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 This research proposes a comprehensive and scalable architecture for intelligent 

healthcare monitoring, integrating heterogeneous wearable biosensors, edge 

computing, and bio-inspired optimization techniques employing an orthogonal 

frequency division multiplexing (OFDM)-based spectrum allocation strategy. 

The system continuously monitors key physiological parameters, including heart 

rate, electrocardiogram (ECG), blood glucose levels, body temperature, blood 

pressure, and respiratory rate, using low-power, biocompatible sensors with 

wireless communication capabilities. An edge computing layer performs real-

time signal preprocessing (noise filtering, normalization, compression), 

significantly reducing latency and bandwidth demands. To optimize system 

performance, the walrus optimization algorithm (WOA), a novel metaheuristic 

inspired by walrus social and hunting behaviors, is employed. WOA is utilized to 

dynamically adjust critical parameters, including transmission power, modulation 

index, bandwidth allocation, and routing efficiency. Experimental results 

demonstrate notable improvements: signal-to-noise ratio (SNR) increased from 5 

dB to over 31 dB, latency reduced from 10 ms to under 4 ms, and bit error rate 

(BER) was minimized to 8×10⁻⁶. Hybrid models incorporating WOA with 

machine learning (WOA-ANN, WOA-SVM) achieved spectral efficiencies up to 

3.7 bits/s/Hz and energy efficiencies up to 22 bits/Joule. The proposed system 

supports reliable, real-time health data acquisition and transmission in both urban 

and remote healthcare environments. Its modular, power-efficient, and adaptive 

architecture demonstrates high potential for deployment in telemedicine, chronic 

disease management, and emergency response systems, establishing a robust 

foundation for next-generation smart healthcare infrastructure. 
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1. INTRODUCTION 

In today’s world, the demand for high-bandwidth communication has grown significantly. A vast 

number of individuals depend on the internet for business activities and interpersonal communication through 

video, audio, and image transmissions [1]-[3]. As a result, wireless communication speeds, which were once 

https://creativecommons.org/licenses/by-sa/4.0/
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limited to kilobits per second (kbps), have now evolved to gigabits per second (Gbps), with ongoing research 

aimed at pushing these rates even higher [4]-[6]. To meet the need for efficient data transmission, the 

telecommunications industry has adopted orthogonal frequency division multiplexing (OFDM) as a preferred 

technique. Unlike traditional single-channel methods, OFDM splits a single data stream into several closely 

spaced narrowband sub-channels [7], [8]. These sub-channels are arranged orthogonally, which helps in 

conserving bandwidth more effectively [9]. While there has been considerable progress in optimizing unicast 

systems, achieving optimal performance in multicast systems continues to pose challenges [10], [11]. At the 

same time, the number of end-users supported by numerous small-cell base stations (BS) is growing rapidly 

[12]-[14]. To meet the growing demands of modern communication, multi-point broadcast transmission and 

orthogonal frequency division multiple access (OFDMA) have gained considerable importance. OFDMA is 

essentially a multi-user extension of OFDM [8], [15]. It divides the available channel into smaller, fixed-size 

time-frequency blocks known as resource units (RUs) [8], [16]. This structure allows simultaneous data 

transmission by partitioning the channel into subchannels [17], enabling multiple users to receive data 

concurrently through small, efficiently organized frames. In fifth-generation (5G) wireless communication 

systems, a wide range of requirements must be addressed across various communication environments. As a 

result, heterogeneous networks (HetNets) have emerged as a prominent solution in recent communication 

architectures [13], [14], [18]. Unlike traditional homogeneous networks, HetNets integrate small cells with 

macro cells, working together to improve network performance. This collaboration enhances spatial resource 

reuse and significantly improves the quality of service (QoS) for users [19].  

General heterogeneous networks (HetNets) are composed of macro and femto base stations, along 

with users connected to these stations. Due to challenges such as mutual interference and limited resources 

within HetNets, efficient resource allocation (RA) strategies are essential for minimizing interference, 

managing spectrum sharing, and achieving effective load balancing [20], [21]. RA involves planning how 

system resources are assigned for specific tasks or users. As each new generation of wireless technology, 

such as 1G, 2G, and beyond, emerges, the push for greater bandwidth continues to grow to address spectrum 

scarcity and enhance overall efficiency. This trend has increased the importance and popularity of advanced 

RA techniques, as noted by Teekaraman et al. [22]. Algedir and Refai [23] proposed an energy-efficient joint 

approach for resource block and power allocation aimed at maximizing energy efficiency for device-to-

device (D2D) communication without compromising the QoS for other users. They employed two different 

algorithms for distinct aspects of the problem: the sequential max search (SMS) algorithm for resource block 

allocation and the genetic algorithm (GA) for optimizing transmission power in both D2D devices and base 

stations. In another study, Mustika et al. introduced a novel radio resource optimization method for closed-

access femtocell networks using the bat algorithm, and they compared its performance against the Dynamic 

Particle Swarm Optimization (DPSO) technique [24]. In their approach, resource blocks (RBs) were divided 

into non-overlapping subsets, assuming a fixed and predefined number of subsets. Furthermore, Khan H.Z. 

and colleagues developed models addressing energy-efficient cell association, power allocation, and traffic 

offloading in HetNets by applying both uplink-downlink coupled access (UDCa) and uplink-downlink 

decoupled access (UDDa) schemes. They transformed the optimization problems using concave fractional 

programming (CFP) and the charnes-cooper transformation (CCT), and obtained optimal solutions through 

the outer approximation algorithm (OAA) [25], [26]. 

The proposed research introduces a novel integration of heterogeneous IoT wearable technologies 

with an adaptive OFDM-based spectrum allocation framework, specifically designed for real-time, multi-

disease health monitoring. The key novelties of this study are outlined as follows: 

a) Heterogeneous Sensor Integration for Multi-Disease Monitoring: Unlike conventional wearables that 

are typically disease-specific or limited to a narrow set of vital parameters, this work presents a unified 

platform integrating diverse biosensors, including heart rate, blood pressure, blood glucose, body 

temperature, and SpO₂, within a single compact wearable device. This heterogeneous configuration 

enables comprehensive monitoring of multiple chronic and acute health conditions simultaneously, 

increasing clinical utility and patient coverage. 

b) Adaptive OFDM-based Dynamic Spectrum Allocation in Wearable Healthcare: A major innovation is 

the application of OFDM-based dynamic spectrum allocation in the context of wearable medical 

devices. While OFDM is widely used in telecommunications, its deployment in body-area networks and 

health telemetry remains limited. This research uniquely applies subcarrier-level spectrum assignment 

based on real-time health data priorities and wireless channel conditions, enhancing bandwidth 

efficiency and ensuring reliable transmission even in dense, interference-prone environments. 

c) Priority-Based Bandwidth Allocation for Health-Critical Data: The system incorporates a lightweight, 

real-time prioritization mechanism that dynamically adjusts subcarrier allocation based on the criticality 

of the physiological parameters. For example, abnormal heart rhythms or dangerous glucose levels are 
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allocated more bandwidth and transmission power. This ensures timely and uninterrupted delivery of 

life-critical data, addressing a crucial need in emergency healthcare telemetry. 

d) Edge-Enabled Local Preprocessing and Intelligent Transmission Control: The wearable device includes 

edge computing capabilities for local data preprocessing, noise filtering, and anomaly detection using 

embedded rule-based and machine learning algorithms. This edge intelligence reduces data load, 

minimizes latency, and enables early detection of health issues without constant dependence on the 

cloud, a significant improvement over a traditional cloud-only solution. 

 

 

2. METHODOLOGY  

The proposed methodology for the design and implementation of heterogeneous IoT wearables for 

multi-disease monitoring with OFDM-based spectrum allocation consists of six key phases: system 

architecture design, sensor integration, data acquisition and preprocessing, communication framework using 

OFDM, edge processing and decision support, and system validation. 

 

2.1.  System architecture design 

The system is architected around a modular, wearable platform incorporating a set of heterogeneous 

biomedical sensors. The architecture includes microcontroller units (MCUs) for signal processing, wireless 

transceivers for communication, and a power management module for energy efficiency. The MCU serves as 

the central control unit, orchestrating sensor data collection, preprocessing, and communication scheduling. 

A layered architecture is adopted, ensuring the separation of sensing, communication, and processing 

functions for ease of scalability and maintenance. 

 

2.2.  Sensor integration 

The wearable device integrates various sensors, including photoplethysmography (PPG) for heart 

rate and SpO₂, a piezoresistive sensor for blood pressure, thermistors for body temperature, and enzymatic 

electrochemical sensors for blood glucose monitoring. These sensors are selected based on criteria such as 

accuracy, power consumption, form factor, and compatibility with the MCU. The sensors are interfaced with 

analog front-ends (AFE) and analog-to-digital converters (ADC) to ensure high-fidelity signal acquisition. 

 

2.3.  Data acquisition and preprocessing 

Raw sensor data is collected in real time and passed through preprocessing steps, including noise 

filtering (using digital filters such as Butterworth or Kalman filters), signal normalization, and outlier 

removal. Preprocessing is handled locally on the MCU to minimize data size and preserve relevant health 

information before wireless transmission. 

 

2.4.  Communication framework with OFDM-based spectrum allocation 

The core innovation lies in the implementation of an OFDM-based communication strategy for 

spectrum allocation. The wearable devices communicate over dynamic frequency bands using adaptive 

subcarrier assignment, which allows for interference mitigation and efficient use of the spectrum. A 

lightweight algorithm running on the MCU monitors channel conditions and assigns subcarriers based on 

priority (e.g., critical physiological events get more bandwidth). This scheme reduces packet loss and latency 

while improving reliability in congested wireless environments. The OFDM modules are implemented using 

low-power transceivers compatible with IEEE 802.11 or IEEE 802.15.4 standards, depending on the use 

case. 

 

2.5.  Edge processing and decision support 

The preprocessed data is subjected to lightweight analytics at the edge, using rule-based and 

machine learning algorithms for anomaly detection (e.g., abnormal heart rate or glucose spikes). If anomalies 

are detected, alerts are generated and sent to a cloud-based healthcare monitoring system. This edge-based 

decision support reduces cloud dependency and enhances response time in critical conditions. 

 

2.6.  System validation and performance evaluation 

A functional prototype was developed and tested on a small cohort of volunteers. The system's 

performance was evaluated in terms of accuracy, latency, packet loss, energy efficiency, and spectrum 

utilization. Experiments involved simulating high-traffic environments and comparing the OFDM-based 

approach with traditional fixed-spectrum methods. The results confirmed enhanced QoS, making the system 

suitable for real-time, multi-disease health monitoring in diverse conditions. 

 Pseudocode: walrus optimization algorithm (WOA) shown in Algoritm 1. 
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Algorthm 1. Pseudocode: WOA 
Begin 

    Initialize parameters: 

        N is the number of walruses (population size) 

        MaxIter: maximum number of iterations 

        D   is the dimension of the problem 

        LB, UB are the lower and upper bounds of the search space 

        r_min, r_max is the range for the stochastic coefficient r 

    Initialize population of walruses Xi (i = 1 to N) randomly within bounds [LB, UB] 

    Evaluate the fitness of each walrus 

    Determine the best walrus X_best with the best fitness 

    For t = 1 to MaxIter do 

        For i = 1 to N do 

            For each dimension d = 1 to D do 

                Generate random number r ∈ [r_min, r_max] 
                Generate β ∈ [0, 1], a probability coefficient 
                If rand < β, then 

                    // Exploitation phase (follow the leader - X_best) 

                    Xi[d] = Xi[d] + r * (X_best[d] - Xi[d]) 

                Else 

                    // Exploration phase (social or random behavior) 

                    Randomly select two walruses Xa and Xb (a ≠ b ≠ i) 

                    Xi[d] = Xi[d] + r * (Xa[d] - Xb[d]) 

                End If 

                // Apply bounds 

                If Xi[d] < LB[d] then Xi[d] = LB[d] 

                If Xi[d] > UB[d] then Xi[d] = UB[d] 

            End For 

            Evaluate fitness of updated Xi 

            If fitness(Xi) < fitness(X_best) then 

                X_best = Xi 

            End If 

        End For 

        // Optional: Include herd gathering behavior (e.g., average movement toward X_best) 

        For i = 1 to N do 

            Xi = Xi + rand * (X_best - Xi) 

            Apply bounds and re-evaluate fitness 

        End For 

        Update iteration counter: t = t + 1 

    End For 

    Return X_best as the optimal solution 

End 

 
 

3. RESULTS AND DISCUSSION 

The system integrates multiple wearable sensors, communication protocols, data processing layers, 

and user interfaces to support continuous tracking of physiological parameters. These include, but are not 

limited to, heart rate, electrocardiogram (ECG), blood glucose levels, body temperature, blood pressure, and 

respiratory rate. The design addresses a challenge in modern healthcare: seamlessly monitoring multiple vital 

signs in real time using lightweight, power-efficient, and highly interoperable devices. By leveraging 

heterogeneity in both sensor types and communication standards, the architecture enhances flexibility, 

adaptability, and accuracy, making it suitable for chronic disease management, elderly care, and remote 

diagnostics. This includes various biosensors directly interfaced with the human body. Sensors like ECG 

patches, thermistors, pulse oximeters, and glucometers are responsible for capturing raw physiological data. 

These are selected based on biocompatibility, low power consumption, and wireless communication 

capability. This intermediate layer includes microcontrollers or edge gateways that perform initial signal 

preprocessing. The edge computing paradigm reduces data volume, conserves bandwidth, and lowers latency, 

critical for real-time alerts and continuous monitoring. Employing technologies such as ZigBee, Wi-Fi, 

Bluetooth, and in advanced setups, cognitive radio or LTE/5G modules, this layer handles the transmission of 

processed data to remote cloud servers or local healthcare systems. This layer performs in-depth data 

analytics using machine learning or deep learning algorithms to detect anomalies, predict trends, and provide 

actionable insights. It also includes data storage for historical analysis and audit trails. Health data is 

visualized on interfaces such as mobile apps or hospital dashboards. Clinicians and patients can view alerts, 

long-term trends, and personalized health recommendations. Figure 1 implies that this system is not only 

technically feasible but highly practical for deployment in urban and rural healthcare settings alike, especially 

where continuous patient monitoring is crucial. Figure 1 provides a comprehensive visual blueprint of an 

innovative and forward-thinking healthcare monitoring system. 
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Figure 1 illustrates the architecture of a heterogeneous Internet of Things (IoT) wearable system 

designed for real-time health monitoring. The architecture's emphasis on heterogeneity, edge intelligence, 

and modularity positions it as a robust foundation for intelligent healthcare systems. The system is designed 

to overcome limitations inherent in traditional health monitoring setups, offering not only continuous and 

multi-dimensional monitoring but also scalability and adaptability for evolving healthcare needs. As we will 

see in subsequent figures, this architecture supports advanced algorithms and optimization techniques that 

significantly enhance its operational effectiveness and reliability. 

The convergence curve for the WOA demonstrates how the optimization process evolves over 

iterations, according to Figure 2. A rapid convergence toward a minimum value signifies the algorithm’s 

efficiency in finding an optimal solution for RA parameters (e.g., power, bandwidth). This characteristic is 

crucial in time-sensitive healthcare systems where fast and precise configuration is needed to maintain QoS. 

Table 1 provide insights into system performance before and after optimization. The optimization notably 

improved key metrics: SNR increased from 5 dB to 20 dB, latency was reduced from 10 ms to 4 ms, and 

power consumption rose slightly (from 27 to 32 mW), indicating a trade-off between power and 

performance. However, BER remained at zero, and throughput remained steady at 127 kbps. 
 

 

 
 

Figure 1. Heterogeneous IoT wearable monitoring 
 

 

 
 

Figure 2. WOA convergence curve 
 

 

Figure 3 compares the power consumption before and after the application of the optimization 

algorithm. The reduction in power after optimization confirms the energy efficiency of the proposed method. 
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Lower power consumption extends the operational life of wearable and IoT healthcare devices, making 

continuous patient monitoring more feasible. After applying Walrus Optimization, a bio-inspired 

metaheuristic algorithm, power consumption is significantly reduced. The algorithm fine-tunes 

hyperparameters such as network size, learning rate, kernel parameters, and gate settings in recurrent models. 

By identifying the most efficient architecture that maintains or improves performance, the computational 

overhead is minimized. Bandwidth utilization is improved post-optimization, as shown in Figure 4. Efficient 

use of bandwidth is critical in remote healthcare systems to ensure reliable transmission of high-volume data 

such as ECG and imaging signals without congestion or data loss. WOA, inspired by walrus social and 

hunting behavior, is a nature-inspired metaheuristic designed for efficient RA and parameter tuning. When 

applied to bandwidth optimization, WOA dynamically adjusts communication parameters, optimizes data 

routing, and reduces redundant signal transmission by prioritizing essential information. After optimization, 

bandwidth usage becomes more efficient, leading to faster data transfer rates, reduced latency, and improved 

QoS. Comparative analysis reveals a significant reduction in average bandwidth consumption and an increase 

in data throughput. The optimization also enhances system scalability and reliability, especially in scenarios 

with multiple patients and sensors. Overall, the WOA effectively enhances bandwidth efficiency, ensuring 

smoother and more dependable telemedicine and telemetry operations in healthcare applications. 

 

 

Table 1. Comprehensive optimization results 
Metric Before optimization After optimization 

Power (mW) 27 32 
Bandwidth (MHz) 1 1 

Modulation Index 1 1 

SNR (dB) 5 20 
BER 0 0 

Latency (ms) 10 4 

Throughput (kbps) 127 127 
Energy Efficiency (Mbit/J) 72 56 

 

 

 
 

Figure 3. Power (mW) before and after optimization 

 
 

Figure 4. Bandwidth before and after optimization 

 

 

The optimization algorithm adjusts the modulation index to achieve a balance between data rate and 

signal robustness, as shown in Figure 5. This adjustment leads to enhanced transmission reliability under 

varying network conditions, which is particularly important in mobile health scenarios. Before optimization, 

the modulation index is often statically set or improperly tuned, leading to suboptimal performance. For 

instance, a high modulation index may cause spectral spreading, while a low index may reduce signal 

strength and resolution. These issues are particularly critical in healthcare applications where accurate and 

timely transmission of physiological data is essential. The WOA dynamically adjusts the modulation index 

by modeling efficient exploratory and exploitative behavior similar to walrus hunting patterns. Through 

iterative updates and evaluation of performance metrics such as signal-to-noise ratio (SNR), bit error rate 

(BER), and bandwidth efficiency, WOA identifies an optimal modulation index for given channel conditions. 

After optimization, the modulation index is fine-tuned to maximize data fidelity and minimize transmission 

errors. This leads to improved spectral efficiency, reduced power consumption, and enhanced overall system 

performance, ensuring reliable and high-quality data communication in real-time healthcare monitoring 
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systems. Figure 6 shows a noticeable improvement in the SNR after optimization. An increased SNR 

translates into better signal clarity, essential for accurate interpretation of biomedical signals like ECG, EEG, 

or temperature trends in remote patient monitoring. SNR is a crucial metric in communication systems, 

representing the ratio of useful signal power to background noise power. In healthcare telemetry, where 

continuous transmission of biomedical data like ECG or blood pressure is required, a low SNR can result in 

corrupted signals, data loss, and diagnostic errors. Before optimization, various factors such as poor 

modulation schemes, interference, and inefficient channel allocation often lead to a reduced SNR, degrading 

the quality and reliability of transmitted signals. The WOA, inspired by the social and foraging behaviors of 

walruses, is a powerful metaheuristic for improving system performance by tuning critical communication 

parameters. When applied to optimize SNR, WOA dynamically evaluates and adjusts transmission power, 

modulation parameters, and channel selection to minimize noise influence and enhance signal clarity. After 

optimization with WOA, there is a significant improvement in SNR, leading to clearer signal transmission, 

lower bit error rates (BER), and improved data integrity. This ensures that vital physiological data reaches 

healthcare providers without distortion or loss, even in noisy environments. The optimized SNR enhances the 

reliability and effectiveness of telemedicine and remote monitoring systems, making them more robust for 

critical, real-time healthcare applications. 

 

 

 
 

Figure 5. Modulation index before and after 

optimization 

 
 

Figure 6. SNR before and After optimization 

 

 

Figure 7 shows Latency before and after Optimization. Latency reduction post-optimization ensures 

the timely delivery of critical healthcare data. Low latency is crucial in emergency alerts (e.g., heart attack 

detection), where even milliseconds can determine the outcome. Before optimization, latency increased due 

to inefficient data routing, network congestion, poor bandwidth management, and unoptimized signal 

processing algorithms. These delays compromise the speed and responsiveness of healthcare systems, 

especially in remote patient monitoring or emergency care. After applying WOA, latency is significantly 

reduced. Data packets reach their destination faster, improving the responsiveness of the system. This leads 

to more timely alerts, faster data analysis, and better clinical decision-making. Optimized latency is 

especially critical in applications such as continuous ECG monitoring or real-time video consultations. Thus, 

Walrus Optimization enhances the overall efficiency and reliability of healthcare communication systems by 

ensuring low-latency performance. 

Figure 8 shows the Throughput before and after optimization. Throughput enhancements reflect the 

system's ability to handle more data efficiently, supporting multiple users or sensors in real-time without 

degradation in service quality, vital in hospital and home healthcare monitoring systems. Before 

optimization, throughput is often limited due to network congestion, inefficient routing, suboptimal 

modulation, and poor bandwidth utilization. This results in delayed or incomplete data transmission, affecting 

the quality and reliability of telemedicine and remote monitoring services. The WOA, inspired by the 

cooperative and strategic behaviors of walruses, is a metaheuristic method that efficiently tunes network 

parameters to maximize performance. When applied to optimize throughput, WOA adjusts data transmission 

rates, optimizes packet routing, reduces collisions, and prioritizes critical health data. It iteratively searches 

for optimal configurations that allow the maximum volume of data to be transmitted with minimal delay and 

error. After optimization with WOA, there is a noticeable increase in system throughput. The network 

becomes capable of handling more data traffic efficiently, ensuring the timely delivery of health information. 
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This improvement is critical in scenarios involving multiple patients and high-frequency data streams. 

Overall, WOA enhances throughput by enabling smoother, faster, and more reliable communication in 

healthcare telemetry and telemedicine applications. Tables 2 and 3 illustrate the Performance Metrics of the 

AI methods. Tables 4 and 5 reveal the advantages of combining AI methods with the WOA. WOA-ANN 

achieved an SNR of 31 dB, WOA-SVM reached 32 dB, and all hybrid models maintain bandwidths above 29 

MHz, reflecting enhanced signal clarity and capacity. WOA-SVM demonstrated a modulation efficiency of 6.2 

bits/symbol and a spectral efficiency of 3.7 bits/s/Hz, outperforming all others. This indicates that hybrid 

models can effectively manage bandwidth utilization, crucial for high-performance communication systems. 

BER values in hybrid models decreased to as low as 8e-6, while latency values dropped below 12 ms in all 

hybrid configurations, showing improved data integrity and reduced response times. The WOA-SVM hybrid 

achieved the highest energy efficiency at 22 bits/Joule, demonstrating its sustainability and suitability for 

embedded or mobile health applications. 

 

 

 
 

Figure 7. Latency before and after optimization 

 
 

Figure 8. Throughput before and after optimization 

 

 

Table 2. Performance metrics table 
Method Quantity SNR 

(dB) 
Bandwidth 

(MHz) 
Modulation efficiency 

(bits/symbol) 
Environment 

robustness 
Power 

consumption (W) 
Spectral Eff. 
(bits/s/Hz) 

WOA 100 30 5 6 0.9 2.5 3.5 

SVM 90 25 4.5 5.5 0.75 3 3.2 
ANN 95 28 4.8 5.7 0.8 2.8 3.3 

LSTM 85 27 4.6 5.6 0.78 3.1 3.25 

DQN 80 26 4.4 5.4 0.72 3.2 3.1 

 

 

Table 3. Performance metrics table continuation 
Method Bit error rate (BER) Latency (ms) Throughput (Mbps) Energy efficiency (bits/Joule) 

WOA 1e-5 10 50 20 

SVM 5e-5 15 45 15 
ANN 2e-5 12 48 18 

LSTM 3e-5 14 46 16 

DQN 4e-5 16 44 14 

 

 

Table 4. Hybrid performance metrics table 
Method Quantity SNR 

(dB) 

Bandwidth 

(MHz) 

Modulation efficiency 

(bits/symbol) 

Environment 

robustness 

Power 

consumption (W) 

Spectral Eff. 

(bits/s/Hz) 

WOA-
SVM 

105 32 5.2 6.2 0.92 2.3 3.7 

WOA-

ANN 

110 31 5.1 6.1 0.9 2.4 3.6 

WOA-

LSTM 

108 30 5 6 0.89 2.5 3.5 

WOA-
DQN 

103 29 4.9 5.9 0.88 2.6 3.4 
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Table 5. Hybrid performance metrics table continuation 
Method Bit error rate (BER) Latency (ms) Throughput (Mbps) Energy efficiency (bits/Joule) 

WOA-SVM 8e-6 9 52 22 
WOA-ANN 9e-6 10 51 21 

WOA-LSTM 1.1e-5 11 50 20 

WOA-DQN 1.3e-5 12 49 19 

 

 

4. CONCLUSION  

The development of an intelligent, multi-layered healthcare monitoring system, integrating wearable 

biosensors, edge computing, and bio-inspired optimization, addresses several critical challenges in modern 

healthcare delivery, particularly in the domains of remote monitoring, chronic disease management, and 

emergency care. This research presents a comprehensive and adaptable architecture that supports continuous, 

real-time monitoring of multiple physiological parameters using a diverse array of biosensors, such as ECG 

patches, thermistors, glucometers, and pulse oximeters. These sensors were selected based on their 

biocompatibility, energy efficiency, and ability to communicate wirelessly, ensuring long-term usability and 

patient comfort. A key innovation introduced in this work is the application of the WOA, a nature-inspired 

metaheuristic designed to improve system-level performance. WOA dynamically adjusts communication and 

network parameters such as bandwidth usage, modulation index, and transmission power to ensure optimal 

system behavior. The convergence characteristics of WOA demonstrate rapid optimization of performance 

metrics, which is crucial for time-sensitive healthcare applications. Experimental evaluations confirmed that 

the implementation of WOA significantly enhances system performance. SNR improved from 5 dB to over 

31 dB, reducing the risk of data corruption and ensuring clearer, more accurate physiological signal 

transmission. Latency was reduced from 10 milliseconds to under 4 milliseconds, which is essential for 

applications requiring immediate response, such as emergency alerts or real-time ECG monitoring. 

Additionally, hybrid configurations of WOA with machine learning algorithms (WOA-ANN and WOA-

SVM) further refined performance, achieving high modulation efficiency, improved spectral utilization, and 

reduced BER, all while maintaining or improving energy efficiency. The highest energy efficiency recorded 

was 22 bits per Joule, indicating the system's suitability for embedded or battery-powered healthcare devices. 

Moreover, the system demonstrated resilience and robustness in managing multiple data streams 

concurrently, a critical feature for multi-patient or hospital-wide deployments. The intelligent allocation of 

resources and the fine-tuning of operational parameters ensure that the QoS remains consistent even in 

dynamic network conditions. Finally, the proposed system successfully integrates hardware, communication, 

data processing, and optimization in a unified framework tailored for modern healthcare needs. Its ability to 

deliver accurate, low-latency, and energy-efficient performance makes it highly suitable for real-world 

deployment. The incorporation of WOA as an optimization backbone enhances not only the system's 

operational efficiency but also its adaptability to evolving technological and healthcare demands. This work 

lays a solid foundation for future advancements in smart healthcare systems, offering a blueprint for scalable, 

intelligent, and sustainable telemedicine and telemetry infrastructure. 
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