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Edge detection is a fundamental building block in many embedded vision
tasks, including drone navigation, loT cameras, and wearable devices.
However, traditional edge detectors based on multiply—accumulate (MAC)
operations are poorly suited to the tight power and area budgets of such
resource-constrained hardware. This work introduces a fully synthesizable
Prewitt edge detector that replaces MAC operations with 1-bit XNOR—
Popcount logic. Incoming 8-bit pixels and *1 kernel coefficients are
binarized, processed by parallel XNOR gates, and tallied by a lightweight
Popcount adder tree, eliminating all multipliers and DSP slices. Prototyped
on a Xilinx Zyng-7020 FPGA, the proposed design reduces lookup-table
usage by 55% and flip-flop count by 26%, cuts dynamic power by about
60%, and supports clock frequencies up to five times higher than a MAC-
based core. Frame-level evaluations on the MNIST and ORL datasets show
near-lossless edge fidelity, with per-image dissimilarity scores below 0.08

and throughput gains approaching four times. These results demonstrate that
hardware-aware binary approximations can enable real-time, energy-
efficient edge detection for embedded Al systems without sacrificing
functional accuracy.
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1. INTRODUCTION

Edge computing enables real-time image processing by moving computation closer to data sources,
reducing latency and improving privacy. Convolutional operations, such as edge detection and feature
extraction, are core to many vision tasks but are difficult to implement efficiently on resource-constrained
edge devices due to their high computational cost, limited memory bandwidth, high power consumption, and
latency. Overcoming these issues is essential for real-time Al on 10T, embedded, and mobile platforms. The
main bottleneck is the large number of multiply-accumulate operations in convolution, where each pixel is
repeatedly multiplied by filter weights and accumulated. Research by Sze et al. [1] and Redmon and Farhadi
[2] indicates that multiply-accumulate operations account for over 90% of the total computational cost in
convolutional neural network (CNN) based image processing, posing a significant challenge for edge devices
with limited processing capabilities. Most edge devices, such as Raspberry Pi, NVIDIA Jetson, and
microcontrollers, have limited on-chip memory, requiring frequent access to off-chip DRAM to store image
data and convolution kernels [3]. However, external memory access is energy-intensive and introduces
significant latency. Research by Horowitz [4] and Jouppi et al. [5] has shown that off-chip memory access
can consume up to 100 times more energy than an arithmetic operation, making memory bandwidth a critical
bottleneck in convolutional processing. Furthermore, power efficiency is a major constraint in edge
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computing, particularly for battery-powered devices. Traditional convolution operations, when executed on
central processing units (CPUs), graphics processing units (GPUs), or Field-programmable gate arrays
(FPGAs), demand substantial energy. Studies by Chen et al. [6] and Han et al. [7] demonstrate that deep
learning workloads on embedded GPUs consume excessive power, limiting their usability in real-time edge
Al applications. Many edge applications, such as autonomous driving, robotics, and video surveillance,
require low-latency processing. Conventional convolution methods introduce latency due to sequential MAC
computations and memory transfer overhead. Research by Gholami et al. [8] and Howard et al. [9] highlights
that even optimized CNN models can exhibit significant inference latency, rendering them unsuitable for
certain real-time edge Al applications. To mitigate these challenges, researchers are exploring hardware-
friendly alternatives, such as binarized convolution using XNOR-Popcount operations. Instead of performing
computationally expensive multiplications, XNOR-based convolution employs bitwise logic operations
followed by population counting (Popcount) to accumulate results efficiently. Studies by Rastegari et al.
[10], Courbariaux et al. [11], and others [12]-[15] report that XNOR-Net can achieve up to 58 times faster
convolution while significantly reducing power consumption.

This study adapts the XNOR-Popcount paradigm to the Prewitt edge detector and proposes a
dedicated hardware architecture for real-time edge detection. Instead of conventional arithmetic convolution,
the design binarizes input pixels and applies XNOR and Popcount operations to improve efficiency. Both the
XNOR—Popcount-based and a traditional MAC-based Prewitt detector are implemented in hardware and
compared in terms of accuracy, resource usage, power, and speed. The contributions include: (i) a multiplier-
less edge detector using 1-bit pixel and kernel representations; (ii) a functional and waveform-level
comparison showing close agreement with the MAC baseline; and (iii) an FPGA implementation that
significantly reduces LUTs, FFs, and DSPs while lowering dynamic power and increasing throughput.
Qualitative edge maps and quantitative dissimilarity metrics indicate that, despite its simplified computation,
the proposed design preserves key edge information with minor accuracy loss, supporting its suitability for
practical image-processing applications.

2. PROPOSED METHOD

In conventional CNNSs, edge information is extracted by sliding a small kernel (typically 3x3 or
5x5) across the image and multiplying each pixel in the receptive field by its corresponding weight, then
summing the partial products to form an output feature value [16], [17]. Figure 1 illustrates this operation for
common vision tasks such as handwritten-digit recognition on MNIST [18] and face recognition on ORL
[19]. Although effective on power-hungry GPUs, this MAC-style convolution is burdensome on edge
platforms where power budgets are often only a few milliwatts [20]. On such resource-constrained hardware,
conventional convolution-based edge detection suffers from three key bottlenecks: (i) high computational
load, as each output pixel requires multiple fixed-point MAC operations; (ii) substantial memory bandwidth,
due to repeated access to overlapping pixel windows; and (iii) elevated energy consumption from intensive
switching in multiplier trees and DSP blocks. These factors lower frame rates, raise thermal stress, and
shorten battery life-particularly problematic in real-time edge-computing applications.
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Figure 1. Data transfer bottleneck between memory and convolution core

To address these limitations, this study adopts an XNOR-Popcount-based edge detection approach,
in which both input pixels and kernel weights are binarized to 1-bit values. Convolution is replaced by
bitwise XNOR operations followed by a Popcount, eliminating multipliers and using only simple logic and
adder trees. This greatly reduces logic utilization, critical-path delay, memory footprint, and dynamic power,
while freeing DSP resources for other tasks. As a result, the XNOR-Popcount technique is well suited to low-
power, resource-constrained edge devices.
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2.1. Binarization process

In the first stage, each 8-bit pixel in the 3x3 window is binarized using a programmable threshold
(typically 128): pixels with intensity > threshold map to 1, others to 0, preserving contrast while reducing
switching activity. Figure 2 contrasts this with a traditional Prewitt implementation, where each kernel
sample is multiplied by its +1/-1 coefficient and accumulated to form G7 and G7, a MAC-heavy process in
both area and energy. In the proposed method, the binarized 3x3 window is instead compared with a binary-
encoded Prewitt kernel using parallel XNOR gates, and a subsequent Popcount simply tallies the ones to
obtain a value proportional to the gradient—without any multipliers. Thus, convolution is replaced by
lightweight bitwise logic and a small adder tree, yielding a much more efficient solution for real-time edge
detection on resource-constrained devices.
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Figure 2. Conceptual overview of the XNOR-Popcount reformulation of the Prewitt edge detector
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2.2. XNOR logic for binary Prewitt convolution

The binarized 3x3 window is convolved with binary horizontal and vertical Prewitt kernels (Gx,
Gy), where +1 and -1 are encoded as 1 and 0. Each pixel—kernel pair goes through an XNOR gate, and logic
‘1’ indicates a contributing match, replacing signed multiplications with simple bitwise operations. For
comparison, Figure 3 shows the conventional MAC core: the 72-bit bus i pixel data [71:0] feeds two
multiplier arrays that compute Gx and Gy using signed Prewitt kernels. Their partial products pass through
adder trees to form 11-bit sums (sumData Gx, sumData_Gy), which are squared, added to obtain the
gradient magnitude, and then compared to a programmable 8-bit threshold to generate o mac _data[7:0]
with o_data validand o_intr. Although fully pipelined to process one window per clock, this MAC
core relies on two DSP multipliers and a larger LUT/FF footprint than the XNOR—-Popcount alternative.
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Figure 3. A conventional MAC-based core serves as the reference implementation of the edge detector
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In the proposed architecture, conventional MAC-based convolution is replaced by an XNOR-
Popcount scheme. First, each 8-bit grayscale pixel is binarized using a fixed threshold, preserving the
contrast needed for edge detection in 1-bit form. The Prewitt kernels are likewise encoded as binary masks,
mapping +1 — 1 and -1 — 0, so the original +1/-1 pattern becomes a 1/0 pattern. With both the 3x3 image
window and kernel in binary form, convolution is implemented with logic gates: each pixel bit is compared
to its corresponding kernel bit using an XNOR gate, which outputs 1 for matches and 0 for mismatches. For
the horizontal kernel Ky, a match corresponds either to a bright pixel under a +1 weight or a dark pixel under
a —1 weight, both contributing positively to the edge response, while mismatches represent negatively
weighted contributions.

2.3. Popcount tree and gradient magnitude

The XNOR outputs are fed into a Popcount adder tree that counts the number of matches in each
3x3 neighborhood. The resulting counts for Gx and Gy are then squared and summed to approximate the
gradient magnitude. Because the maximum value of this sum is 162, an 8-bit data path is sufficient, which
further reduces logic and power. The XNOR-Popcount methodology is built on the principle of computing
edge responses using only bitwise operations and lightweight counting logic, effectively eliminating the need
for multipliers. To implement this approach, a dedicated hardware module, termed XNOR POPCNT, was
developed to perform horizontal and vertical edge detection using the XNOR-Popcount algorithm. The
module accepts three input signals and produces two outputs. The i c1k input serves as the system clock,
while the i pixel data[71:0] bus delivers a 72-bit data window corresponding to a 3x3
neighbourhood of grayscale pixels (8-bit values). The i pixel data valid signal indicates the
presence of valid input data and initiates processing. Upon completion, the resulting 8-bit edge response is
output via o_xnor pop datal[7:0], with the o_xnor pop data wvalid signal asserted to indicate
the availability of valid output data. Figure 4 shows the internal micro-architecture of a single processing
element (PE) in the XNOR_POPCNT module, implemented as a five-stage pipeline. First, in the Binarization
Stage, each 8-bit pixel is compared with a programmable threshold to produce a 1-bit value, compressing the
3x3 window from 72 to 9 bits and reducing downstream switching. In the XNOR Stage, two 9-bit masks
encode the horizontal (Gx) and vertical (Gy) Prewitt kernels and are applied to the binarized window via nine
XNOR gates, removing the need for multipliers or DSPs. The population count stage then uses a small adder
tree (depth [log=9] = 4) plus a ripple-carry adder to generate two 5-bit values for |Gx| and |Gy|. In the Square—
Accumulate Stage, these gradients are squared and summed; because the maximum sum is 162, an 8-bit
datapath is sufficient and helps lower dynamic power. Finally, the threshold comparison stage compares this
magnitude to a configurable threshold, asserting o xnor pop data valid and driving the 8-bit edge
output on o_xnor pop_ data when valid. Clock and power gating at both PE and register levels disable
logic whenever i pixel data valid is low, further improving efficiency for real-time edge detection
in resource-constrained embedded vision systems.
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Figure 4. System-level block diagram of the proposed XNOR—-Popcount (XNOR_POPCNT) core
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3. ENERGY-EFFICIENT HARDWARE MODULE FOR EDGE DETECTION

The XNOR-Popcount core is integrated into a top-level architecture with line buffers, window
generation, and output buffering, forming a streaming pipeline capable of processing one pixel/clock in real
time. Figure 5 shows the top-level entity, Image_Processing_Top, which coordinates all datapath and control
functions in the edge-detection pipeline. In this figure, 8-bit pixels 1 data[7:0] with the handshake
signal 1 data valid are first received by the Image_Control block, whose line buffers generate a 3x3
windowon i pixel data[71:0] andassert i pixel data valid when the window is ready. This
window is then fed to the configurable XNOR-Popcount/MAC core, which can operate either as the
proposed binary XNOR—-Popcount engine or as a conventional MAC-based Prewitt filter. The core outputs an
8-bit edge value on o _xnor pop data([7:0] together with o xnor pop data valid, which are
passed to the Output_Buffer FIFO. The buffer drives the external bus o data[7:0], asserts
o_data ready when valid data are available, and signals events such as underflow or frame boundaries
via o_intr. A backpressure signal 1 data ready, derived from buffer status and core activity, ensures
lossless streaming. All modules share the system clock i clk and active-low reset i reset n, and use
ready/valid strobes on both input and output sides for AXI-style handshaking.
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Figure 5. Top-level architecture of the proposed edge-detection module, showing the integration of the
XNOR-Popcount/MAC core with image control logic and output buffering

Figure 6 compares the timing waveforms of the proposed XNOR-Popcount core and the MAC-
based reference when they are driven by the same image stream. The traces show the clock, input data and its
valid signal, the interrupt/handshake signal, and the binary edge outputs, allowing us to verify both functional
equivalence and differences in latency and throughput. In Figure 6(a), the waveforms correspond to the
XNOR-Popcount design. The highlighted regions show that the input-valid, interrupt, and output-valid
signals follow a compact, regular handshake: each burst of input pixels is processed with short internal
latency, and the corresponding edge outputs are produced in tightly packed bursts at 250 MHz, with no idle
cycles between windows.

In Figure 6(b), the waveforms correspond to the MAC-based design under the same stimulus.
Although the handshake sequence is logically identical, the deeper pipeline causes longer i_data_valid
activity during line-buffer filling and visible gaps in o_data_valid as the FIFO drains. These extended and
idle regions illustrate the higher latency and lower effective throughput of the MAC implementation
compared with the XNOR-Popcount core.
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Figure 6. Operational waveforms comparing (a) the XNOR-Popcount and (b) the MAC-based module

4. RESULTS AND DISCUSSION

In this study, the edge-detection quality of the proposed XNOR-Popcount hardware was compared
against a software Prewitt operator and a MAC-based hardware implementation. Figure 7 illustrates this
comparison: (a) software full-precision Prewitt, (b) MAC-based FPGA Prewitt, and (c) the XNOR-Popcount
module. Visually, the XNOR-Popcount edge map is almost indistinguishable from the software result,
correctly capturing all prominent edges. Minor differences are limited to very weak or noisy edges, which
may appear slightly thinner or be suppressed by the binary approximation, but no major edges are lost and no
obvious false edges appear. The MAC-based output matches the software result, as expected. For MNIST
digits, the XNOR-Popcount core reproduces clean, mostly one-pixel-wide contours, while the MAC design
tends to yield slightly thicker strokes. On ORL faces, the XNOR-Popcount core preserves facial boundaries
and key features more consistently, whereas the MAC variant occasionally introduces small gaps and
spurious edges, especially near hairlines.

MNIST Images

Figure 7. Edge images produced by the Prewitt filter (a) in software using full-precision convolution,
(b) in FPGA hardware using MAC operations, and (c) in a hardware module based on XNOR-Popcount
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Table 1 shows that the XNOR-Popcount edge detector is significantly more resource-efficient than
the MAC-based Prewitt design on the target FPGA. The MAC core uses 379 LUTSs, 166 flip-flops, and two
DSP slices, whereas the XNOR-Popcount version needs only 172 LUTs and 123 flip-flops and uses no
DSPs. This corresponds to about 55% fewer LUTs and 26% fewer FFs, plus complete removal of multiplier
resources. These gains arise from replacing multi-bit MAC operations with XNOR gates, simple shifts, and
two’s-complement subtraction on narrow data paths. Freeing DSP slices and reducing logic not only lowers
power but also shortens critical paths, enabling higher clock frequencies or additional on-chip functionality.

Table 1. Hardware resource utilization of XNOR—Popcount and MAC-based implementations

Hardware resources LUT Flip-Flop DSP
MAC 379 166 2
XNOR-Pop 172 123 0
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Figure 8. Implementation results for edge-detection cores (a) dynamic power versus clock frequency and (b)
per-frame latency for an input image

Figure 8 summarizes the implementation results for the two architectures. In Figure 8(a), the
dynamic power consumption of both designs is plotted versus clock frequency, showing that the XNOR-
Popcount core consistently draws much less power-about 60% less at the evaluated operating points-because
multiplier arrays are replaced by XNOR gates and a Popcount tree, greatly reducing switching activity and
capacitive load. Figure 8(b) reports the per-frame processing latency for a 28x28 image; here, the XNOR-
Popcount design achieves lower latency and scales more favorably with frequency thanks to its shallower
datapath and shorter critical path, enabling operation at up to ~5x the maximum clock of the MAC-based
core. In practice, the XNOR-Popcount engine can either process many more pixels per second or maintain
the same frame rate as the MAC design while running at a lower clock.

The proposed XNOR-Popcount architecture successfully optimizes hardware efficiency at the
expense of only a minor, controlled approximation in edge-detection fidelity. This design achieves
substantial hardware savings, eliminating DSP multipliers and reducing LUT utilization by approximately
50% compared to the traditional MAC-based Prewitt filter. Analysis on the MNIST dataset in Figure 9(a)
confirms the effectiveness of this trade-off, showing that the XNOR-Popcount edge maps maintain close
fidelity, with per-digit dissimilarity tightly clustered around two. Furthermore, the XNOR-Popcount core
achieves a slightly higher average normalized accuracy (~0.93) than the MAC design (~ 0.896), indicating
that key edge structures are well-preserved. Quantifying the power profile in Figure 9(b), the architecture
consistently maintains its superior normalized accuracy across all tested clock frequencies (50-200 MHz)
while consuming only 44-56% of the dynamic power of the MAC design (e.g., 3.18 mW vs. 5.86 mW at 50
MHz). Since both designs offer the same throughput (one pixel per clock), the XNOR-Popcount
implementation achieves approximately half the energy consumption per frame, enabling either greater
operational efficiency or a higher achievable clock frequency under a fixed power budget.

In the context of prior FPGA-based edge-detection work, the proposed architecture occupies a
distinct design point. As summarized in Table 2, it advances beyond the partial-product pruning of Perri et al.
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[21] and the compressor retiming of Schiel and Bainbridge-Smith [22], as well as more recent
Sobel/Prewitt/Roberts implementations [23]-[25] that remain within a multi-bit MAC paradigm. Different
from prior works that only optimize multipliers, this study eliminates them. The XNOR-Popcount approach
changes the computation model itself, accepting a controlled loss in edge fidelity in exchange for more
aggressive reductions in logic and power while maintaining comparable or higher operating frequencies.
Conceptually, it brings ideas from binary neural networks [10], [11], [14], [15] into classical edge detection:
1-bit pixels and kernels act as both quantization and implicit denoising, yielding edge maps suitable for
embedded-vision pipelines. The resulting hardware is multiplier-less, shallow, and amenable to clock/power
gating, making it a strong building block for resource-constrained vision nodes and a promising basis for
extensions such as adaptive thresholds, low-bit variants, and binary reformulations of other edge operators.
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Figure 9. Per-digit dissimilarity and accuracy—power trade-off (a) Dissimilarity of MNIST edge maps for
XNOR-Popcount vs. MAC Prewitt and (b) Average normalized edge accuracy versus dynamic power,
showing higher accuracy at lower power for XNOR-Popcount

Table 2. Performance comparison with other FPGA-based edge detection designs

Studies Schiel and Bainbridge-Smith [22] Perri et al. [21] This study
55 % LUT, 26 % FF reduction

Hardware no DSP usage; 4.4% area reduction 22% fewer LUTS than exact and no DSP usade compared
overhead compared with prior design Booth/Dadda equivalents . g p
with MAC
0, 1 ~ 0, i
Power' not mentioned Upto 80 % energy saving vs 60 % lower dynamic power
consumption exact multipliers than a MAC
Frequency clean at 97 MHz on Spartan-3E clean at 250 MHz on Artix-7 clean at 250 MHz on Zyng-
(timing) (1.28x speed-up) (1.8x speed-up) 7000 (5x speed-up)

5. CONCLUSION

This study shows that a binarized XNOR-Popcount reformulation of the Prewitt operator can deliver
high-quality edge maps at a fraction of the hardware cost of conventional convolution-based designs. By
replacing 8-bit MACs with 1-bit logic, the proposed module removes all DSP usage, cuts logic utilization by
about half, and substantially reduces dynamic power, while still meeting or exceeding 250 MHz for
embedded vision. Experiments on handwritten digit and face datasets indicate that a small loss of fine detail
is outweighed by 4-5x gains in speed and energy efficiency, making the approach attractive for resource-
constrained platforms. Future work includes extending this strategy to other operators (e.g., Sobel,
Laplacian), combining it with adaptive thresholding or low-bit quantization for better faint-edge recovery,
and integrating the XNOR-Popcount module with lightweight CNN accelerators as a front-end feature
extractor in compact embedded Al pipelines. Overall, the XNOR-Popcount paradigm offers a scalable path
toward ultra-low-power, always-on vision for edge and IoT devices.
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