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This research proposes a comprehensive and scalable architecture for intelligent
healthcare monitoring, integrating heterogeneous wearable biosensors, edge
computing, and bio-inspired optimization techniques employing an orthogonal
frequency division multiplexing (OFDM)-based spectrum allocation strategy.
The system continuously monitors key physiological parameters, including heart
rate, electrocardiogram (ECG), blood glucose levels, body temperature, blood
pressure, and respiratory rate, using low-power, biocompatible sensors with
wireless communication capabilities. An edge computing layer performs real-
time signal preprocessing (noise filtering, normalization, compression),
significantly reducing latency and bandwidth demands. To optimize system
performance, the walrus optimization algorithm (WOA), a novel metaheuristic
inspired by walrus social and hunting behaviors, is employed. WOA is utilized to
dynamically adjust critical parameters, including transmission power, modulation
index, bandwidth allocation, and routing efficiency. Experimental results
demonstrate notable improvements: signal-to-noise ratio (SNR) increased from 5
dB to over 31 dB, latency reduced from 10 ms to under 4 ms, and bit error rate
(BER) was minimized to 8x107°. Hybrid models incorporating WOA with
machine learning (WOA-ANN, WOA-SVM) achieved spectral efficiencies up to
3.7 bits/s/Hz and energy efficiencies up to 22 bits/Joule. The proposed system
supports reliable, real-time health data acquisition and transmission in both urban
and remote healthcare environments. Its modular, power-efficient, and adaptive
architecture demonstrates high potential for deployment in telemedicine, chronic
disease management, and emergency response systems, establishing a robust
foundation for next-generation smart healthcare infrastructure.
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1. INTRODUCTION

In today’s world, the demand for high-bandwidth communication has grown significantly. A vast
number of individuals depend on the internet for business activities and interpersonal communication through
video, audio, and image transmissions [1]-[3]. As a result, wireless communication speeds, which were once
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limited to Kilobits per second (kbps), have now evolved to gigabits per second (Gbps), with ongoing research
aimed at pushing these rates even higher [4]-[6]. To meet the need for efficient data transmission, the
telecommunications industry has adopted orthogonal frequency division multiplexing (OFDM) as a preferred
technique. Unlike traditional single-channel methods, OFDM splits a single data stream into several closely
spaced narrowband sub-channels [7], [8]. These sub-channels are arranged orthogonally, which helps in
conserving bandwidth more effectively [9]. While there has been considerable progress in optimizing unicast
systems, achieving optimal performance in multicast systems continues to pose challenges [10], [11]. At the
same time, the number of end-users supported by numerous small-cell base stations (BS) is growing rapidly
[12]-[14]. To meet the growing demands of modern communication, multi-point broadcast transmission and
orthogonal frequency division multiple access (OFDMA) have gained considerable importance. OFDMA is
essentially a multi-user extension of OFDM [8], [15]. It divides the available channel into smaller, fixed-size
time-frequency blocks known as resource units (RUs) [8], [16]. This structure allows simultaneous data
transmission by partitioning the channel into subchannels [17], enabling multiple users to receive data
concurrently through small, efficiently organized frames. In fifth-generation (5G) wireless communication

systems, a wide range of requirements must be addressed across various communication environments. As a

result, heterogeneous networks (HetNets) have emerged as a prominent solution in recent communication

architectures [13], [14], [18]. Unlike traditional homogeneous networks, HetNets integrate small cells with
macro cells, working together to improve network performance. This collaboration enhances spatial resource

reuse and significantly improves the quality of service (QoS) for users [19].

General heterogeneous networks (HetNets) are composed of macro and femto base stations, along
with users connected to these stations. Due to challenges such as mutual interference and limited resources
within HetNets, efficient resource allocation (RA) strategies are essential for minimizing interference,
managing spectrum sharing, and achieving effective load balancing [20], [21]. RA involves planning how
system resources are assigned for specific tasks or users. As each new generation of wireless technology,
such as 1G, 2G, and beyond, emerges, the push for greater bandwidth continues to grow to address spectrum
scarcity and enhance overall efficiency. This trend has increased the importance and popularity of advanced
RA techniques, as noted by Teekaraman et al. [22]. Algedir and Refai [23] proposed an energy-efficient joint
approach for resource block and power allocation aimed at maximizing energy efficiency for device-to-
device (D2D) communication without compromising the QoS for other users. They employed two different
algorithms for distinct aspects of the problem: the sequential max search (SMS) algorithm for resource block
allocation and the genetic algorithm (GA) for optimizing transmission power in both D2D devices and base
stations. In another study, Mustika et al. introduced a novel radio resource optimization method for closed-
access femtocell networks using the bat algorithm, and they compared its performance against the Dynamic
Particle Swarm Optimization (DPSO) technique [24]. In their approach, resource blocks (RBs) were divided
into non-overlapping subsets, assuming a fixed and predefined number of subsets. Furthermore, Khan H.Z.
and colleagues developed models addressing energy-efficient cell association, power allocation, and traffic
offloading in HetNets by applying both uplink-downlink coupled access (UDCa) and uplink-downlink
decoupled access (UDDa) schemes. They transformed the optimization problems using concave fractional
programming (CFP) and the charnes-cooper transformation (CCT), and obtained optimal solutions through
the outer approximation algorithm (OAA) [25], [26].

The proposed research introduces a novel integration of heterogeneous 10T wearable technologies
with an adaptive OFDM-based spectrum allocation framework, specifically designed for real-time, multi-
disease health monitoring. The key novelties of this study are outlined as follows:

a) Heterogeneous Sensor Integration for Multi-Disease Monitoring: Unlike conventional wearables that
are typically disease-specific or limited to a narrow set of vital parameters, this work presents a unified
platform integrating diverse biosensors, including heart rate, blood pressure, blood glucose, body
temperature, and SpO., within a single compact wearable device. This heterogeneous configuration
enables comprehensive monitoring of multiple chronic and acute health conditions simultaneously,
increasing clinical utility and patient coverage.

b) Adaptive OFDM-based Dynamic Spectrum Allocation in Wearable Healthcare: A major innovation is
the application of OFDM-based dynamic spectrum allocation in the context of wearable medical
devices. While OFDM is widely used in telecommunications, its deployment in body-area networks and
health telemetry remains limited. This research uniquely applies subcarrier-level spectrum assignment
based on real-time health data priorities and wireless channel conditions, enhancing bandwidth
efficiency and ensuring reliable transmission even in dense, interference-prone environments.

c) Priority-Based Bandwidth Allocation for Health-Critical Data: The system incorporates a lightweight,
real-time prioritization mechanism that dynamically adjusts subcarrier allocation based on the criticality
of the physiological parameters. For example, abnormal heart rhythms or dangerous glucose levels are
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allocated more bandwidth and transmission power. This ensures timely and uninterrupted delivery of
life-critical data, addressing a crucial need in emergency healthcare telemetry.

d) Edge-Enabled Local Preprocessing and Intelligent Transmission Control: The wearable device includes
edge computing capabilities for local data preprocessing, noise filtering, and anomaly detection using
embedded rule-based and machine learning algorithms. This edge intelligence reduces data load,
minimizes latency, and enables early detection of health issues without constant dependence on the
cloud, a significant improvement over a traditional cloud-only solution.

2. METHODOLOGY

The proposed methodology for the design and implementation of heterogeneous 10T wearables for
multi-disease monitoring with OFDM-based spectrum allocation consists of six key phases: system
architecture design, sensor integration, data acquisition and preprocessing, communication framework using
OFDM, edge processing and decision support, and system validation.

2.1. System architecture design

The system is architected around a modular, wearable platform incorporating a set of heterogeneous
biomedical sensors. The architecture includes microcontroller units (MCUs) for signal processing, wireless
transceivers for communication, and a power management module for energy efficiency. The MCU serves as
the central control unit, orchestrating sensor data collection, preprocessing, and communication scheduling.
A layered architecture is adopted, ensuring the separation of sensing, communication, and processing
functions for ease of scalability and maintenance.

2.2. Sensor integration

The wearable device integrates various sensors, including photoplethysmography (PPG) for heart
rate and SpO-, a piezoresistive sensor for blood pressure, thermistors for body temperature, and enzymatic
electrochemical sensors for blood glucose monitoring. These sensors are selected based on criteria such as
accuracy, power consumption, form factor, and compatibility with the MCU. The sensors are interfaced with
analog front-ends (AFE) and analog-to-digital converters (ADC) to ensure high-fidelity signal acquisition.

2.3. Data acquisition and preprocessing

Raw sensor data is collected in real time and passed through preprocessing steps, including noise
filtering (using digital filters such as Butterworth or Kalman filters), signal normalization, and outlier
removal. Preprocessing is handled locally on the MCU to minimize data size and preserve relevant health
information before wireless transmission.

2.4. Communication framework with OFDM-based spectrum allocation

The core innovation lies in the implementation of an OFDM-based communication strategy for
spectrum allocation. The wearable devices communicate over dynamic frequency bands using adaptive
subcarrier assignment, which allows for interference mitigation and efficient use of the spectrum. A
lightweight algorithm running on the MCU monitors channel conditions and assigns subcarriers based on
priority (e.g., critical physiological events get more bandwidth). This scheme reduces packet loss and latency
while improving reliability in congested wireless environments. The OFDM modules are implemented using
low-power transceivers compatible with IEEE 802.11 or IEEE 802.15.4 standards, depending on the use
case.

2.5. Edge processing and decision support

The preprocessed data is subjected to lightweight analytics at the edge, using rule-based and
machine learning algorithms for anomaly detection (e.g., abnormal heart rate or glucose spikes). If anomalies
are detected, alerts are generated and sent to a cloud-based healthcare monitoring system. This edge-based
decision support reduces cloud dependency and enhances response time in critical conditions.

2.6. System validation and performance evaluation

A functional prototype was developed and tested on a small cohort of volunteers. The system's
performance was evaluated in terms of accuracy, latency, packet loss, energy efficiency, and spectrum
utilization. Experiments involved simulating high-traffic environments and comparing the OFDM-based
approach with traditional fixed-spectrum methods. The results confirmed enhanced QoS, making the system
suitable for real-time, multi-disease health monitoring in diverse conditions.

Pseudocode: walrus optimization algorithm (WOA) shown in Algoritm 1.
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Algorthm 1. Pseudocode: WOA
Begin
Initialize parameters:
N is the number of walruses (population size)
MaxIter: maximum number of iterations
D is the dimension of the problem
LB, UB are the lower and upper bounds of the search space
r min, r max is the range for the stochastic coefficient r
Initialize population of walruses Xi (i = 1 to N) randomly within bounds [LB, UB]
Evaluate the fitness of each walrus
Determine the best walrus X best with the best fitness
For t = 1 to MaxIter do
For 1 = 1 to N do
For each dimension d = 1 to D do
Generate random number r € [r min, r max]
Generate € [0, 1], a probability coefficient
If rand < B, then
// Exploitation phase (follow the leader - X best)
Xi[d] = Xi[d] + r * (X best[d] - Xi[d])
Else
// Exploration phase (social or random behavior)
Randomly select two walruses Xa and Xb (a # b # 1)

Xi[d] = Xi[d] + r * (Xald] - Xb[d])
End If
// Apply bounds
If Xi[d] < LB[d] then Xi[d] = LB[d]
If Xi[d] > UB[d] then Xi[d] = UBI[d]

End For
Evaluate fitness of updated Xi
If fitness(Xi) < fitness(X best) then
X best = Xi
End If
End For
// Optional: Include herd gathering behavior (e.g., average movement toward X best)
For 1 = 1 to N do
Xi = Xi + rand * (X best - Xi)
Apply bounds and re-evaluate fitness
End For
Update iteration counter: t = t + 1
End For
Return X best as the optimal solution
End

3. RESULTS AND DISCUSSION

The system integrates multiple wearable sensors, communication protocols, data processing layers,
and user interfaces to support continuous tracking of physiological parameters. These include, but are not
limited to, heart rate, electrocardiogram (ECG), blood glucose levels, body temperature, blood pressure, and
respiratory rate. The design addresses a challenge in modern healthcare: seamlessly monitoring multiple vital
signs in real time using lightweight, power-efficient, and highly interoperable devices. By leveraging
heterogeneity in both sensor types and communication standards, the architecture enhances flexibility,
adaptability, and accuracy, making it suitable for chronic disease management, elderly care, and remote
diagnostics. This includes various biosensors directly interfaced with the human body. Sensors like ECG
patches, thermistors, pulse oximeters, and glucometers are responsible for capturing raw physiological data.
These are selected based on biocompatibility, low power consumption, and wireless communication
capability. This intermediate layer includes microcontrollers or edge gateways that perform initial signal
preprocessing. The edge computing paradigm reduces data volume, conserves bandwidth, and lowers latency,
critical for real-time alerts and continuous monitoring. Employing technologies such as ZigBee, Wi-Fi,
Bluetooth, and in advanced setups, cognitive radio or LTE/5G modules, this layer handles the transmission of
processed data to remote cloud servers or local healthcare systems. This layer performs in-depth data
analytics using machine learning or deep learning algorithms to detect anomalies, predict trends, and provide
actionable insights. It also includes data storage for historical analysis and audit trails. Health data is
visualized on interfaces such as mobile apps or hospital dashboards. Clinicians and patients can view alerts,
long-term trends, and personalized health recommendations. Figure 1 implies that this system is not only
technically feasible but highly practical for deployment in urban and rural healthcare settings alike, especially
where continuous patient monitoring is crucial. Figure 1 provides a comprehensive visual blueprint of an
innovative and forward-thinking healthcare monitoring system.
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Figure 1 illustrates the architecture of a heterogeneous Internet of Things (loT) wearable system
designed for real-time health monitoring. The architecture's emphasis on heterogeneity, edge intelligence,
and modularity positions it as a robust foundation for intelligent healthcare systems. The system is designed
to overcome limitations inherent in traditional health monitoring setups, offering not only continuous and
multi-dimensional monitoring but also scalability and adaptability for evolving healthcare needs. As we will
see in subsequent figures, this architecture supports advanced algorithms and optimization techniques that
significantly enhance its operational effectiveness and reliability.

The convergence curve for the WOA demonstrates how the optimization process evolves over
iterations, according to Figure 2. A rapid convergence toward a minimum value signifies the algorithm’s
efficiency in finding an optimal solution for RA parameters (e.g., power, bandwidth). This characteristic is
crucial in time-sensitive healthcare systems where fast and precise configuration is needed to maintain QoS.
Table 1 provide insights into system performance before and after optimization. The optimization notably
improved key metrics: SNR increased from 5 dB to 20 dB, latency was reduced from 10 ms to 4 ms, and
power consumption rose slightly (from 27 to 32 mW), indicating a trade-off between power and
performance. However, BER remained at zero, and throughput remained steady at 127 kbps.
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Figure 2. WOA convergence curve

Figure 3 compares the power consumption before and after the application of the optimization
algorithm. The reduction in power after optimization confirms the energy efficiency of the proposed method.
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Lower power consumption extends the operational life of wearable and IoT healthcare devices, making
continuous patient monitoring more feasible. After applying Walrus Optimization, a bio-inspired
metaheuristic algorithm, power consumption is significantly reduced. The algorithm fine-tunes
hyperparameters such as network size, learning rate, kernel parameters, and gate settings in recurrent models.
By identifying the most efficient architecture that maintains or improves performance, the computational
overhead is minimized. Bandwidth utilization is improved post-optimization, as shown in Figure 4. Efficient
use of bandwidth is critical in remote healthcare systems to ensure reliable transmission of high-volume data
such as ECG and imaging signals without congestion or data loss. WOA, inspired by walrus social and
hunting behavior, is a nature-inspired metaheuristic designed for efficient RA and parameter tuning. When
applied to bandwidth optimization, WOA dynamically adjusts communication parameters, optimizes data
routing, and reduces redundant signal transmission by prioritizing essential information. After optimization,
bandwidth usage becomes more efficient, leading to faster data transfer rates, reduced latency, and improved
QoS. Comparative analysis reveals a significant reduction in average bandwidth consumption and an increase
in data throughput. The optimization also enhances system scalability and reliability, especially in scenarios
with multiple patients and sensors. Overall, the WOA effectively enhances bandwidth efficiency, ensuring
smoother and more dependable telemedicine and telemetry operations in healthcare applications.

Table 1. Comprehensive optimization results

Metric Before optimization  After optimization
Power (mW) 27 32
Bandwidth (MHz) 1 1
Modulation Index 1 1
SNR (dB) 5 20
BER 0 0
Latency (ms) 10 4
Throughput (kbps) 127 127
Energy Efficiency (Mbit/J) 72 56
Power (mW) Before and After Optimization Bandwidth (MHz) Before and After Optimization

0.7 F

Bandwidth (MHz)
o o
i o

Before Opt After Opt Before Opt After Opt

Figure 3. Power (mW) before and after optimization Figure 4. Bandwidth before and after optimization

The optimization algorithm adjusts the modulation index to achieve a balance between data rate and
signal robustness, as shown in Figure 5. This adjustment leads to enhanced transmission reliability under
varying network conditions, which is particularly important in mobile health scenarios. Before optimization,
the modulation index is often statically set or improperly tuned, leading to suboptimal performance. For
instance, a high modulation index may cause spectral spreading, while a low index may reduce signal
strength and resolution. These issues are particularly critical in healthcare applications where accurate and
timely transmission of physiological data is essential. The WOA dynamically adjusts the modulation index
by modeling efficient exploratory and exploitative behavior similar to walrus hunting patterns. Through
iterative updates and evaluation of performance metrics such as signal-to-noise ratio (SNR), bit error rate
(BER), and bandwidth efficiency, WOA identifies an optimal modulation index for given channel conditions.
After optimization, the modulation index is fine-tuned to maximize data fidelity and minimize transmission
errors. This leads to improved spectral efficiency, reduced power consumption, and enhanced overall system
performance, ensuring reliable and high-quality data communication in real-time healthcare monitoring
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systems. Figure 6 shows a noticeable improvement in the SNR after optimization. An increased SNR
translates into better signal clarity, essential for accurate interpretation of biomedical signals like ECG, EEG,
or temperature trends in remote patient monitoring. SNR is a crucial metric in communication systems,
representing the ratio of useful signal power to background noise power. In healthcare telemetry, where
continuous transmission of biomedical data like ECG or blood pressure is required, a low SNR can result in
corrupted signals, data loss, and diagnostic errors. Before optimization, various factors such as poor
modulation schemes, interference, and inefficient channel allocation often lead to a reduced SNR, degrading
the quality and reliability of transmitted signals. The WOA, inspired by the social and foraging behaviors of
walruses, is a powerful metaheuristic for improving system performance by tuning critical communication
parameters. When applied to optimize SNR, WOA dynamically evaluates and adjusts transmission power,
modulation parameters, and channel selection to minimize noise influence and enhance signal clarity. After
optimization with WOA, there is a significant improvement in SNR, leading to clearer signal transmission,
lower bit error rates (BER), and improved data integrity. This ensures that vital physiological data reaches
healthcare providers without distortion or loss, even in noisy environments. The optimized SNR enhances the
reliability and effectiveness of telemedicine and remote monitoring systems, making them more robust for
critical, real-time healthcare applications.
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Figure 5. Modulation index before and after Figure 6. SNR before and After optimization
optimization

Figure 7 shows Latency before and after Optimization. Latency reduction post-optimization ensures
the timely delivery of critical healthcare data. Low latency is crucial in emergency alerts (e.g., heart attack
detection), where even milliseconds can determine the outcome. Before optimization, latency increased due
to inefficient data routing, network congestion, poor bandwidth management, and unoptimized signal
processing algorithms. These delays compromise the speed and responsiveness of healthcare systems,
especially in remote patient monitoring or emergency care. After applying WOA, latency is significantly
reduced. Data packets reach their destination faster, improving the responsiveness of the system. This leads
to more timely alerts, faster data analysis, and better clinical decision-making. Optimized latency is
especially critical in applications such as continuous ECG monitoring or real-time video consultations. Thus,
Walrus Optimization enhances the overall efficiency and reliability of healthcare communication systems by
ensuring low-latency performance.

Figure 8 shows the Throughput before and after optimization. Throughput enhancements reflect the
system's ability to handle more data efficiently, supporting multiple users or sensors in real-time without
degradation in service quality, vital in hospital and home healthcare monitoring systems. Before
optimization, throughput is often limited due to network congestion, inefficient routing, suboptimal
modulation, and poor bandwidth utilization. This results in delayed or incomplete data transmission, affecting
the quality and reliability of telemedicine and remote monitoring services. The WOA, inspired by the
cooperative and strategic behaviors of walruses, is a metaheuristic method that efficiently tunes network
parameters to maximize performance. When applied to optimize throughput, WOA adjusts data transmission
rates, optimizes packet routing, reduces collisions, and prioritizes critical health data. It iteratively searches
for optimal configurations that allow the maximum volume of data to be transmitted with minimal delay and
error. After optimization with WOA, there is a noticeable increase in system throughput. The network
becomes capable of handling more data traffic efficiently, ensuring the timely delivery of health information.
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This improvement is critical in scenarios involving multiple patients and high-frequency data streams.
Overall, WOA enhances throughput by enabling smoother, faster, and more reliable communication in
healthcare telemetry and telemedicine applications. Tables 2 and 3 illustrate the Performance Metrics of the
Al methods. Tables 4 and 5 reveal the advantages of combining Al methods with the WOA. WOA-ANN
achieved an SNR of 31 dB, WOA-SVM reached 32 dB, and all hybrid models maintain bandwidths above 29
MHZz, reflecting enhanced signal clarity and capacity. WOA-SVM demonstrated a modulation efficiency of 6.2
bits/symbol and a spectral efficiency of 3.7 bits/s/Hz, outperforming all others. This indicates that hybrid
models can effectively manage bandwidth utilization, crucial for high-performance communication systems.
BER values in hybrid models decreased to as low as 8e-6, while latency values dropped below 12 ms in all
hybrid configurations, showing improved data integrity and reduced response times. The WOA-SVM hybrid
achieved the highest energy efficiency at 22 bits/Joule, demonstrating its sustainability and suitability for
embedded or mobile health applications.

Latency (ms) Before and After Optimization

Throughput (kbps) Before and After Optimization
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Figure 7. Latency before and after optimization Figure 8. Throughput before and after optimization

Table 2. Performance metrics table

Method Quantity ~ SNR Bandwidth Modulation efficiency Environment Power Spectral Eff.
(dB) (MHz) (bits/symbol) robustness consumption (W) (bits/s/Hz)
WOA 100 30 5 6 0.9 25 35
SVM 90 25 45 55 0.75 3 3.2
ANN 95 28 4.8 5.7 0.8 28 33
LSTM 85 27 4.6 5.6 0.78 3.1 3.25
DQN 80 26 4.4 54 0.72 3.2 31
Table 3. Performance metrics table continuation
Method  Bit error rate (BER)  Latency (ms)  Throughput (Mbps)  Energy efficiency (bits/Joule)
WOA le-5 10 50 20
SVM 5e-5 15 45 15
ANN 2e-5 12 48 18
LSTM 3e-5 14 46 16
DON 4e-5 16 44 14
Table 4. Hybrid performance metrics table
Method Quantity  SNR Bandwidth Modulation efficiency Environment Power Spectral Eff.
(dB) (MH2) (bits/symbol) robustness consumption (W) (bits/s/Hz)
WOA- 105 32 5.2 6.2 0.92 2.3 37
SVM
WOA- 110 31 5.1 6.1 0.9 24 3.6
ANN
WOA- 108 30 5 6 0.89 25 35
LSTM
WOA- 103 29 4.9 5.9 0.88 2.6 34
DON
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Table 5. Hybrid performance metrics table continuation
Method Bit error rate (BER)  Latency (ms)  Throughput (Mbps)  Energy efficiency (bits/Joule)
9 52

WOA-SVM 8e-6 22
WOA-ANN 9e-6 10 51 21
WOA-LSTM 1.1e-5 11 50 20
WOA-DON 1.3e-5 12 49 19

4. CONCLUSION

The development of an intelligent, multi-layered healthcare monitoring system, integrating wearable
biosensors, edge computing, and bio-inspired optimization, addresses several critical challenges in modern
healthcare delivery, particularly in the domains of remote monitoring, chronic disease management, and
emergency care. This research presents a comprehensive and adaptable architecture that supports continuous,
real-time monitoring of multiple physiological parameters using a diverse array of biosensors, such as ECG
patches, thermistors, glucometers, and pulse oximeters. These sensors were selected based on their
biocompatibility, energy efficiency, and ability to communicate wirelessly, ensuring long-term usability and
patient comfort. A key innovation introduced in this work is the application of the WOA, a nature-inspired
metaheuristic designed to improve system-level performance. WOA dynamically adjusts communication and
network parameters such as bandwidth usage, modulation index, and transmission power to ensure optimal
system behavior. The convergence characteristics of WOA demonstrate rapid optimization of performance
metrics, which is crucial for time-sensitive healthcare applications. Experimental evaluations confirmed that
the implementation of WOA significantly enhances system performance. SNR improved from 5 dB to over
31 dB, reducing the risk of data corruption and ensuring clearer, more accurate physiological signal
transmission. Latency was reduced from 10 milliseconds to under 4 milliseconds, which is essential for
applications requiring immediate response, such as emergency alerts or real-time ECG monitoring.
Additionally, hybrid configurations of WOA with machine learning algorithms (WOA-ANN and WOA-
SVM) further refined performance, achieving high modulation efficiency, improved spectral utilization, and
reduced BER, all while maintaining or improving energy efficiency. The highest energy efficiency recorded
was 22 bits per Joule, indicating the system's suitability for embedded or battery-powered healthcare devices.
Moreover, the system demonstrated resilience and robustness in managing multiple data streams
concurrently, a critical feature for multi-patient or hospital-wide deployments. The intelligent allocation of
resources and the fine-tuning of operational parameters ensure that the QoS remains consistent even in
dynamic network conditions. Finally, the proposed system successfully integrates hardware, communication,
data processing, and optimization in a unified framework tailored for modern healthcare needs. Its ability to
deliver accurate, low-latency, and energy-efficient performance makes it highly suitable for real-world
deployment. The incorporation of WOA as an optimization backbone enhances not only the system's
operational efficiency but also its adaptability to evolving technological and healthcare demands. This work
lays a solid foundation for future advancements in smart healthcare systems, offering a blueprint for scalable,
intelligent, and sustainable telemedicine and telemetry infrastructure.
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