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1. INTRODUCTION

The use of technology as a contemporary innovation to analyze and predict data patterns and trends
has become an essential approach across various fields, particularly in medicine and global healthWithin this
framework, data-driven analytical methods help process extensive clinical information collected through
routine medical activities, allowing deeper exploration of disease-related trends. This approach integrates
machine learning, advanced computing, and information retrieval, which have collectively transformed
disease diagnosis and prediction in the field of bioinformatics [1]-[4].

One of the major diseases addressed through this technological application is hepatitis, a serious
liver condition caused by viral infection, which often remains asymptomatic in its early stages. This silent
progression leads to late diagnoses, posing a greater risk of complications such as cirrhosis and liver
failure [5]-[8]. Common symptoms, including fever, nausea, fatigue, easy bruising, and jaundice, may not
appear until advanced stages of liver damage [9], [10].

Recent reports from the world health organization (WHO), hepatitis caused an estimated 1.3 million
deaths in 2022, with over 2.2 million new infections recorded in the same year. A total of 38 countries
accounted for nearly 80% of global infections and deaths, with Indonesia ranked among the top 10 countries
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with the highest hepatitis burden [11]. Predicting mortality and survival rates in hepatitis patients remains a
significant challenge in efforts to improve the effectiveness of treatment and medical intervention. Predictive
modeling not only supports early diagnostic insights but also substantially contributes to informed clinical
decisions and the design of appropriate therapeutic strategies [12]. The incorporation of techniques such as
synthetic minority over-sampling technique (SMOTE), support vector machine recursive feature elimination
(SVM-RFE), and hyperparameter tuning has enhanced model performance in cases involving class
imbalance or noisy data [13]-[15].

Studies have repeatedly shown that the random forest algorithm consistently delivers high accuracy
in predicting hepatitis and related liver conditions achieving over 90% accuracy in many datasets [2], [13],
[16]. Meanwhile, light gradient boosting machine (LightGBM) has emerged as a competitive alternative,
outperforming other models on benchmark datasets such as Indian liver patient dataset (ILPD) [17]-[19].
While linear regression is frequently used as a baseline model in medical studies, it tends to perform less
accurately than non-linear models such as random forest or boosting methods [4], [20].

This study aims to predict survival outcomes in hepatitis patients by comparing the performance of
three widely used machine learning algorithms: linear regression, random forest, and LightGBM. The dataset
includes public data from the UCI machine learning repository and real-world medical records collected from
hospitals in Ambon city, Maluku—Indonesia. The goal is to identify the algorithm with the highest prediction
accuracy and determine the most influential factors affecting patient survival, particularly within the
Indonesian context [21]-[23].

2. MATERIALS AND METHOD

A wide range of research has been conducted to predict mortality rates and survival outcomes in
hepatitis cases using machine learning and artificial intelligence (Al) approaches, aiming to optimize model
performance for real-world applicability [10], [24]-[27]. These studies apply diverse machine learning
methods across multiple hepatitis types (A, B, C, D, E), using structured datasets for both clinical and
demographic features [5], [28]. Several algorithms have been deployed in hepatitis research, including
logistic regression [12], random forest and naive Bayes, as well as hybrid models such as improved random
forests with support vector machines (SVMs) [29]. Some studies have extended into life expectancy
prediction using K-nearest neighbors (KNN), enhanced with genetic algorithms, demonstrating the expansive
exploration of algorithmic solutions in this domain [6], [30], [31].

This study evaluates three commonly used machine-learning techniques. These include a linear-
based model (linear regression), a tree-ensemble method (random forest), and a gradient-boosting framework
known as LightGBM. The novelty lies in evaluating their comparative performance in predicting hepatitis
patient survival outcomes based on real-world and benchmark datasets. Understanding the theoretical
foundations and strengths of these methods is essential for justifying their selection and interpreting results.

2.1. Linear regression

Linear regression serves as a fundamental statistical approach for exploring how predictor variables
contribute to variations in an outcome variable. It is frequently used as a baseline algorithm in clinical data
modeling due to its interpretability and simplicity [27], [32]. Despite its limitations in handling non-linear
relationships, its inclusion in this study allows for comparison against more complex models.

2.2. Random forest

Random forest operates by aggregating the outputs of humerous decision trees, enabling the model
to generalize effectively across heterogeneous clinical features. It reduces variance by averaging results
across trees and is known for its robustness in handling noisy data, imbalanced classes, and high-dimensional
datasets [2], [13], [16], [33]. Random forest has consistently demonstrated strong predictive performance in
hepatitis and liver disease-related studies [17], [18], [34].

2.3. LightGBM

LightGBM applies gradient-boosted decision trees to learn complex patterns efficiently, offering
faster training and strong performance on structured medical data. It is designed to be distributed and
efficient, with faster training speed, lower memory usage, and better accuracy compared to traditional
boosting methods [24], [26]. LightGBM has shown excellent results in biomedical datasets, including ILPD
and hepatitis data, and is capable of handling large-scale, high-dimensional data efficiently [18], [19], [35].

2.4. Classification performance measurement

To evaluate the effectiveness of classification models, robust performance metrics are essential.
In this study, a confusion matrix is used to measure accuracy, precision, recall, and F1-score by comparing
the predicted classifications with the actual outcomes. This metric is effective in both binary and multi-class
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classification problems and is widely used in medical prediction research [7], [12]-[14]. These performance
metrics are based on four different combinations of predicted and actual values. Further explanation shown in
the Table 1.

Table 1. Confusion matrix

Real situation
Positive class  Negative class
Positive class TP FP
Negative class FN TN

Prediction result

— True positive (TP) is the number of correct predictions on data whose actual value is also true.

— False negative (FN) occurs when data that should be classified as positive is mistakenly predicted as
negative by the model. This means the model fails to identify positive data and incorrectly classifies it as
negative.

— False positive (FP) It is a condition of the actual data that is wrong (negative data) but is predicted as true
data.

— True negative (TN) That is, the prediction is correct as negative data according to the actual data
condition is true as negative data.

To evaluate the overall performance of the model’s predictions, accuracy metrics are employed.

The accuracy score is calculated using a standard formula derived from the elements of the confusion matrix,

as presented in Table 1, using the following (1).

TP+TN
@)

Accur = ——
CCUTACY = TP FN+FP+TN

Where TP denotes true positive, TN is true negative, FP is false positive, and FN is false negative.
Additionally, this chapter outlines the research methodology applied in the study. In general, the research
process consists of several key stages, which are illustrated in Figure 1.
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Figure 1. Research stages

— Dataset collection: in this stage, the datasets required for the study are gathered. These datasets include
comprehensive information on medical history, laboratory test results, and diagnostic data related to liver
health. The primary dataset used in this research is obtained from the UCI machine learning
repository [36]. In addition, real-world clinical data were collected through direct field studies at several
hospitals in Ambon city, Maluku, Indonesia.

— Data preprocessing: this phase involves cleaning the data to remove noise and inconsistencies,
normalizing values, and eliminating redundant or irrelevant entries. Feature selection is also conducted to
remove attributes that do not significantly contribute to the classification and prediction processes.
This ensures that the dataset is consistent and suitable for the machine learning algorithms to be applied.

— Implementation of machine learning algorithms: once the dataset has been preprocessed, it is split into
two subsets: training and validation/testing. This division allows for model optimization during training
and performance evaluation during validation. This research employs three categories of predictive
modelling techniques: a linear-based method represented by linear regression, a tree-ensemble strategy
exemplified by random forest, and an advanced gradient-boosting framework commonly known as
LightGBM. All implementation procedures are conducted using Google Colab as the computational
environment.
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— Model validation: this stage involves validating the trained models using the validation dataset.
The performance of each algorithm is assessed based on accuracy metrics, which serve as indicators of
prediction reliability. Each model is evaluated using the same validation protocol to ensure fair
comparison.

— Algorithm performance comparison: in the final stage, the performance of all three algorithms is
compared. After obtaining the accuracy metrics from the validation phase, a comparative analysis is
performed to identify the algorithm with the most reliable and accurate predictive capabilities.
This analysis supports the selection of the most effective model for hepatitis survival prediction.

3. RESULTS AND DISCUSSION
3.1. Dataset collection

This research utilized a dataset obtained from the UCI machine learning repository [12], [36], which
was supplemented with original clinical data collected from various hospitals and health facilities in Ambon
city, Maluku, Indonesia. A total of 154 patient records were used, each containing 19 independent variables,
including clinical symptoms and laboratory test results relevant to hepatitis diagnosis. The independent
variables included: Age, Sex, Steroids, Antiviral, Fatigue, Malaise, Anorexia, Liver Big, Liver Firm, Spleen
Palpable, Spiders, Ascites, Varices, Bilirubin, Alk Phosphate, SGOT, Albumin, Protime, and Histology.
The dependent variable was the survival status of each hepatitis patient, labeled as either “Live” or “Die”.
The selected features were chosen based on their clinical relevance to hepatitis progression and prognosis [5], [6].

3.2. Data preprocessing

The statge of preprocessing involved cleaning the dataset by handling missing values, correcting
inconsistent data types, and removing duplicate entries. Categorical variables were transformed into
numerical format to suit the machine learning algorithms. An exploratory data analysis (EDA) was also
performed, including correlation analysis between features to assess inter-variable relationships.

In general, from the results of data exploration, it is known that there is a positive correlation in the
variables ‘bilirubin’ and ‘alk_phosphate’ shown in Figure 2. The greater the value, the greater the positive
correlation shown. This correlation is important to see the extent of the relationship between variables in the
data. After all preprocessing procedures, the dataset was separated into two segments, where the larger
segment supported model training and the smaller segment served for testing and evaluation.

Figure 2. Correlation of various independent variables in the dataset using Heatmap
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3.3. Implementation of machine learning algorithms

Three machine learning models were implemented: linear regression, random forest, and
LightGBM. The cleaned dataset was trained and tested on each model to assess its ability to classify the
survival status of hepatitis patients into two classes: live and die. The processes of training and evaluating the
models were executed in an online computing environment, with Google Colab serving as the main platform.
Each algorithm was trained using identical data splits and evaluation criteria to ensure fair comparison.

3.4. Model validation

To evaluate model performance, classification results were analyzed using confusion matrices and
several evaluation metrics; accuracy, precision, recall, and F1-score. The confusion matrix for each algorithm
is presented below on Table 2. The interpretation of Table 2 illustrates how the model categorized the test
samples, detailing the distribution of correct and incorrect predictions across all four outcome types. As many
as 20% of the total dataset, namely 154 data, 31 data were used as test sets and provided prediction results for
positive and correctly predicted data conditions as many as 8 data, 14 data were correctly predicted but
predicted incorrectly by the model, 7 data were incorrectly predicted (as positive data) and 2 data conditions
were negatively predicted (actual data was wrong). According to the results of the prediction, the accuracy
level obtained by the regression linear learning model is 0.322580 or 32%.

Table 2. Confusion matrix—linear regression
Real situation

Positive class  Negative class

Positive class 8 7

Negative class 14 2

Prediction result

In Table 3, the classification based on confusion matrix also shows the prediction results for 20% of
the test data from the total data owned. The data condition is correct and predicted correctly by this learning
model as many as 16 data, the data is correct but predicted incorrectly as many as 5, the data condition is
wrong and predicted correctly 0 data and the data condition is incorrectly predicted as incorrect data as 10
data. From the results of this prediction, the accuracy level obtained by the random forest learning model is
0.838709 or 84%.

According to the classification results in Table 4, it can be seen that the model successfully
predicted the data correctly for positive data as many as 14 data, the correct data and predicted wrong data by
the model as many as 7 data, the wrong data and predicted as true data O data and the wrong data (negative)
data predicted correctly as wrong data as many as 10 data. This shows the level of accuracy obtained by the
learning model, which is 0.7741 or 77%.

Table 3. Confusion matrix—random forest
Real situation

Positive class  Negative class

Positive class 16 0

Negative class 5 10

Prediction result

Table 4. Confusion matrix—LightGBM
Real situation

Positive class  Negative class

Positive class 8 7

Negative class 14 2

Prediction result

3.5. Algorithm performance comparison

Based on the classification and prediction results obtained from the learning models, linear
regression, the comparative assessment reveals that random forest outperformed the other models, attaining
an accuracy of 84%. LightGBM achieved 77%, and linear regression showed the weakest performance with
32% accuracy. These findings support earlier studies [1], [2], which also highlighted the strong predictive
performance of random forest in liver disease classification. However, this study goes further by combining
reference data with real-world clinical data collected from actual healthcare settings. This integration
provides a more localized and realistic view of how the models perform in practice, especially in
environments where variability and data quality often differ from controlled research datasets.
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Looking at the accuracy results through the confusion matrix, random forest consistently delivered
the most accurate predictions, placing it at the top, followed by LightGBM. linear regression, by contrast,
lagged behind, and this may be due to how the model operates differently from the other two algorithms.
In the case of random forest and LightGBM, classification and prediction processes were applied directly to
the models. But with linear regression, a conversion step was needed to turn continuous outputs into binary
form before the model could be evaluated for classification tasks. This not only adds an extra layer of
complexity but also exposes one of the model’s main weaknesses, its limited ability to handle binary clinical
classification, especially when working with non-linear data like hepatitis progression.

This underscores the importance of selecting algorithms that are not only accurate but also well-
matched to the structure and characteristics of the data. In this research, the random forest model is clearly
the most effective among those evaluated. However, the performance of the model is not solely dependent on
the algorithm selection but is also significantly influenced by factors such as the dataset size, the relevance of
the features, and the quality of the input data. Going forward, further evaluation of other models using larger
and more diverse datasets would be valuable to better understand the robustness and generalizability of each
learning approach. In addition, the findings point to the promising role of ensemble-based algorithms,
particularly random forest, as practical tools in intelligent clinical decision-support systems for early
detection and treatment planning of hepatitis.

3.6. Clinical insights

Clinical experts emphasized that hepatitis viruses are classified into five major forms, which differ
in how they spread, how they present clinically, and the severity of their mortality risk. Accurate
classification is essential in guiding diagnostic and treatment decisions. Moreover, understanding
transmission pathways and patient behaviors is crucial for prevention, reinforcing the importance of hygiene
and dietary management in mitigating hepatitis transmission risks.

4. CONCLUSION

This work applied and assessed three predictive approaches, linear regression, random forest, and
LightGBM, to estimate survival outcomes in hepatitis cases. The comparative results indicate that random
forest delivered the strongest performance with 84% accuracy, LightGBM attained 77%, and linear
regression showed the weakest result at 32%. These results are significant because they validate the
applicability of ensemble learning models, particularly random forest, in clinical prediction tasks using real-
world patient data. Compared to existing research, this study contributes a context-specific model tailored to
healthcare conditions in Ambon, Indonesia, bridging the gap between theoretical models and field
applicability. The lower performance of linear regression reinforces the importance of algorithm selection
based on data characteristics and the nature of the prediction task.

Ultimately, these findings demonstrate that the random forest algorithm offers an accurate and
adaptive solution for predicting survival in hepatitis cases, especially when trained using real-world medical
data. Its performance demonstrates that this algorithm has strong potential for integration into intelligent
healthcare systems, particularly in resource-limited settings. For future research, several improvements are
suggested, including expanding the dataset size to reduce the risk of overfitting and improve generalizability,
evaluating additional machine learning algorithms such as deep learning approaches to explore further
performance gains, and classifying predictions based on hepatitis types (A, B, C, and D) to enable more
granular and disease-specific prognostic models. These enhancements are expected to contribute to the
development of more accurate, reliable, and clinically applicable decision-support systems for hepatitis
diagnosis and prognosis.
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