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ABSTRACT

The fast expansion of internet of things (IoT) devices presents a more compli-
cated scenario for maintaining a stable quality of service (QoS), which would
guarantee the network’s dependable operation. The emergence of increasingly
complex applications that call for additional devices makes this even more cru-
cial. Adaptive intelligence solutions that guarantee optimal network behavior
are therefore required. This paper presents a hybrid optimized solution for a
three-layer IoT network that models the application, network, and perception
layers of an IoT network using machine learning and fuzzy logic (FL). This
method guarantees optimal QoS prediction with improved network adaptability
by using fuzzy membership parameters. When the number of devices increases
from 100 to 1,500, FLGA maintains an average QoS of 95% to 87%, while
FL maintains 84% and RANDOM maintains 79%. At the application level,
genetic algorithm (GA) continues to outperform RANDOM by 15.57% and FL
by 6.32%. The goal of this paper is to provide a solid network solution that could
enhance the consistency of QoS performance in order to combat the increasingly
complex scenario of an IoT network.
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1. INTRODUCTION
The internet of things (IoT) is a rapidly evolving technological paradigm built on interconnected de-

vices—such as sensors, smartphones, and radio-frequency identification (RFID) tags that communicate via the
Internet. Ensuring high quality of service (QoS) is essential in critical application domains such as agriculture,
transportation, healthcare, and manufacturing [1], [2]. However, maintaining QoS in IoT environments remains
a significant challenge. These systems operate across multiple layers perception (sensors), network, and appli-
cation each introducing distinct complexities [3], [4]. As the number of IoT devices increases, ensuring smooth
and reliable communication becomes increasingly difficult. Key challenges include heterogeneous standards,
network congestion, and signal degradation, all of which can impede optimal system performance [5]. Recent
studies suggest that hybrid metaheuristic methods typically outperform single-method approaches in optimiz-
ing IoT system performance [6], [7]. Traditional cloud-based architectures, where computation is centralized,
often fail to meet the stringent real-time requirements of delay-sensitive applications. Multi-access edge com-
puting (MEC), which processes data closer to its source, mitigates latency issues [8], maintaining real-time
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QoS under dynamic network conditions is challenging. Different IoT domains have varied requirements; for
example, smart healthcare and urban monitoring prioritize low network-layer latency for timely critical signals
[9], [10], while smart transportation and city management require fast data processing to support safety, emer-
gency response, and traffic control, necessitating a holistic QoS strategy [11]-[13]. Security-aware QoS metrics
(e.g., encryption overhead, authentication delay) are not considered here, but the proposed fuzzy framework
could accommodate them in future extensions.

Fuzzy logic (FL) and metaheuristic hybrids show strong potential for addressing the complexities of
modern IoT environments. Approaches such as fuzzy-based multi-criteria decision-making and metaheuristic
optimization dynamically balance QoS metrics, including execution time, energy consumption, and communi-
cation delays, in IoT and fog–cloud systems [14], [15]. Metaheuristic-based techniques, including ant colony
optimization and improved seagull optimization, enable adaptive task scheduling and controller placement to
enhance load balancing and energy efficiency across heterogeneous IoT layers [16], [17]. In wireless sensor
networks (WSNs), interval Type-2 fuzzy clustering combined with heuristic sleep scheduling extends network
lifetime by managing uncertainties in node energy levels and fluctuating workloads [18], [19]. Furthermore,
hybrid metaheuristic frameworks, such as the combination of genetic algorithms (GA) with particle swarm op-
timization (PSO), improve routing reliability and throughput in dynamic IoT networks [20], [21]. Integrating
software-defined networking (SDN) with heuristic feature selection enhances traffic classification and real-time
flow management by optimizing the placement of controllers [22], [23]. Finally, hybrid fuzzy-metaheuristic
scheduling methods optimize task allocation, reducing latency and maintaining QoS in latency-sensitive edge
computing scenarios by effectively navigating the trade-off between computational cost and accuracy [24],
[25]. Despite advances, most existing methods focus on single QoS metrics or individual layers, with limited
attention to multi-layer optimization under high device density, highlighting the need for scalable IoT QoS
strategies.

To address this, we propose a holistic, multi-layer framework that simultaneously evaluates and tunes
QoS parameters across perception, network, and application layers. By integrating FL interpretability with GA-
based membership function tuning, the framework improves adaptability and reduces root mean square error
(RMSE) under varying IoT loads. The GA adjusts fuzzy system parameters based on observed performance,
acting as a learning mechanism that enables adaptation to complex network dynamics. This approach addresses
high device density and cross-layer dependencies, providing a comprehensive solution for end-to-end QoS
enhancement in scalable IoT systems. The paper is organized as follows: section 2 presents the system model,
section 3 details the proposed approach, section 4 presents the results, and section 5 concludes the study.

2. THE PROPOSED SYSTEM MODEL AND PROBLEM FORMULATION
The IoT architecture, depicted in Figure 1, is structured into three primary layers. The perception

layer is responsible for data acquisition from physical devices, including sensors, RFID tags, and actuators.
The network Layer facilitates data transmission through various communication protocols such as Wi-Fi,
Ethernet, ZigBee, and cellular networks (4G/5G). The application layer processes the transmitted data to deliver
specific services to end-users.

Figure 1. IoT three-layer architecture

A new hybrid model based on machine learning and fuzzy logic for QoS enhancing in IoT (Oussama Lagnfdi)



626 ❒ ISSN: 2502-4752

High QoS is critical in a three-layer IoT system. Each layer has specific requirements: the perception
layer must ensure accurate and timely data acquisition; the network layer should maintain low latency and
minimal packet loss; and the application layer must deliver reliable, scalable services. The heterogeneous and
dynamic nature of IoT environments introduces uncertainty, resulting in a complex multi-objective optimiza-
tion problem under stochastic conditions. To address this, a fuzzy inference system aggregates layer-specific
metrics—such as latency, throughput, and accuracy—into a unified QoS score, normalized from 0% to 100%.

QoS =

∑
i xi · µ(xi)∑

i µ(xi)
(1)

Here, xi denotes possible QoS outcomes and µ(xi) represents the degree of membership for each outcome.
This approach consolidates multiple performance metrics into a single score. Maintaining high QoS across all
layers therefore requires an adaptive and flexible optimization framework, making the integration of FL with
GA a suitable solution.

3. METHOD
The proposed system, illustrated in Figure 2, is designed to enhance QoS across the application,

network, and perception layers of an IoT environment. Each layer is evaluated using a dedicated set of QoS
metrics to ensure reliability, efficient communication, and scalable performance under increasing device density
and data traffic.
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Figure 2. Multi-layer QoS optimization model

The overall QoS is formulated as a weighted aggregation of the application, network, and perception
layer QoS values,

Qtotal = w1Qapp + w2Qnet + w3Qperc (2)

where equal importance is assumed for all layers, i.e., w1 = w2 = w3 = 1
3 . A hybrid fuzzy–genetic optimiza-

tion framework is adopted, in which the GA is guided by the RMSE, to improve the aggregated QoS across all
IoT layers.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

From a computational standpoint, let P represent the population size, G the number of generations,
n the number of training samples, and R the number of fuzzy rules or membership function parameters.
The evaluation of a single chromosome requires executing the fuzzy inference mechanism over all n samples,
leading to a computational complexity of O(n×R). As the GA evaluates P individuals in each generation, the
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resulting per-generation computational cost is O(P × n × R). Consequently, after G generations, the overall
optimization complexity can be expressed as O(P ×G× n×R). In practical deployments, this tuning proce-
dure is performed offline or at scheduled update intervals on gateway or server-level nodes, whereas the online
fuzzy inference process incurs an approximately constant execution time per request. As a result, the proposed
GA–fuzzy framework remains computationally efficient and scalable for large-scale IoT systems. Based on the
RMSE-based fitness function defined in (3), a genetic algorithm is employed to tune the fuzzy QoS parameters.
The complete optimization procedure is described in Algorithm 1.

Algorithm 1. Genetic algorithm for fuzzy QoS tuning
Require: IoT Architecture, N = 50, G = 100, Pc = 0.8, Pm = 0.01
Ensure: Optimized Fuzzy Parameters (Best Chromosome)
1: Initialize population P with 50 random chromosomes
2: for generation g = 1 to 100 do
3: Fitness: Evaluate RMSE for each Ci ∈ P via PureEdgeSim
4: Calculate Fitness(Ci)← 1/(1 +RMSE)
5: Selection: Perform Tournament Selection for elite parents
6: Crossover: Apply Multi-point Crossover (Pc = 0.8)
7: Mutation: Mutate offspring chromosomes (Pm = 0.01)
8: Update: Replace low-performing individuals with offspring
9: Retain elite chromosomes to maintain population integrity

10: if QoS convergence reached OR g = 100 then
11: break and identify best chromosome
12: end if
13: end for
14: return Best Chromosome (Optimized QoS Parameters)

4. RESULTS AND DISCUSSION
The GA–fuzzy QoS optimization framework was evaluated using PureEdgeSim [26] in a three-layer

IoT architecture with a high-density scale of up to 1,500 devices. Layer-wise QoS values were optimized
via a GA configured with a population size of 50 and 100 generations. To ensure robust global search
while maintaining the integrity of heuristic rules, we utilized a crossover probability of 0.8 and a mutation
probability of 0.01. Selection was performed via tournament selection. These parameters were specifically
chosen to maximize QoS convergence in complex, high-density scenarios, where local optima are frequent.
Tables 1 and 2 summarize the fuzzy input and output parameters employed to assess QoS in each layer.

Table 1. IoT fuzzy parameters by layer
Layer Input parameter Fuzzy sets Range/UoD

App.
Throughput/Reliability Low, Med, High 0–100 %
No. of devices Few, Mod, Many 100–1500

Net.
Latency/Packet loss Fast, Med, Slow 0–1 / 0–3 (s)
Device load Low, Med, High 0–100 %

Perc.
Accuracy Low, Med, High 0–100 %
Response time Fast, Med, Slow 0–3 (s)
Active devices Few, Mod, Many 100–1500

Table 2. Fuzzy logic output parameters
Parameters Fuzzy set Range (%)

App QoS, Nw QoS, Perc QoS Bad, Medium, Good 0–100

4.1. Application layer QoS analysis
Figure 3 shows how QoS changes at the application layer as the number of IoT devices increases,

while comparing the different approaches. The GA approach consistently achieves the strongest performance,
starting at nearly 95% QoS for 100 devices and slowly decreasing to around 87% when the number reaches
1,500 devices, which indicates both reliability and scalability. PSO follows this trend, maintaining QoS
above 90% until close to 1,000 devices, after which a sharper decline appears. FL begins near 88% but
decreases more rapidly as the device count grows, whereas the RANDOM approach performs the worst,
starting around 80% and dropping quickly. Overall, GA delivers the most stable and effective QoS, demon-
strating better adaptability as system demands continue to increase.
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Figure 3. Application layer QoS for different approaches

4.2. Network layer QoS analysis
Figure 4 illustrates the performance of each method in maintaining network layer QoS as the num-

ber of devices increases. GA consistently achieves QoS above 95%, with only a slight decrease under higher
congestion, demonstrating robust performance when latency and packet loss are critical. PSO performs com-
parably, maintaining QoS above 90%, indicating effective swarm-based optimization, though slightly less re-
silient than GA under stress. FL exhibits a faster decline in QoS, suggesting limited adaptability under heavy
congestion. RANDOM shows significant fluctuations and lacks optimization. Overall, adaptive evolutionary
strategies such as GA and PSO outperform both static FL and baseline RANDOM approaches in managing
network complexity.

Figure 4. Network layer QoS for different approaches

4.3. Perception layer QoS analysis
Figure 5 shows how each approach handles QoS at the perception layer, looking at sensor accuracy,

response time, and data consistency. The GA approach demonstrates superior performance, maintaining QoS
near 95% with only a slight decline as device density increases. This indicates effective tuning of the fuzzy
membership functions for sensory data conditions. PSO maintains a consistent but lower QoS, ranging between
88% and 90%. In contrast, FL exhibits a more pronounced performance degradation, revealing its limited
adaptability to changing sensing conditions. The RANDOM strategy consistently yields the lowest QoS, high-
lighting significant challenges in stability and scalability. Collectively, these results underscore the adaptive
robustness of the GA-based optimization, making it a suitable candidate for large-scale and unpredictable IoT
environments.
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Figure 5. Perception layer QoS for different approaches

4.3.1. Overall QoS performance
Table 3 shows the combined QoS for all three IoT layers, where GA consistently achieves the highest

values, gradually decreasing from 95% to 87% as the number of devices increases from 100 to 1,500. PSO
ranks second, followed by FL and RANDOM, highlighting GA’s superior performance and reliability across
varying system sizes.

Table 3. QoS performance (%) relative to the number of IoT devices
Algorithm 100 300 500 700 900 1100 1300 1500
RANDOM 87 85 84 83 82 81 80 79

FL 91 90 89 88 87 86 85 84
PSO 93 92 91 90 89 88 87 86

FL-GA 95 94 93 92 91 90 89 87

Table 4 shows the data suggests a clear trade-off: by allowing a longer offline optimization period, the
FL-GA model achieves a 15.57% improvement in the application layer and a 6.03% gain in the Network layer
compared to PSO. Because the GA is more resilient to local optima in high-density scenarios (1,500 devices), it
manages the stochastic nature of the perception and network layers more effectively. Since this tuning process
is decoupled from real-time operations, the superior QoS stability provided by the GA makes it the most robust
solution for large-scale IoT deployments where performance quality is the ultimate metric of success.

Table 4. Percentage improvement of FL-GA vs. Baselines
Comparison App. Net. Perc. Total QoS

FL-GA vs. RANDOM 15.57% 12.57% 7.95% 9.64%
FL-GA vs. FL 6.32% 2.50% 2.97% 4.00%

FL-GA vs. PSO 3.33% 6.03% 6.38% 1.68%

4.4. Computational runtime and scalability analysis
Table 5 reports The mean runtime of the proposed FL-GA model for device densities up to 1,500

devices is evaluated using a GA (population = 50, generations = 100). This runtime corresponds to an offline
training phase for tuning fuzzy parameters and does not affect online system operation. The optimization
prioritizes QoS maximization over training time, as reliability is critical in dense IoT environments. During
online validation, RANDOM-based tuning results in the highest latency, PSO achieves lower delays due to
swarm-based adaptation, while the proposed FL-GA consistently delivers the lowest latency owing to globally
optimized fuzzy parameters. To validate the offline optimization, an online latency comparison in Figure 6
among RANDOM, FL, PSO, and FL-GA is conducted, where FL-GA consistently achieves the lowest delay.
The device scale reflects realistic dense IoT scenarios within PureEdgeSim and ensures stable, reproducible
evaluation.
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Table 5. Mean runtime performance
Algorithm Mean runtime (Seconds) Latency (s)
RANDOM 2,858.4 High

PSO 4,960.5 Low
FL-GA (Proposed) 6,928.2 Very low

Figure 6 show latency validation results, the proposed FL-GA approach consistently outperforms
RANDOM, FL, and PSO across all device densities from 100 to 1,500 devices. As the number of IoT devices
increases, all methods experience higher latency; however, FL-GA maintains the lowest delay, increasing from
0.89 s to 1.63 s, demonstrating superior scalability. This improvement is attributed to the offline genetic tuning
of fuzzy parameters, which enables more efficient decision-making during online execution. Compared to
PSO and classical FL, FL-GA achieves better load adaptation under dense network conditions, validating the
effectiveness of the offline optimization process.

The simulation results demonstrate the reliability and effectiveness of the GA–Fuzzy approach for
QoS optimization in IoT systems. GA–Fuzzy consistently maintains stable performance across all layers, even
as the number of devices grows. The fuzzy system adapts dynamically, ensuring minimal performance degra-
dation compared with PSO, FL, and RANDOM methods. Variability in FL and RANDOM highlights the
challenges of static or non-adaptive approaches. GA–Fuzzy achieves high QoS while requiring careful param-
eter tuning and computational resources, indicating that it provides a scalable and robust solution, particularly
suitable for large-scale or dynamic IoT deployments.

Figure 6. The latency of all approaches VS the number of IoT devices

5. CONCLUSION
This paper presents a multi-layer hybrid GA–FL framework for enhancing QoS across the perception,

network, and application layers of IoT systems. By integrating the interpretability of FL with the adaptive
optimization capability of GA, the proposed model enables effective QoS evaluation and optimization in dense
IoT environments. Simulation results obtained using PureEdgeSim demonstrate the consistent superiority of
the GA-based approach. When the number of IoT devices increases to 1,500, the proposed method maintains
an overall QoS between 95% and 87%, outperforming both classical FL and RANDOM-based strategies. Sig-
nificant improvements are also observed at the application layer, confirming the scalability and reliability of the
proposed solution. Although the evaluation is limited to simulation-based experiments, real-world factors such
as hardware constraints, protocol overheads, and environmental interference may influence performance. These
aspects motivate future efforts toward real-world validation, extended scalability analysis, and the integration
of security-aware QoS metrics into the proposed framework.
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