML-based propensity scoring 

 Hyperparameter tuning—such as adjusting learning rate, tree depth, and regularization strength—is 

critical when applying ML to PSE. Techniques such as k-fold cross-validation help control overfitting and 

support covariate balance; however, optimizing treatment assignment prediction accuracy alone is 

insufficient and may even be detrimental to causal validity [24]. 

Regardless of the ML algorithm used, post-estimation assessment of covariate balance between 

treated and control groups remains essential after applying PSs through matching, weighting, or stratification. 

Standard diagnostics include standardized mean differences (SMD), with values below 0.1 typically 

indicating acceptable balance, variance ratios, and visual tools such as love plots. Inadequate balance 

indicates failure of the PS model—irrespective of its complexity—and necessitates model or method 

refinement [5]. Combining ML-based PS methods with a separate outcome regression model enables doubly 

robust estimation, ensuring consistent causal estimates if either the PS model or the outcome model is 

correctly specified [25]. 

Recent literature further emphasizes transparency and fairness in ML-based PSE, particularly in 

socioeconomic applications. Complex ML models may obscure treatment assignment mechanisms, reducing 

interpretability and stakeholder trust. Explainable artificial intelligence (XAI) tools, including SHAP values, 

LIME, and interpretable tree-based models, help clarify model behavior and enhance transparency in policy 

evaluation [26], [27]. Fairness-aware ML approaches additionally support the identification and mitigation of 

biased treatment assignment across demographic subgroups, reducing the risk that PSE reinforces existing 

inequities [28]. These considerations are increasingly critical as ML-based methods gain adoption in 

government and development program evaluations. 
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3. METHODS 

 This review paper focuses on the literature review process. This process involves selecting and 

quantifying existing studies that apply ML models in PS analysis. Therefore, different tools for searching 

scholarly databases are the main materials used. 

 

3.1.  Scope and focus, and search strategy 

This literature review examines the application of ML models in PS analysis, with a specific focus 

on addressing missing baseline data in high-dimensional socioeconomic datasets. The review synthesizes 

peer-reviewed journal articles, conference papers, and related academic studies that evaluate ML–based 

approaches for PSE, methodological implementation, and performance assessment. 

Relevant literature was retrieved from major academic databases, including SCOPUS, Google 

Scholar, IEEE Xplore, SpringerLink, ScienceDirect, and the ACM Digital Library. The Publish or Perish 

(PoP) tool was additionally used to identify supplementary studies. Litmaps was employed to assess source 

relevance and citation connectivity. Search terms were combined systematically to refine retrieval, as 

summarized in Table 1. 

 

 

Table 1. Keywords for searching related literature 
Category Keywords 

PS analysis PS, PS analysis 
ML models ML, ML models, ML algorithms 

Socioeconomic assessment Socioeconomic, socioeconomic assessment, socioeconomic 

evaluation 
High-dimensional data High-dimension data, high dimensional data 

 

 

3.2.  Inclusion and exclusion criteria 

The review prioritizes studies based on relevance and methodological quality. Publications were 

primarily restricted to those released within the last ten years; however, the time frame was extended to up 

to fifteen years when necessary to ensure sufficient coverage of relevant work and maintain 

generalizability. Only peer-reviewed journal articles and reputable conference proceedings published in 

English were included, while non-peer-reviewed sources such as editorials, blog posts, and preprints were 

excluded. 

Eligible studies explicitly examined the use of ML algorithms—including tree ensembles, penalized 

regression, super learner frameworks, and neural networks—for PS analysis. This included applications 

involving PSE, weighting, or matching under both simple and high-dimensional covariate structures. Studies 

applying ML to alternative causal inference methods without a primary focus on propensity modeling, as 

well as those using PSs in less complex evaluation settings, were excluded. 

 

3.3.  Conceptual framework 

This review drew from major scholarly databases, including SCOPUS, Google Scholar, IEEE 

Xplore, SpringerLink, ScienceDirect, and the ACM Digital Library. The study selection process followed the 

PRISMA framework, as illustrated in the PRISMA flowchart adapted from [23] as shown in Figure 1. 

The initial search identified 1,245 records from academic databases and an additional 95 records 

from grey literature and reference lists. After removing 180 duplicates, 1,160 unique records remained for 

title and abstract screening. Of these, 960 records were excluded for failing to meet the review objectives, 

resulting in 200 full-text articles assessed for eligibility. Following full-text evaluation, 85 articles were 

excluded for not applying ML techniques, 35 for lacking a direct focus on PS analysis, and 20 for non-

socioeconomic applications. The final qualitative synthesis therefore included 60 studies. 

 

3.4.  Reporting the review 

The findings were organized in accordance with the stated research objectives. The review process 

followed the PRISMA framework to ensure methodological transparency and reproducibility, thereby 

strengthening the credibility of the selected literature. Study synthesis involved systematic evaluation of 

relevance, methodological approaches, and applications of ML in PS analysis. The review emphasized 

identifying methodological trends, commonly used algorithms, and performance patterns across datasets of 

varying dimensionality, with the objective of highlighting recent advances, methodological gaps, and 

directions for future research at the intersection of ML and causal inference. 
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Figure 1. Literature review process (PRISMA flowchart; [29]) 

 

 

4. RESULTS AND DISCUSSION 

 In evaluating the effectiveness of ML models for predicting and estimating PSs, this review brings 

together 60 research papers from various digital libraries. It shows that no single source was preferred.  

The discussion follows the stated objectives to maintain coherence and relevance. 

 

4.1.  Application of ML models in PSE 

 The review indicates that LR remains one of the most commonly used approaches for estimating 

PSs; however, its widespread application has been accompanied by increased model misspecification,  

which adversely affects the accuracy of treatment probability estimates [30]. To address these limitations, 

more flexible ML–based methods have been increasingly adopted. Across the reviewed studies, ensemble 

learning algorithms and neural networks demonstrated superior performance in achieving covariate balance 

and reducing bias, particularly in high-dimensional socioeconomic datasets [31]. Ensemble methods—

including gradient boosted trees, RFs, and bagged trees—consistently outperformed LR by improving 

covariate balance, reducing bias, and maintaining valid confidence intervals, especially under nonlinear 

covariate structures [31]. DNN further showed strong capability in managing complex high-dimensional 

PSE, often surpassing both LR and other ML approaches in predictive accuracy and stability [32]. 

Classification-based approaches, particularly classification tree analysis (CTA), also emerged as 

effective alternatives for PSE. CTA demonstrated improved accuracy over LR in settings characterized by 

imbalanced covariates, owing to its ability to capture nonadditive effects and variable interactions [33]. 

 

4.2.  Practical implications of ML in predicting propensity score for socioeconomic evaluation 

ML models demonstrate clear advantages over traditional LR in predicting PSs within complex 

socioeconomic datasets, particularly when modeling nonlinear relationships and interactions commonly 

observed in real-world data [34]. In multilevel observational settings, nonparametric ML methods have also 

been shown to outperform parametric LR approaches [35]. Across the reviewed studies, ML-based PSE 
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consistently achieved improved covariate balance, reduced bias, and more stable confidence intervals, 

especially under conditions of nonlinearity and non-additivity [7], [12], [19]. 

Accurate interpretation of treatment effects is central to socioeconomic evaluation. Model 

misspecification—frequently encountered in LR—can distort causal estimates, whereas ML methods 

flexibly capture complex treatment–covariate relationships, thereby reducing bias. With appropriate 

hyperparameter tuning, ML-based approaches improve estimation of treatment probabilities and sample-

level effects [7], [24]. Moreover, integrating ML-based PSE with doubly robust methods, which combine 

propensity modeling with independent outcome regression, provides additional protection against model 

misspecification and enhances the reliability of causal inference [25]. Despite their methodological 

advantages, many empirical studies provide limited reporting on model diagnostics, performance metrics, 

and hyperparameter tuning, underscoring the need for standardized best practices and evaluation 

frameworks in applied socioeconomic research [35]. While ML improves the validity and reliability of 

PSE in high-dimensional settings, its effectiveness depends on careful implementation, consistent 

methodology, and transparent reporting [36]. 

Computational feasibility is also a critical consideration in applied contexts. Socioeconomic 

institutions often face resource constraints, and certain ML approaches—particularly deep learning and large 

ensemble models—require substantial computational resources and tuning effort. Consequently, model 

selection should balance predictive performance with computational cost, implementation complexity, and 

available expertise [12], [37], especially in development agencies and public-sector evaluations. 

 

4.3.  Key findings and synthesis 

ML-based PSE provides substantial methodological and practical advantages over conventional LR, 

particularly in high-dimensional and nonlinear socioeconomic datasets. Across the reviewed studies, ML 

approaches more effectively capture complex treatment–covariate relationships, reduce model 

misspecification, and achieve improved covariate balance. Ensemble methods, including RFs, GBMs, and 

bagged trees, consistently outperform traditional parametric models in predictive accuracy and bias reduction 

[31], [34], [38], [39]. DNNs demonstrate strong performance in highly complex and multivariate settings, 

highlighting their adaptability to large and heterogeneous datasets and their capacity to model nonadditive 

effects and high-order interactions [32], [39], [40]. 

Integrating ML-based PSE with doubly robust estimation methods further strengthens causal 

inference by providing protection against misspecification of either the treatment or outcome model [22], 

[28]. In multilevel and hierarchical observational settings, nonparametric ML approaches outperform 

standard LR in achieving covariate balance and reducing bias, underscoring their value for complex 

socioeconomic evaluations [35]. Causal tree–based algorithms are particularly effective in settings with 

severe covariate imbalance, a common feature of socioeconomic data, due to their ability to capture 

nonlinearities and heterogeneous assignment mechanisms [33]. 

Collectively, these findings reinforce the consensus that ML-based PSE offers a more flexible, 

accurate, and robust foundation for treatment assignment modeling than traditional approaches [38], [39].  

Beyond methodological performance, ML-based PSE supports equity-focused evaluation through 

integration with heterogeneous treatment effect models, enabling identification of differential intervention 

impacts across subgroups defined by gender, socioeconomic status, or geographic context [40]–[43]. 

Effective application of these methods nevertheless requires careful implementation, including 

hyperparameter tuning, model calibration, and rigorous diagnostic assessment. Transparent reporting 

remains critical in high-dimensional settings to ensure interpretability, reproducibility, and policy 

relevance, as emphasized in recent methodological guidance [44]–[47]. When applied with appropriate 

methodological and ethical safeguards, ML-based PSE enhances the rigor, credibility, and precision of 

socioeconomic evaluations [3], [12], [48]. 

This review contributes by synthesizing ML-PSE evidence across public health, economics, 

education, and social policy. Unlike prior work focused on individual algorithms, it compares performance 

patterns across multiple ML families and socioeconomic contexts, extending earlier analyses by Cannas and 

Arpino [34], Tu [31], and Guzman-Alvarez et al. [7]. It further integrates emerging perspectives on fairness-

aware ML [26], explainable artificial intelligence [27], and multilevel modeling [35], providing clearer 

guidance on when and how ML-based methods outperform traditional PS approaches in policy-relevant 

settings [38], [49], [50]. The performance analysis of models used in propensity estimation is summarized in 

Table 2. 
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Table 2. Analysis of model performance used in propensity estimation 
Author/s Best model Performance Remarks 

Tu [31] Gradient boosting 
(GBM) 

Lowest MSE across all 
simulation scenarios 

GBM consistently outperformed RF, bagging, and 
multinomial LR in generalized PSE. 

Cannas and 

Arpino [34] 

RF (PSW) Best ASAM (covariate 

balance); top bias 
reduction in PSW 

RF produced strongest overall balance; NN also strong 

but slightly below RF. 

Ferri-García and 

Rueda [28] 

RF (large sample) / LR 

(small sample) 

Lowest MSE in most 

conditions (RF) 

RF removed most bias as volunteer sample size 

increased; GBM second-best in large samples. 
Greene et al. [20] ML-based GPS  

(CDF method) 

Bias = –0.045 to 0.028 Very low absolute bias; excellent stratification quality 

for ordinal exposures. 

Šinkovec et al. 
[21] 

Ridge LR (tuned) Lowest RMSE among 
compared methods 

Tuning improved stability and reduced estimation 
error in small/sparse samples. 

Zou et al. [8] Kernel ML  

(proposed method) 

ATE mean ≈ 0.500,  

CI coverage = 95.0% 

Most accurate and stable ATE estimates; far better 

coverage than RF or LASSO. 
Ferri-García and 

Rueda [28] 

GBM  

(with all predictors) 

Lowest MSE for large 

samples 

GBM achieved second-best MSE overall and strongest 

when many predictors used. 

Guo et al. [37] DNNs Most stable PS 

predictions 

DNNs outperform LR and kernel methods in high-

dimensional nonlinear data. 

Salditt and 

Nestler [35] 

BART-RE  

(super learner) 

SL weight = 0.47–0.60 

(highest) 

BART-RE consistently dominates SL; indicates best 

performance in multilevel settings. 

 

 

5. CONCLUSION AND RECOMMENDATIONS 

This review synthesized evidence from 60 studies applying ML-PSE in socioeconomic evaluation. 

Across diverse empirical and simulated contexts, the findings consistently indicate that ML-PSE provides 

substantial methodological advantages over traditional logistic regression, particularly when data exhibit 

nonlinearity, high dimensionality, and incomplete baseline information. Ensemble learning approaches, 

including RF, gradient boosting, and bagged trees, repeatedly demonstrated superior performance in 

achieving covariate balance, reducing bias, and improving predictive accuracy. DNNs further showed strong 

capacity to model complex, nonadditive relationships and frequently outperformed conventional methods in 

challenging socioeconomic settings, underscoring the potential of flexible learning architectures for causal 

adjustment in complex policy data. 

Despite these advantages, the review highlights that successful implementation of ML-PSE depends 

critically on careful methodological practice. Appropriate hyperparameter tuning, model calibration, 

diagnostic assessment, and transparent reporting are essential to ensure robustness and credibility of results. 

Interpretability remains a key challenge, particularly for highly complex models such as DNNs; however, 

advances in explainable artificial intelligence and fairness-aware ML provide promising pathways to address 

transparency and accountability concerns. These considerations are especially salient in public policy and 

socioeconomic research, where equity, trust, and interpretability are integral to decision-making. Overall, 

gradient boosting methods, RF, DNNs, and Bayesian additive regression trees emerged as the most reliable 

approaches for improving bias reduction, covariate balance, and coverage probabilities in high-dimensional 

socioeconomic data, supporting the use of ML-PSE as a robust alternative to traditional methods under 

complex data-generating conditions. 

The review also identifies important avenues for future research. Greater empirical validation using 

real-world socioeconomic datasets is needed, as much of the existing evidence remains simulation-based. 

Integrating ML-PSE with heterogeneous treatment effect modeling frameworks, such as causal forests and 

meta-learners, offers significant potential to uncover differential impacts across population subgroups defined 

by gender, income, or geography, thereby supporting more equitable and targeted policy design. Further 

development of fairness-aware PS methods is warranted to mitigate algorithmic bias in treatment assignment, 

alongside systematic evaluation of computational efficiency and scalability to inform adoption in resource-

constrained institutional settings. Finally, the establishment of standardized reporting guidelines and best-

practice frameworks will be essential to promote transparency, reproducibility, and responsible use of ML-

PSE as these methods continue to gain prominence in socioeconomic evaluation. 
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