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Lung diseases are among the most important causes of morbidity and
mortality worldwide; it require prompt and accurate diagnosis methods.
A novel hybrid deep learning framework for integrating you only look once
version 8 (YOLOVS), considering real-time detection and vision transformer
(ViT-B/16) for global context-based classification of lung diseases in chest
X-ray images, is presented. Based on transfer learning and a two-stage
detection-classification pipeline, this proposed model is applicable to dealing
with inter-image variability, overlapped disease features and lack of
annotated medical examples. Our developed hybrid model achieves the
highest classification accuracy of 96.8% and 0.98 AUC-ROC on the
National Institutes of Health (NIH) Chest X-ray dataset, which consists of
over 112,000 images covering 14 diseases, and outperforms its several
current state-of-the-art models. In addition, attention heatmaps and bounding
box visualizations highly correlate with clinical variables and enhance
interpretability. This paper demonstrates the practicability of hybrid vision-
driven architectures for better medical image analysis and shows their

integration into clinical decision-support systems.
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1. INTRODUCTION

Some of the deadly chronic lung diseases include pneumonia, chronic obstructive pulmonary disease
(COPD), tuberculosis, and cancer, among others, in the world, and this means that diagnosis is essential in
cases of early detection [1]. Chest X-rays are cheap and ubiquitous, yet hard to read owing to identical
appearance characteristics (e.g., pneumonia vs pulmonary oedema [2]), bad resolution [3], and a worldwide
lack of radiologists [4]. The promising solutions are automated tools based on artificial intelligence (Al),
mainly convolutional neural networks (CNNs) [5], you only look once (YOLO) [6], and vision transformers
(ViTs) [7]. Although the performance of ViTs is effective in natural image tasks, the same still awaits in
medical images [8]. In this paper, we introduced a generic hybrid YOLO-VIiT model that identifies and
classifies lung diseases based on the National Institutes of Health (NIH) Chest X-ray dataset [9], with transfer
learning employed to augment generalization and address class imbalance.

Breakthroughs in deep learning have profoundly affected medical imaging, especially in detecting
diseases, segmentation, and classification of diseases. Annotated datasets and potent computation tools have
facilitated the implementation of the most up-to-date models, such as YOLO and ViTs. This part discusses
significant developments and research gaps that prompted this research.
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a) Artificial neural networks and medical imaging

CNNs such as DenseNet and ResNet have been successful in artificial neural networks, with high
accuracy in diagnosing diseases such as pneumonia. However, they rely on large annotated datasets, which
are usually unavailable in medical fields. This shortcoming has led to the suggestion of semi-supervised and
generative models [9], [10]. Moreover, CNN-based segmentation networks have also achieved remarkable
success in medical imaging. The U-Net architecture [11] and its improved nested variant UNet++ [12] have
been particularly influential, enabling precise localization and segmentation of biomedical structures.

b)  YOLO medical imaging

Because of its speed and precision, YOLO finds extensive utility in real-time object recognition in
medical diagnosis. It has been used in tasks like lung nodules and breast tumor detection, and in more recent
times, analysis of chest X-rays because of the detection and classification capacity [13], [14].

c) Vision transformers for leaner image classification

ViTs follow an approach where images are processed into patches, as tokenized entities, and self-
attention is used to capture context. They have successfully segmented the brain tumor, classifying skin
lesions and chest X-rays. Singh et al. [15] were strong even on massive datasets, whereas Tan and Le [16]
demonstrated their sensitivity to clinically interesting regions in imbalanced datasets.

d) Hybrid frameworks for medical imaging

Hybrid designs embrace the capabilities of other designs. For example, CNNs and YOLO have seen
application in liver tumor detection through YOLO localizing and CNN classifying the tumor [17].
Transformers also advance hybrid models, which increase accuracy and explainability, as demonstrated by
Kim et al. [18]. Further, the transfer learning techniques, where learning is integrated between deep and
conventional machine learning, may help solve data scarcity [19].

e) Recent advances (2022—-2024)

Transformer multimodal models have improved the detection of lung diseases related to medical
imaging in the recent past. Singh et al. [15] employed vision transformers and Grad-CAM to detect
pneumonia, and Zhang et al. [14] employed swin transformers to accurately detect the nodules. The low-
weight (MobileViT [20] and TinyViT [21]) model allows on-edge computing in real-time. YOLO was also
combined with Inception-V3 by Shoaib and Sayed [17] to segment brain tumors, and Benoudnine et al. [19]
applied CNN-transformers with semi-supervised learning in the neonatal seizure detection context. Those
experiments show tendencies in the explainability, real-time performance, and efficient training. Table 1
shows the limitations and gaps.

Table 1. Literature review integrating both limitations and research gaps in models/papers

Study Methodology Dataset Strengths Gaps/limitations
Singhetal.  Vision transformers (ViT + Chest X-ray High accuracy, interpretable Computationally intensive
[15] Grad- CAM) (pneumonia) attention maps
Zhangetal.  Swin transformer + Pyramid Pulmonary nodule Improved localization and  Requires large-scale training
[14] Net- work detection classification data
Shoaib and YOLO+ Brain tumor (MRI) Hybrid improves Domain-specific, not
Sayed [17] Inception-V3 Segmentation and speed generalized to chest X-ray
Benoudnine  CNN-+transformer+ML EEG and medical Reduces label dependency, Limited to neonatal datasets
etal. [19] ensemble imaging handles signal noise
Kim et al. Transfer learning review Multi-organ imagination ldentifies optimal TL Lacks experimental
[18] review strategies for medical Al implementation
Merajetal. VGG16 /VGG19/ ResNet50/  Montgomery county Compared the state of the art No region detection capability
[22] GoogLeNet (MC) and Shenzhen CNN for medical images among the techniques

(SH) analysis explored
Zunairetal.  Custom CNN (with transformers Image CLEF Takes advantage of 3D CT ~ Computation intensive as it
[23] subset slice selection (SSS) Tuberculosis2019 scan. Explored various requires preprocessing of 3D
transformations. CT scan data

To improve the diagnosis of lung diseases [24] and detect those, this paper suggests that the hybrid
model of YOLOV8 (lesion detection) and ViT-B/16 (disease classification) be used. Transfer learning, though,
solves the problem of scarce labelled data and, thus, makes training more efficient and effective. Assessed on
the NIH Chest X-ray dataset, the model has achieved better accuracy and interpretability than the current
methods and bounding boxes and attention maps are used to facilitate clinical trust. Our model YOLOV8 + ViT-
B/16 improves on CNNs [25], addressing interpretability, faint image detection, and real-time classification.
The system works quickly, effectively, and is explainable in real life. The article is organized into chapters of
related work, methodology, results, conclusions and future work.
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2. MATERIALS AND METHODS

2.1. Dataset description
The NIH Chest X-ray dataset contains more than 112,000 frontal X-rays of 30,805 patients labelled

with 14 lung diseases and metadata of the patients, such as age and sex. Figure 1 shows sample from NIH Chest
X-Ray dataset. Image preprocessing includes normalizing images, histogram equalization, and resizing (416
416 in YOLO, 224 224 in ViT). Data augmentation was done using random rotations, flips, and brightness
variation, which helped make the model more robust to reflections and significant changes in brightness.

Figure 1. Sample images from dataset

2.2. Proposed framework
The proposed system is designed in a two-part hybrid system, as shown in Figure 2, where the

YOLOV8 determines the regions of interest (ROI), and ViT-B/16 identifies the lung diseases based on the
chest X-rays. Finetuned on the NIH dataset, the YOLOV8 model reliably detects abnormalities even in low-
contrast images pre-trained on COCO. The most critical hyperparameters, such as anchor box size and NMS
thresholds, were optimized. ViT-B/16 receives ROIs, which are divided into 1616 patches, and finally, self-
attention is applied for feature extraction. ViT-B/16 is pre-trained on ImageNet and finetuned using dropout
and unlocking layers to ascertain the authenticity of real-time diagnosis in all its interpretability.

Input Layer
L (Raw Chest X-Ray Images) J

:

{ YOLO Detection Module

(Localizes abnormalities and generated bounding boxes)

Region Extraction
(Crops regions of interest (ROIs))
Output Layer
(Predicted disease classes with confidence scores)

{Vision Transformer Module}

(Prcesses ROIs)

Pre-trained on ImageNet
Fine-tuned on NIH dataset

ViT-B/16
(Vision Transformerer)

Detected ROI Patch | | Transformer Predicted
from YOLOS8 Embedding Encoder Lung Disease
Pneumonia
Effusion
Nodule

Classification Head

Figure 2. Workflow and architecture diagram for the hybrid YOLO and vision transformer framework
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3. EXPERIMENTAL DETAILS
3.1. Data pre-processing

Comprehensive preprocessing was implemented to standardize and enhance the dataset through the
following methodologies:

— Resizing: all the images used in the analysis were rescaled to match the input sizes of YOLO, 416 by
416 and vision transformer, 224 by 224.

— Normalization: pixel intensities were primarily standardized by scaling to values ranging between 0 and
1 s0 as not to conflict with some of the existing model configurations.

— Augmentation: other data augmentation methods used included rotation of images up to 15°
horizontal flipping, and alterations of image brightness.

—  Dataset splitting: the entire dataset was divided into three sets namely, training set (70%), validation
set (20%) and test set (10%). In order to balance out the distribution of the classes of disease, care was
taken to divide the data into the splits.

—  Transfer learning: transfer learning was employed to mitigate the challenges of limited annotated data and
computational costs.

—  YOLO pre-trained weights: before the start of the YOLOv8 model, the weights were trained on the
COCO dataset. These weights served as a good starting point in the model for categorizing detectable
key points of chest x-rays.

—  Vision transformer pre-trained weights: like the previous models, the vision transformer was trained with
the weights from the ImageNet dataset. These weights were trained on the NIH Chest X-ray data set after
reducing the learning rate for fine-tuning in order to retain general features besides domain specific ones.

—  Fine-tuning strategy: weights of both YOLO and vision transformer components were optimized
progressively by ‘unfreezing’ layers for learning from the deeper layers of the dataset. The learning rate
was reduced step wisely by using cosine annealing function.

3.2. Training pipeline
The training pipeline was designed to ensure efficient and accurate optimization of the hybrid model.

3.2.1. Loss functions

YOLO employed the localization loss relating to the bounding box regression, confidence loss and
the classification loss. The Vision Transformer used categorical cross-entropy for multi-class classification
problem.

3.2.2. Optimizers
The Adam optimizer was used for both YOLO and vision transformer components, with an initial
learning rate of 0.001 for YOLO and 0.0001 for the transformer.

3.2.3. Learning rate scheduler
To improve the convergence, a cosine annealing scheduler was used for the learning rate probe.

3.2.4. Batch size and epochs

YOLO was scheduled to train using a batch size of 32 to improve speed, whereas ViT was limited to
16. Each model was trained with 50 epochs and early stopping based on validation. The training was
performed on TensorFlow and PyTorch on NVIDIA A100 GPUs with Jupyter Notebooks and pipelines. This
is because the high rate of accuracy and efficiency in diagnosing lung disease is guaranteed with the
application of the open-source hybrid framework.

3.3. Proposed architectural enhancement
These augmentations purport to fill a semantic gap between detection and classification tasks, resulting

in increased accuracy and the model’s interpretability

—  Adaptive ROI resizing: instead of resizing uniformly to 224x224 pixels, the aspect ratio is maintained,
and accordingly, padding is added to prevent distortions of disease appearance.

—  Surprise-based ROI selection: only ROIs scoring above 0.6 confidence are passed on to the classifier,
reducing false positives.

— ROI aggregation: in a multi-disease scenario, the overlapping or the adjacent ROIs are combined to
avert the reappearance of classification redundancy.

—  Attention map integration: optionally, Grad-CAM is applied on ViT to display classification focus,
enhancing explainability.
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4. RESULTS AND DISCUSSION
4.1. Quantitative results

The new YOLO-VIT combination showed better results than stand-alone systems in all leading
indicators. The results are summarized in Table 2. YOLO-VIT obtained the best mAP of 96.8 % versus 87.5
% (YOLO), 90.2 % (ViT), with an AUC-ROC of 0.98, meaning a good disease classification differentiation.
It is accurate, precise, and specific, emphasizing its reliability in reducing false positives and negatives,
which is essential in clinical settings. Figure 3 shows the graphical representation of performance metrics,
along with ROC curves and training/validation loss over epochs.

Table 2. Performance measure in the hybrid model vs other model

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC
Standalone YOLO 875 85.3 821 83.6 0.89
Vision transformer 90.2 88.7 86.5 87.6 0.91
Hybrid (YOLO + ViT) 9.8 95.4 942 94.8 098
Baseline CNN (ResNet) 84.3 815 79.8 80.6 0.85
Performance Metrics Comparison ROC Curve Comparison Training and Validation Metrics
YOLO 1.0} — YOLO (AUC = 0.67) 0.9
L_R'as —— VAT (AUC = 0.77)
. Hybrid —— Hybrid (AUC = 0.87)
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Figure 3. Performance metrics of the proposed hybrid framework, ROC curves accuracy/loss curves

4.2. Qualitative results

The qualitative outcomes of the research confirm the efficiency of the hybrid model. Figure 4
reveals that the abnormal lesion, such as a nodule, can be accurately detected with localization by YOLO. Vit
achieves the correct classification of such a lesion, and the attention maps match clinical expectations.
Misclassification is not rare, so Figure 4 also mentions the confusion matrix between pneumonia and the
appearance of pleural effusion as an example. The lower accuracy was observed with those diseases that do
not occur so frequently, such as hernia or pleural thickening, implying the necessity of future performance
enhancement of rare or complicated instances.
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Figure 4. Misclassification analysis showing the frequency of errors and confusion matrix for disease
classification
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4.2.1. Ablation study

For a quantitative assessment of all the sub-modules as well as their configuration, an ablation
analysis was performed on the primary elements: YOLO, Vision Transformer, and combinations of the
proposed hybrid framework. Data are, therefore, presented in Table 3. The findings indicate that transfer
learning dramatically improve performance especially when data is limited or unbalanced. Other image
transformation strategies like rotation and flipping also enhanced generality. The brought-up data compared
to the model’s original version underline the complementarity of YOLO’s object detection with the Vision
Transformer’s classification. Figure 5 shows the graphical representation of accuracy for the different
combinations of hybrid framework.

Table 3. Different configurations of the hybrid framework

Configuration Accuracy (%)  Precision (%) Recall (%)  F1-Score (%) AUC-ROC
YOLO Only 87.5 85.3 82.1 83.6 0.89
Vision transformer only 90.2 88.7 86.5 87.6 091
YOLO + ViT (without transfer learning) 92.3 90.1 88.4 89.2 0.93
Hybrid (YOLO + VIT + transfer learning) 96.8 954 94.2 94.8 0.98

Ablation Study Results

100

80

60

Accuracy (%)

40+

201

YOLO Only ViT Only YOLO+VIT YOLO+VIiT+TL

Figure 5. Study showing accuracy improvements for different configurations of the framework

4.2.2. Clinical interpretability with attention maps

We used the Grad-CAM visualizations alongside ViT-B/16 self-attention maps to provide
interpretable Al-predictions consistent with the radiology characteristics to build clinical trust.
Case Study 1: in the case of pneumonia, the model pinpointed the lower right lobe, which conformed to the
clinical manifestations of lobar pneumonia as shown in Figure 6.
Case Study 2: the model appeared precise in showing subtle abnormalities because a pulmonary nodule was
detected in the sharp localization of the lesion in the left upper lung.
Case Study 3: an incorrect finding of pleural effusion was made because of the similarities in appearance
with cardiomegaly, and it is advisable to consider adding more data about the patient to achieve a better
distinction.

4.3. Comparison with recent approaches

We compared our hybrid YOLOvV8 + ViT-B/16 with the new generation of state-of-the-art
architectures, such as swin transformer, ConvNeXt, EfficientNetV2, and MobileViT. Although it is not the
smallest model, our approach displayed greater accuracy and an F1 score in the classification process. The
efficiency of YOLOV8 and the patch-wise processing of ViT-B/16 are powerful inference tools, which means
that the model can be used in realistic practice in medicine.
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Figure 6. Pneumonia detection, nodule localization and false positive- cardiomegaly vs effusion

4.4, Challenges and limitations

The hybrid model has limitations, even though it is advantageous. Its level of complexity in
computation can be problematic for low-resource devices. It is also greatly dependent on pre-learned models
and becomes adaptive with new specific disease patterns in the data. Moreover, such confounding diseases as
pneumonia and heart failure are still likely to be misclassified because of the subtle and similar features on
X-rays.

5. CONCLUSION AND FUTURE WORK

In this paper, we use a hybrid deep learning framework that incorporates both YOLOV8, which can
be used to recognize lung abnormalities in real-time and ViT-B/16, which can classify chest X-rays globally.
The model was trained via transfer learning and image augmentation on the NIH Chest X-ray database, to
reach an accuracy of 96.8 per cent and AUC-ROC 0.98. Bounding boxes and attention maps promote the
interpretability and clinical significance. Our method outperforms the diagnostic performance of Swin
Transformer and MobileViT models. Considerations are its great computational requirements and issues of
intersection between states. Further research will involve simplifying the model, semi-supervised learning,
multimodal combination and dealing with other types of imaging such as CT and MRI. The underlying
innovation is to bring the two components of detection and classification together in a dynamic, explainable
and clinically workable way.
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