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1. INTRODUCTION

Impact evaluations assess the causal effects of interventions by comparing observed outcomes with
a counterfactual scenario-what would have occurred in the absence of the intervention. The difference
between these outcomes represents the intervention's impact, which may be measured at multiple levels and
is not limited to long-term effects, contrary to common assumptions. Nonetheless, impact evaluation remains
the primary approach capable of providing credible evidence of long-term outcomes. When properly
designed and executed, impact evaluations can inform policy decisions, shape public opinion, and improve
program operations [1].

Impact evaluation is embedded within the broader shift toward evidence-based policymaking, which
emphasizes outcomes over inputs in public policy and organizational decision-making. This results-oriented
approach supports the monitoring of national and international targets and strengthens accountability, budget
allocation, and program design [1]. By providing credible evidence of performance, impact evaluations
determine whether programs have achieved or are achieving their intended objectives and quantify
improvements in beneficiaries' quality of life attributable to the intervention. However, a persistent challenge
in socioeconomic evaluation is the lack of high-quality baseline data, which undermines the reliability of
causal estimates [2].
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Propensity score (PS) methods are widely applied in socioeconomic evaluation to address
incomplete or missing baseline data. By creating balanced comparison groups, PS methods enable more
credible causal inference even when baseline information is limited [3]. PS also reduce multidimensional
covariate information into a single scalar measure, facilitating covariate balance when full baseline data are
unavailable [4]. As noted by Austin et al. [5], PS approaches are particularly valuable in large-scale
socioeconomic evaluations where consistent baseline data collection is difficult. Cham and West [6] further
demonstrated that machine learning (ML) models can improve propensity score estimation (PSE) under
missing data conditions by capturing nonlinear and nonadditive relationships that traditional logistic
regression (LR) fails to model effectively. These advantages are especially important in high-dimensional
socioeconomic datasets [7]. Ensemble methods and deep neural networks (DNNs) have likewise shown
strong performance in handling missing data and complex covariate structures [7], [8].

Recent advances in causal inference extend beyond conventional PSE through the integration of ML
with frameworks such as double/debiased machine learning (DML), meta-learning approaches (e.g.,
T-learners, S-learners, X-learners), and heterogeneous treatment effect (HTE) models. These methods enable
estimation not only of average treatment effects but also of subgroup-specific impacts, which is critical for
public policy and development programs [9]-[11]. Situating ML-based PSE within this broader causal
inference landscape highlights its relevance for addressing complex real-world evaluation challenges.

Despite the growing adoption of ML-based PSE, existing studies remain fragmented, with limited
synthesis across socioeconomic domains, insufficient comparison across ML model families, and inadequate
discussion of practical issues such as calibration, fairness, and interpretability. This gap constrains
researchers' ability to select appropriate ML models for high-dimensional socioeconomic evaluation and
motivates the need for a comprehensive review. This paper aims to review literature on the viability of ML
models in predicting and estimating PSs. Specifically, this literature review will focus on the following:

1. Explore the development of ML model applications in PS analysis.

2. Highlight the practical implications of ML in predicting PSs for researchers and accreditors in
socioeconomic evaluation.

3. Provide a summary of how ML models and PS can improve the effectiveness of socioeconomic
evaluation.

2.  LITERATURE REVIEW
2.1. Propensity score and its usage

PS methodology provides a framework for achieving covariate balance in observational studies by
adjusting for systematic differences between treated and control groups. Estimated PSs are commonly
applied through stratification into subclasses, matching treated and control units with similar scores, or
inverse probability of treatment weighting (IPTW), each aiming to approximate randomized experimental
conditions. To address limitations of traditional parametric models used in PSE, ML algorithms have been
increasingly adopted to improve flexibility and robustness in modeling complex treatment assignment
mechanisms [12].

PS methods are widely used across disciplines to support causal inference from observational data.
In healthcare and epidemiology, they are applied to evaluate treatment effectiveness and safety using real-
world data sources such as electronic health records and insurance claims [13]. In social science research,
PSs are used to assess the impacts of social programs, educational interventions, and workforce training
initiatives by balancing baseline characteristics between participants and non-participants [14]. Economists
employ PS analysis to estimate the causal effects of policy interventions, including unemployment benefits,
minimum wage policies, and development programs, on labor and income outcomes [15]. Beyond these
areas, PS techniques are increasingly applied in marketing analytics to evaluate advertising and loyalty
programs [16], as well as in environmental science, public policy evaluation, and other quasi-experimental
research settings.

2.2. Various common and conventional methods on getting propensity score

The traditional way of estimating PSs mostly uses statistical models, with LR being the most
common method. LR models the log-odds of treatment assignment as a linear function of the observed
variables. Once we estimate these PSs, we apply them through several established methods. Stratification, or
subclassification, involves dividing the study population into groups, often quintiles, based on the estimated
PSs. We then compare outcomes between treated and control units within each group. The overall treatment
effect is usually calculated as a weighted average across these groups [17].

Matching techniques pair each treated unit with one or more control units that have very similar PSs,
such as nearest-neighbor matching and caliper matching. This creates a matched sample where covariate
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distributions are balanced. IPTW assigns weights to everyone based on their PS. Treated units receive a
weight of *1/e(X)*, while control units get a weight of *1/(1-e(X))*. These weights create a pseudo-
population where the distribution of covariates does not depend on treatment assignment. This allows for
estimating the average treatment effect in the population (ATE) or the average treatment effect on the treated
(ATT) through weighted analyses. Although these methods are well-known and widely used in statistical
software, they rely heavily on correctly specifying the LR model. Misspecification, such as omitting relevant
confounders or failing to include necessary interaction or non-linear terms, can result in residual confounding
and biased effect estimates. Additionally, conventional LR finds it challenging to handle high-dimensional
covariate data [18].

2.3. Machine learning and propensity score

PSs can be estimated using ML algorithms to address limitations of traditional LR, particularly
under nonlinear, nonadditive, and high-dimensional covariate structures. ML-based approaches offer greater
flexibility by automatically capturing complex relationships and interactions without requiring explicit model
specification, and they are generally more effective when many potential confounders are present. However,
increased model flexibility also introduces risks, as highly complex algorithms—such as DNNs and flexible
tree ensembles—may overfit treatment assignment models, leading to suboptimal covariate balance and
biased causal estimates. Consequently, careful model implementation, tuning, and validation are essential
when applying ML to PSE [19].

Tree-based ensemble methods, including gradient boosting machines (GBM) and random forests
(RF), are among the most commonly used ML approaches for PSE. These methods demonstrate strong
performance by accommodating nonlinearities and interactions while maintaining robustness through
aggregation across multiple decision trees [20]. Penalized regression methods, such as Lasso and Ridge
regression, extend LR by introducing regularization to improve stability in high-dimensional settings. Lasso
performs variable selection by shrinking some coefficients to zero, enhancing model parsimony, while Ridge
regression stabilizes estimates by shrinking coefficients without exclusion, which is particularly beneficial
under multicollinearity [21].

Neural networks offer high representational capacity for modeling complex treatment—covariate
relationships but are less frequently applied in PSE due to their sensitivity to sample size, tuning
requirements, and risk of overfitting [22]. Their limited interpretability and reliance on extensive
hyperparameter optimization further complicate validation in applied socioeconomic studies [23].

Ensemble learning approaches that combine multiple algorithms through cross-validation—such as
super learner frameworks integrating LR, GBM, Lasso, and support vector machines—provide a flexible and
robust alternative to single-model estimation. These methods often outperform individual learners,
particularly in high-dimensional and heterogeneous datasets, by balancing predictive performance with
improved covariate balance [19].

2.4. Other considerations for ML-based propensity scoring

Hyperparameter tuning—such as adjusting learning rate, tree depth, and regularization strength—is
critical when applying ML to PSE. Techniques such as k-fold cross-validation help control overfitting and
support covariate balance; however, optimizing treatment assignment prediction accuracy alone is
insufficient and may even be detrimental to causal validity [24].

Regardless of the ML algorithm used, post-estimation assessment of covariate balance between
treated and control groups remains essential after applying PSs through matching, weighting, or stratification.
Standard diagnostics include standardized mean differences (SMD), with values below 0.1 typically
indicating acceptable balance, variance ratios, and visual tools such as love plots. Inadequate balance
indicates failure of the PS model—irrespective of its complexity—and necessitates model or method
refinement [5]. Combining ML-based PS methods with a separate outcome regression model enables doubly
robust estimation, ensuring consistent causal estimates if either the PS model or the outcome model is
correctly specified [25].

Recent literature further emphasizes transparency and fairness in ML-based PSE, particularly in
socioeconomic applications. Complex ML models may obscure treatment assignment mechanisms, reducing
interpretability and stakeholder trust. Explainable artificial intelligence (XAl) tools, including SHAP values,
LIME, and interpretable tree-based models, help clarify model behavior and enhance transparency in policy
evaluation [26], [27]. Fairness-aware ML approaches additionally support the identification and mitigation of
biased treatment assignment across demographic subgroups, reducing the risk that PSE reinforces existing
inequities [28]. These considerations are increasingly critical as ML-based methods gain adoption in
government and development program evaluations.
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3. METHODS

This review paper focuses on the literature review process. This process involves selecting and
quantifying existing studies that apply ML models in PS analysis. Therefore, different tools for searching
scholarly databases are the main materials used.

3.1. Scope and focus, and search strategy

This literature review examines the application of ML models in PS analysis, with a specific focus
on addressing missing baseline data in high-dimensional socioeconomic datasets. The review synthesizes
peer-reviewed journal articles, conference papers, and related academic studies that evaluate ML-based
approaches for PSE, methodological implementation, and performance assessment.

Relevant literature was retrieved from major academic databases, including SCOPUS, Google
Scholar, IEEE Xplore, SpringerLink, ScienceDirect, and the ACM Digital Library. The Publish or Perish
(PoP) tool was additionally used to identify supplementary studies. Litmaps was employed to assess source
relevance and citation connectivity. Search terms were combined systematically to refine retrieval, as
summarized in Table 1.

Table 1. Keywords for searching related literature

Category Keywords
PS analysis PS, PS analysis
ML models ML, ML models, ML algorithms
Socioeconomic assessment  Socioeconomic, socioeconomic assessment, socioeconomic
evaluation

High-dimensional data High-dimension data, high dimensional data

3.2. Inclusion and exclusion criteria

The review prioritizes studies based on relevance and methodological quality. Publications were
primarily restricted to those released within the last ten years; however, the time frame was extended to up
to fifteen years when necessary to ensure sufficient coverage of relevant work and maintain
generalizability. Only peer-reviewed journal articles and reputable conference proceedings published in
English were included, while non-peer-reviewed sources such as editorials, blog posts, and preprints were
excluded.

Eligible studies explicitly examined the use of ML algorithms—including tree ensembles, penalized
regression, super learner frameworks, and neural networks—for PS analysis. This included applications
involving PSE, weighting, or matching under both simple and high-dimensional covariate structures. Studies
applying ML to alternative causal inference methods without a primary focus on propensity modeling, as
well as those using PSs in less complex evaluation settings, were excluded.

3.3. Conceptual framework

This review drew from major scholarly databases, including SCOPUS, Google Scholar, IEEE
Xplore, SpringerLink, ScienceDirect, and the ACM Digital Library. The study selection process followed the
PRISMA framework, as illustrated in the PRISMA flowchart adapted from [23] as shown in Figure 1.

The initial search identified 1,245 records from academic databases and an additional 95 records
from grey literature and reference lists. After removing 180 duplicates, 1,160 unique records remained for
title and abstract screening. Of these, 960 records were excluded for failing to meet the review objectives,
resulting in 200 full-text articles assessed for eligibility. Following full-text evaluation, 85 articles were
excluded for not applying ML techniques, 35 for lacking a direct focus on PS analysis, and 20 for non-
socioeconomic applications. The final qualitative synthesis therefore included 60 studies.

3.4. Reporting the review

The findings were organized in accordance with the stated research objectives. The review process
followed the PRISMA framework to ensure methodological transparency and reproducibility, thereby
strengthening the credibility of the selected literature. Study synthesis involved systematic evaluation of
relevance, methodological approaches, and applications of ML in PS analysis. The review emphasized
identifying methodological trends, commonly used algorithms, and performance patterns across datasets of
varying dimensionality, with the objective of highlighting recent advances, methodological gaps, and
directions for future research at the intersection of ML and causal inference.
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Figure 1. Literature review process (PRISMA flowchart; [29])

4. RESULTS AND DISCUSSION

In evaluating the effectiveness of ML models for predicting and estimating PSs, this review brings
together 60 research papers from various digital libraries. It shows that no single source was preferred.
The discussion follows the stated objectives to maintain coherence and relevance.

4.1. Application of ML models in PSE

The review indicates that LR remains one of the most commonly used approaches for estimating
PSs; however, its widespread application has been accompanied by increased model misspecification,
which adversely affects the accuracy of treatment probability estimates [30]. To address these limitations,
more flexible ML—based methods have been increasingly adopted. Across the reviewed studies, ensemble
learning algorithms and neural networks demonstrated superior performance in achieving covariate balance
and reducing bias, particularly in high-dimensional socioeconomic datasets [31]. Ensemble methods—
including gradient boosted trees, RFs, and bagged trees—consistently outperformed LR by improving
covariate balance, reducing bias, and maintaining valid confidence intervals, especially under nonlinear
covariate structures [31]. DNN further showed strong capability in managing complex high-dimensional
PSE, often surpassing both LR and other ML approaches in predictive accuracy and stability [32].

Classification-based approaches, particularly classification tree analysis (CTA), also emerged as
effective alternatives for PSE. CTA demonstrated improved accuracy over LR in settings characterized by
imbalanced covariates, owing to its ability to capture nonadditive effects and variable interactions [33].

4.2. Practical implications of ML in predicting propensity score for socioeconomic evaluation

ML models demonstrate clear advantages over traditional LR in predicting PSs within complex
socioeconomic datasets, particularly when modeling nonlinear relationships and interactions commonly
observed in real-world data [34]. In multilevel observational settings, nonparametric ML methods have also
been shown to outperform parametric LR approaches [35]. Across the reviewed studies, ML-based PSE
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consistently achieved improved covariate balance, reduced bias, and more stable confidence intervals,
especially under conditions of nonlinearity and non-additivity [7], [12], [19].

Accurate interpretation of treatment effects is central to socioeconomic evaluation. Model
misspecification—frequently encountered in LR—can distort causal estimates, whereas ML methods
flexibly capture complex treatment—covariate relationships, thereby reducing bias. With appropriate
hyperparameter tuning, ML-based approaches improve estimation of treatment probabilities and sample-
level effects [7], [24]. Moreover, integrating ML-based PSE with doubly robust methods, which combine
propensity modeling with independent outcome regression, provides additional protection against model
misspecification and enhances the reliability of causal inference [25]. Despite their methodological
advantages, many empirical studies provide limited reporting on model diagnostics, performance metrics,
and hyperparameter tuning, underscoring the need for standardized best practices and evaluation
frameworks in applied socioeconomic research [35]. While ML improves the validity and reliability of
PSE in high-dimensional settings, its effectiveness depends on careful implementation, consistent
methodology, and transparent reporting [36].

Computational feasibility is also a critical consideration in applied contexts. Socioeconomic
institutions often face resource constraints, and certain ML approaches—particularly deep learning and large
ensemble models—require substantial computational resources and tuning effort. Consequently, model
selection should balance predictive performance with computational cost, implementation complexity, and
available expertise [12], [37], especially in development agencies and public-sector evaluations.

4.3. Key findings and synthesis

ML-based PSE provides substantial methodological and practical advantages over conventional LR,
particularly in high-dimensional and nonlinear socioeconomic datasets. Across the reviewed studies, ML
approaches more effectively capture complex treatment—covariate relationships, reduce model
misspecification, and achieve improved covariate balance. Ensemble methods, including RFs, GBMs, and
bagged trees, consistently outperform traditional parametric models in predictive accuracy and bias reduction
[31], [34], [38], [39]. DNNs demonstrate strong performance in highly complex and multivariate settings,
highlighting their adaptability to large and heterogeneous datasets and their capacity to model nonadditive
effects and high-order interactions [32], [39], [40].

Integrating ML-based PSE with doubly robust estimation methods further strengthens causal
inference by providing protection against misspecification of either the treatment or outcome model [22],
[28]. In multilevel and hierarchical observational settings, nonparametric ML approaches outperform
standard LR in achieving covariate balance and reducing bias, underscoring their value for complex
socioeconomic evaluations [35]. Causal tree—based algorithms are particularly effective in settings with
severe covariate imbalance, a common feature of socioeconomic data, due to their ability to capture
nonlinearities and heterogeneous assignment mechanisms [33].

Collectively, these findings reinforce the consensus that ML-based PSE offers a more flexible,
accurate, and robust foundation for treatment assignment modeling than traditional approaches [38], [39].
Beyond methodological performance, ML-based PSE supports equity-focused evaluation through
integration with heterogeneous treatment effect models, enabling identification of differential intervention
impacts across subgroups defined by gender, socioeconomic status, or geographic context [40]-[43].
Effective application of these methods nevertheless requires careful implementation, including
hyperparameter tuning, model calibration, and rigorous diagnostic assessment. Transparent reporting
remains critical in high-dimensional settings to ensure interpretability, reproducibility, and policy
relevance, as emphasized in recent methodological guidance [44]-[47]. When applied with appropriate
methodological and ethical safeguards, ML-based PSE enhances the rigor, credibility, and precision of
socioeconomic evaluations [3], [12], [48].

This review contributes by synthesizing ML-PSE evidence across public health, economics,
education, and social policy. Unlike prior work focused on individual algorithms, it compares performance
patterns across multiple ML families and socioeconomic contexts, extending earlier analyses by Cannas and
Arpino [34], Tu [31], and Guzman-Alvarez et al. [7]. It further integrates emerging perspectives on fairness-
aware ML [26], explainable artificial intelligence [27], and multilevel modeling [35], providing clearer
guidance on when and how ML-based methods outperform traditional PS approaches in policy-relevant
settings [38], [49], [50]. The performance analysis of models used in propensity estimation is summarized in
Table 2.
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Table 2. Analysis of model performance used in propensity estimation

Author/s Best model Performance Remarks
Tu [31] Gradient boosting Lowest MSE across all GBM consistently outperformed RF, bagging, and
(GBM) simulation scenarios multinomial LR in generalized PSE.
Cannas and RF (PSW) Best ASAM (covariate RF produced strongest overall balance; NN also strong
Arpino [34] balance); top bias but slightly below RF.

Ferri-Garcia and
Rueda [28]
Greene et al. [20]

Sinkovec et al.
[21]
Zouetal. [8]

Ferri-Garcia and
Rueda [28]
Guo et al. [37]

Salditt and
Nestler [35]

RF (large sample) / LR
(small sample)
ML-based GPS
(CDF method)

Ridge LR (tuned)

Kernel ML
(proposed method)
GBM
(with all predictors)
DNNs

BART-RE
(super learner)

reduction in PSW
Lowest MSE in most
conditions (RF)
Bias = -0.045 to 0.028

Lowest RMSE among
compared methods
ATE mean = 0.500,

Cl coverage = 95.0%

Lowest MSE for large

samples
Most stable PS
predictions

SL weight = 0.47-0.60

(highest)

RF removed most bias as volunteer sample size
increased; GBM second-best in large samples.

Very low absolute bias; excellent stratification quality
for ordinal exposures.

Tuning improved stability and reduced estimation
error in small/sparse samples.

Most accurate and stable ATE estimates; far better
coverage than RF or LASSO.

GBM achieved second-best MSE overall and strongest
when many predictors used.

DNNs outperform LR and kernel methods in high-
dimensional nonlinear data.

BART-RE consistently dominates SL; indicates best
performance in multilevel settings.

5. CONCLUSION AND RECOMMENDATIONS

This review synthesized evidence from 60 studies applying ML-PSE in socioeconomic evaluation.
Across diverse empirical and simulated contexts, the findings consistently indicate that ML-PSE provides
substantial methodological advantages over traditional logistic regression, particularly when data exhibit
nonlinearity, high dimensionality, and incomplete baseline information. Ensemble learning approaches,
including RF, gradient boosting, and bagged trees, repeatedly demonstrated superior performance in
achieving covariate balance, reducing bias, and improving predictive accuracy. DNNs further showed strong
capacity to model complex, nonadditive relationships and frequently outperformed conventional methods in
challenging socioeconomic settings, underscoring the potential of flexible learning architectures for causal
adjustment in complex policy data.

Despite these advantages, the review highlights that successful implementation of ML-PSE depends
critically on careful methodological practice. Appropriate hyperparameter tuning, model calibration,
diagnostic assessment, and transparent reporting are essential to ensure robustness and credibility of results.
Interpretability remains a key challenge, particularly for highly complex models such as DNNs; however,
advances in explainable artificial intelligence and fairness-aware ML provide promising pathways to address
transparency and accountability concerns. These considerations are especially salient in public policy and
socioeconomic research, where equity, trust, and interpretability are integral to decision-making. Overall,
gradient boosting methods, RF, DNNs, and Bayesian additive regression trees emerged as the most reliable
approaches for improving bias reduction, covariate balance, and coverage probabilities in high-dimensional
socioeconomic data, supporting the use of ML-PSE as a robust alternative to traditional methods under
complex data-generating conditions.

The review also identifies important avenues for future research. Greater empirical validation using
real-world socioeconomic datasets is needed, as much of the existing evidence remains simulation-based.
Integrating ML-PSE with heterogeneous treatment effect modeling frameworks, such as causal forests and
meta-learners, offers significant potential to uncover differential impacts across population subgroups defined
by gender, income, or geography, thereby supporting more equitable and targeted policy design. Further
development of fairness-aware PS methods is warranted to mitigate algorithmic bias in treatment assignment,
alongside systematic evaluation of computational efficiency and scalability to inform adoption in resource-
constrained institutional settings. Finally, the establishment of standardized reporting guidelines and best-
practice frameworks will be essential to promote transparency, reproducibility, and responsible use of ML-
PSE as these methods continue to gain prominence in socioeconomic evaluation.
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