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 Edge detection is a fundamental building block in many embedded vision 
tasks, including drone navigation, IoT cameras, and wearable devices. 

However, traditional edge detectors based on multiply–accumulate (MAC) 
operations are poorly suited to the tight power and area budgets of such 
resource-constrained hardware. This work introduces a fully synthesizable 
Prewitt edge detector that replaces MAC operations with 1-bit XNOR–
Popcount logic. Incoming 8-bit pixels and ±1 kernel coefficients are 
binarized, processed by parallel XNOR gates, and tallied by a lightweight 
Popcount adder tree, eliminating all multipliers and DSP slices. Prototyped 
on a Xilinx Zynq-7020 FPGA, the proposed design reduces lookup-table 

usage by 55% and flip-flop count by 26%, cuts dynamic power by about 
60%, and supports clock frequencies up to five times higher than a MAC-
based core. Frame-level evaluations on the MNIST and ORL datasets show 
near-lossless edge fidelity, with per-image dissimilarity scores below 0.08 
and throughput gains approaching four times. These results demonstrate that 
hardware-aware binary approximations can enable real-time, energy-
efficient edge detection for embedded AI systems without sacrificing 
functional accuracy. 
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1. INTRODUCTION 

Edge computing enables real-time image processing by moving computation closer to data sources, 

reducing latency and improving privacy. Convolutional operations, such as edge detection and feature 

extraction, are core to many vision tasks but are difficult to implement efficiently on resource-constrained 

edge devices due to their high computational cost, limited memory bandwidth, high power consumption, and 

latency. Overcoming these issues is essential for real-time AI on IoT, embedded, and mobile platforms. The 

main bottleneck is the large number of multiply-accumulate operations in convolution, where each pixel is 

repeatedly multiplied by filter weights and accumulated. Research by Sze et al. [1] and Redmon and Farhadi 

[2] indicates that multiply-accumulate operations account for over 90% of the total computational cost in 

convolutional neural network (CNN) based image processing, posing a significant challenge for edge devices 

with limited processing capabilities. Most edge devices, such as Raspberry Pi, NVIDIA Jetson, and 
microcontrollers, have limited on-chip memory, requiring frequent access to off-chip DRAM to store image 

data and convolution kernels [3]. However, external memory access is energy-intensive and introduces 

significant latency. Research by Horowitz [4] and Jouppi et al. [5] has shown that off-chip memory access 

can consume up to 100 times more energy than an arithmetic operation, making memory bandwidth a critical 

bottleneck in convolutional processing. Furthermore, power efficiency is a major constraint in edge 
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computing, particularly for battery-powered devices. Traditional convolution operations, when executed on 

central processing units (CPUs), graphics processing units (GPUs), or Field-programmable gate arrays 

(FPGAs), demand substantial energy. Studies by Chen et al. [6] and Han et al. [7] demonstrate that deep 

learning workloads on embedded GPUs consume excessive power, limiting their usability in real-time edge 

AI applications. Many edge applications, such as autonomous driving, robotics, and video surveillance, 

require low-latency processing. Conventional convolution methods introduce latency due to sequential MAC 

computations and memory transfer overhead. Research by Gholami et al. [8] and Howard et al. [9] highlights 
that even optimized CNN models can exhibit significant inference latency, rendering them unsuitable for 

certain real-time edge AI applications. To mitigate these challenges, researchers are exploring hardware-

friendly alternatives, such as binarized convolution using XNOR-Popcount operations. Instead of performing 

computationally expensive multiplications, XNOR-based convolution employs bitwise logic operations 

followed by population counting (Popcount) to accumulate results efficiently. Studies by Rastegari et al. 

[10], Courbariaux et al. [11], and others [12]-[15] report that XNOR-Net can achieve up to 58 times faster 

convolution while significantly reducing power consumption. 

This study adapts the XNOR-Popcount paradigm to the Prewitt edge detector and proposes a 

dedicated hardware architecture for real-time edge detection. Instead of conventional arithmetic convolution, 

the design binarizes input pixels and applies XNOR and Popcount operations to improve efficiency. Both the 

XNOR–Popcount-based and a traditional MAC-based Prewitt detector are implemented in hardware and 

compared in terms of accuracy, resource usage, power, and speed. The contributions include: (i) a multiplier-
less edge detector using 1-bit pixel and kernel representations; (ii) a functional and waveform-level 

comparison showing close agreement with the MAC baseline; and (iii) an FPGA implementation that 

significantly reduces LUTs, FFs, and DSPs while lowering dynamic power and increasing throughput. 

Qualitative edge maps and quantitative dissimilarity metrics indicate that, despite its simplified computation, 

the proposed design preserves key edge information with minor accuracy loss, supporting its suitability for 

practical image-processing applications. 

 

 

2. PROPOSED METHOD 

In conventional CNNs, edge information is extracted by sliding a small kernel (typically 3×3 or 

5×5) across the image and multiplying each pixel in the receptive field by its corresponding weight, then 
summing the partial products to form an output feature value [16], [17]. Figure 1 illustrates this operation for 

common vision tasks such as handwritten-digit recognition on MNIST [18] and face recognition on ORL 

[19]. Although effective on power-hungry GPUs, this MAC-style convolution is burdensome on edge 

platforms where power budgets are often only a few milliwatts [20]. On such resource-constrained hardware, 

conventional convolution-based edge detection suffers from three key bottlenecks: (i) high computational 

load, as each output pixel requires multiple fixed-point MAC operations; (ii) substantial memory bandwidth, 

due to repeated access to overlapping pixel windows; and (iii) elevated energy consumption from intensive 

switching in multiplier trees and DSP blocks. These factors lower frame rates, raise thermal stress, and 

shorten battery life-particularly problematic in real-time edge-computing applications. 

 

 

 
 

Figure 1. Data transfer bottleneck between memory and convolution core 

 

 

To address these limitations, this study adopts an XNOR-Popcount-based edge detection approach, 

in which both input pixels and kernel weights are binarized to 1-bit values. Convolution is replaced by 

bitwise XNOR operations followed by a Popcount, eliminating multipliers and using only simple logic and 

adder trees. This greatly reduces logic utilization, critical-path delay, memory footprint, and dynamic power, 

while freeing DSP resources for other tasks. As a result, the XNOR-Popcount technique is well suited to low-
power, resource-constrained edge devices. 
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2.1.  Binarization process 

In the first stage, each 8-bit pixel in the 3×3 window is binarized using a programmable threshold 

(typically 128): pixels with intensity ≥ threshold map to 1, others to 0, preserving contrast while reducing 

switching activity. Figure 2 contrasts this with a traditional Prewitt implementation, where each kernel 

sample is multiplied by its +1/–1 coefficient and accumulated to form 𝐺𝑥
2 and 𝐺𝑦

2, a MAC-heavy process in 

both area and energy. In the proposed method, the binarized 3×3 window is instead compared with a binary-
encoded Prewitt kernel using parallel XNOR gates, and a subsequent Popcount simply tallies the ones to 

obtain a value proportional to the gradient—without any multipliers. Thus, convolution is replaced by 

lightweight bitwise logic and a small adder tree, yielding a much more efficient solution for real-time edge 

detection on resource-constrained devices. 

 

 

 
 

Figure 2. Conceptual overview of the XNOR-Popcount reformulation of the Prewitt edge detector 

 

 

2.2.  XNOR logic for binary Prewitt convolution 

The binarized 3×3 window is convolved with binary horizontal and vertical Prewitt kernels (Gx, 

Gy), where +1 and –1 are encoded as 1 and 0. Each pixel–kernel pair goes through an XNOR gate, and logic 

‘1’ indicates a contributing match, replacing signed multiplications with simple bitwise operations. For 

comparison, Figure 3 shows the conventional MAC core: the 72-bit bus i_pixel_data [71:0] feeds two 

multiplier arrays that compute Gx and Gy using signed Prewitt kernels. Their partial products pass through 

adder trees to form 11-bit sums (sumData_Gx, sumData_Gy), which are squared, added to obtain the 

gradient magnitude, and then compared to a programmable 8-bit threshold to generate o_mac_data[7:0] 

with o_data_valid and o_intr. Although fully pipelined to process one window per clock, this MAC 

core relies on two DSP multipliers and a larger LUT/FF footprint than the XNOR–Popcount alternative. 

 

 

 
 

Figure 3. A conventional MAC-based core serves as the reference implementation of the edge detector 
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In the proposed architecture, conventional MAC-based convolution is replaced by an XNOR–

Popcount scheme. First, each 8-bit grayscale pixel is binarized using a fixed threshold, preserving the 

contrast needed for edge detection in 1-bit form. The Prewitt kernels are likewise encoded as binary masks, 

mapping +1 → 1 and –1 → 0, so the original +1/–1 pattern becomes a 1/0 pattern. With both the 3×3 image 

window and kernel in binary form, convolution is implemented with logic gates: each pixel bit is compared 

to its corresponding kernel bit using an XNOR gate, which outputs 1 for matches and 0 for mismatches. For 

the horizontal kernel Kx, a match corresponds either to a bright pixel under a +1 weight or a dark pixel under 
a –1 weight, both contributing positively to the edge response, while mismatches represent negatively 

weighted contributions. 

 

2.3.  Popcount tree and gradient magnitude 

The XNOR outputs are fed into a Popcount adder tree that counts the number of matches in each 

3×3 neighborhood. The resulting counts for Gx and Gy are then squared and summed to approximate the 

gradient magnitude. Because the maximum value of this sum is 162, an 8-bit data path is sufficient, which 

further reduces logic and power. The XNOR-Popcount methodology is built on the principle of computing 

edge responses using only bitwise operations and lightweight counting logic, effectively eliminating the need 

for multipliers. To implement this approach, a dedicated hardware module, termed XNOR_POPCNT, was 

developed to perform horizontal and vertical edge detection using the XNOR-Popcount algorithm. The 

module accepts three input signals and produces two outputs. The i_clk input serves as the system clock, 

while the i_pixel_data[71:0] bus delivers a 72-bit data window corresponding to a 3×3 

neighbourhood of grayscale pixels (8-bit values). The i_pixel_data_valid signal indicates the 

presence of valid input data and initiates processing. Upon completion, the resulting 8-bit edge response is 

output via o_xnor_pop_data[7:0], with the o_xnor_pop_data_valid signal asserted to indicate 

the availability of valid output data. Figure 4 shows the internal micro-architecture of a single processing 
element (PE) in the XNOR_POPCNT module, implemented as a five-stage pipeline. First, in the Binarization 

Stage, each 8-bit pixel is compared with a programmable threshold to produce a 1-bit value, compressing the 

3×3 window from 72 to 9 bits and reducing downstream switching. In the XNOR Stage, two 9-bit masks 

encode the horizontal (Gx) and vertical (Gy) Prewitt kernels and are applied to the binarized window via nine 

XNOR gates, removing the need for multipliers or DSPs. The population count stage then uses a small adder 

tree (depth ⌈log₂9⌉ = 4) plus a ripple-carry adder to generate two 5-bit values for |Gx| and |Gy|. In the Square–

Accumulate Stage, these gradients are squared and summed; because the maximum sum is 162, an 8-bit 

datapath is sufficient and helps lower dynamic power. Finally, the threshold comparison stage compares this 

magnitude to a configurable threshold, asserting o_xnor_pop_data_valid and driving the 8-bit edge 

output on o_xnor_pop_data when valid. Clock and power gating at both PE and register levels disable 

logic whenever i_pixel_data_valid is low, further improving efficiency for real-time edge detection 

in resource-constrained embedded vision systems. 

 

 

 
 

Figure 4. System-level block diagram of the proposed XNOR–Popcount (XNOR_POPCNT) core 
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3. ENERGY-EFFICIENT HARDWARE MODULE FOR EDGE DETECTION 

The XNOR-Popcount core is integrated into a top-level architecture with line buffers, window 

generation, and output buffering, forming a streaming pipeline capable of processing one pixel/clock in real 

time. Figure 5 shows the top-level entity, Image_Processing_Top, which coordinates all datapath and control 

functions in the edge-detection pipeline. In this figure, 8-bit pixels i_data[7:0] with the handshake 

signal i_data_valid are first received by the Image_Control block, whose line buffers generate a 3×3 

window on i_pixel_data[71:0] and assert i_pixel_data_valid when the window is ready. This 

window is then fed to the configurable XNOR–Popcount/MAC core, which can operate either as the 

proposed binary XNOR–Popcount engine or as a conventional MAC-based Prewitt filter. The core outputs an 

8-bit edge value on o_xnor_pop_data[7:0] together with o_xnor_pop_data_valid, which are 

passed to the Output_Buffer FIFO. The buffer drives the external bus o_data[7:0], asserts 

o_data_ready when valid data are available, and signals events such as underflow or frame boundaries 

via o_intr. A backpressure signal i_data_ready, derived from buffer status and core activity, ensures 

lossless streaming. All modules share the system clock i_clk and active-low reset i_reset_n, and use 

ready/valid strobes on both input and output sides for AXI-style handshaking. 

 

 

 
 

Figure 5. Top-level architecture of the proposed edge-detection module, showing the integration of the 

XNOR–Popcount/MAC core with image control logic and output buffering 

 

 
Figure 6 compares the timing waveforms of the proposed XNOR-Popcount core and the MAC-

based reference when they are driven by the same image stream. The traces show the clock, input data and its 

valid signal, the interrupt/handshake signal, and the binary edge outputs, allowing us to verify both functional 

equivalence and differences in latency and throughput. In Figure 6(a), the waveforms correspond to the 

XNOR-Popcount design. The highlighted regions show that the input-valid, interrupt, and output-valid 

signals follow a compact, regular handshake: each burst of input pixels is processed with short internal 

latency, and the corresponding edge outputs are produced in tightly packed bursts at 250 MHz, with no idle 

cycles between windows.  

In Figure 6(b), the waveforms correspond to the MAC-based design under the same stimulus. 

Although the handshake sequence is logically identical, the deeper pipeline causes longer i_data_valid 

activity during line-buffer filling and visible gaps in o_data_valid as the FIFO drains. These extended and 
idle regions illustrate the higher latency and lower effective throughput of the MAC implementation 

compared with the XNOR–Popcount core. 
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(a) 

 

 
(b) 

 

Figure 6. Operational waveforms comparing (a) the XNOR-Popcount and (b) the MAC-based module 

 

 

4. RESULTS AND DISCUSSION 

In this study, the edge-detection quality of the proposed XNOR-Popcount hardware was compared 

against a software Prewitt operator and a MAC-based hardware implementation. Figure 7 illustrates this 

comparison: (a) software full-precision Prewitt, (b) MAC-based FPGA Prewitt, and (c) the XNOR-Popcount 

module. Visually, the XNOR-Popcount edge map is almost indistinguishable from the software result, 

correctly capturing all prominent edges. Minor differences are limited to very weak or noisy edges, which 

may appear slightly thinner or be suppressed by the binary approximation, but no major edges are lost and no 

obvious false edges appear. The MAC-based output matches the software result, as expected. For MNIST 
digits, the XNOR-Popcount core reproduces clean, mostly one-pixel-wide contours, while the MAC design 

tends to yield slightly thicker strokes. On ORL faces, the XNOR-Popcount core preserves facial boundaries 

and key features more consistently, whereas the MAC variant occasionally introduces small gaps and 

spurious edges, especially near hairlines. 

 

 

 
 

Figure 7. Edge images produced by the Prewitt filter (a) in software using full-precision convolution,  

(b) in FPGA hardware using MAC operations, and (c) in a hardware module based on XNOR-Popcount 
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Table 1 shows that the XNOR–Popcount edge detector is significantly more resource-efficient than 

the MAC-based Prewitt design on the target FPGA. The MAC core uses 379 LUTs, 166 flip-flops, and two 

DSP slices, whereas the XNOR–Popcount version needs only 172 LUTs and 123 flip-flops and uses no 

DSPs. This corresponds to about 55% fewer LUTs and 26% fewer FFs, plus complete removal of multiplier 

resources. These gains arise from replacing multi-bit MAC operations with XNOR gates, simple shifts, and 

two’s-complement subtraction on narrow data paths. Freeing DSP slices and reducing logic not only lowers 
power but also shortens critical paths, enabling higher clock frequencies or additional on-chip functionality. 

 

 

Table 1. Hardware resource utilization of XNOR–Popcount and MAC-based implementations 
Hardware resources LUT Flip-Flop DSP 

MAC 379 166 2 

XNOR-Pop 172 123 0 

 

 

  
(a) (b) 

  

Figure 8. Implementation results for edge-detection cores (a) dynamic power versus clock frequency and (b) 
per-frame latency for an input image 

 
 

Figure 8 summarizes the implementation results for the two architectures. In Figure 8(a), the 

dynamic power consumption of both designs is plotted versus clock frequency, showing that the XNOR-

Popcount core consistently draws much less power-about 60% less at the evaluated operating points-because 

multiplier arrays are replaced by XNOR gates and a Popcount tree, greatly reducing switching activity and 

capacitive load. Figure 8(b) reports the per-frame processing latency for a 28×28 image; here, the XNOR–

Popcount design achieves lower latency and scales more favorably with frequency thanks to its shallower 
datapath and shorter critical path, enabling operation at up to ~5× the maximum clock of the MAC-based 

core. In practice, the XNOR-Popcount engine can either process many more pixels per second or maintain 

the same frame rate as the MAC design while running at a lower clock. 

The proposed XNOR-Popcount architecture successfully optimizes hardware efficiency at the 

expense of only a minor, controlled approximation in edge-detection fidelity. This design achieves 

substantial hardware savings, eliminating DSP multipliers and reducing LUT utilization by approximately 

50% compared to the traditional MAC-based Prewitt filter. Analysis on the MNIST dataset in Figure 9(a) 

confirms the effectiveness of this trade-off, showing that the XNOR-Popcount edge maps maintain close 

fidelity, with per-digit dissimilarity tightly clustered around two. Furthermore, the XNOR-Popcount core 

achieves a slightly higher average normalized accuracy (~0.93) than the MAC design (~ 0.896), indicating 

that key edge structures are well-preserved. Quantifying the power profile in Figure 9(b), the architecture 

consistently maintains its superior normalized accuracy across all tested clock frequencies (50–200 MHz) 
while consuming only 44–56% of the dynamic power of the MAC design (e.g., 3.18 mW vs. 5.86 mW at 50 

MHz). Since both designs offer the same throughput (one pixel per clock), the XNOR-Popcount 

implementation achieves approximately half the energy consumption per frame, enabling either greater 

operational efficiency or a higher achievable clock frequency under a fixed power budget. 

In the context of prior FPGA-based edge-detection work, the proposed architecture occupies a 

distinct design point. As summarized in Table 2, it advances beyond the partial-product pruning of Perri et al. 
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[21] and the compressor retiming of Schiel and Bainbridge-Smith [22], as well as more recent 

Sobel/Prewitt/Roberts implementations [23]-[25] that remain within a multi-bit MAC paradigm. Different 

from prior works that only optimize multipliers, this study eliminates them. The XNOR-Popcount approach 

changes the computation model itself, accepting a controlled loss in edge fidelity in exchange for more 

aggressive reductions in logic and power while maintaining comparable or higher operating frequencies. 

Conceptually, it brings ideas from binary neural networks [10], [11], [14], [15] into classical edge detection: 

1-bit pixels and kernels act as both quantization and implicit denoising, yielding edge maps suitable for 
embedded-vision pipelines. The resulting hardware is multiplier-less, shallow, and amenable to clock/power 

gating, making it a strong building block for resource-constrained vision nodes and a promising basis for 

extensions such as adaptive thresholds, low-bit variants, and binary reformulations of other edge operators. 

 

 

  
(a) (b) 

  

Figure 9. Per-digit dissimilarity and accuracy–power trade-off (a) Dissimilarity of MNIST edge maps for 

XNOR–Popcount vs. MAC Prewitt and (b) Average normalized edge accuracy versus dynamic power, 

showing higher accuracy at lower power for XNOR–Popcount 
 

 

 
Table 2. Performance comparison with other FPGA-based edge detection designs 

Studies Schiel and Bainbridge-Smith [22] Perri et al. [21] This study 

Hardware 

overhead 

no DSP usage; 4.4% area reduction 

compared with prior design 

22% fewer LUTs than exact 

Booth/Dadda equivalents 

55 % LUT, 26 % FF reduction 

and no DSP usage compared 

with MAC 

Power 

consumption 
not mentioned 

Up to 80 % energy saving vs 

exact multipliers 

~60 % lower dynamic power 

than a MAC 

Frequency 

(timing) 

clean at 97 MHz on Spartan-3E 

(1.28x speed-up) 

clean at 250 MHz on Artix-7 

(1.8x speed-up) 

clean at 250 MHz on Zynq-

7000 (5x speed-up) 

 

 

5. CONCLUSION 

This study shows that a binarized XNOR-Popcount reformulation of the Prewitt operator can deliver 

high-quality edge maps at a fraction of the hardware cost of conventional convolution-based designs. By 

replacing 8-bit MACs with 1-bit logic, the proposed module removes all DSP usage, cuts logic utilization by 

about half, and substantially reduces dynamic power, while still meeting or exceeding 250 MHz for 

embedded vision. Experiments on handwritten digit and face datasets indicate that a small loss of fine detail 

is outweighed by 4-5× gains in speed and energy efficiency, making the approach attractive for resource-
constrained platforms. Future work includes extending this strategy to other operators (e.g., Sobel, 

Laplacian), combining it with adaptive thresholding or low-bit quantization for better faint-edge recovery, 

and integrating the XNOR–Popcount module with lightweight CNN accelerators as a front-end feature 

extractor in compact embedded AI pipelines. Overall, the XNOR-Popcount paradigm offers a scalable path 

toward ultra-low-power, always-on vision for edge and IoT devices. 
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