
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 40, No. 2, November 2025, pp. 700~706 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v40.i2.pp700-706      700 

 

Journal homepage: http://ijeecs.iaescore.com 

Enhancing the ternary neural networks with adaptive  

threshold quantization 
 

 

Son Ngoc Truong 
Faculty of Electrical and Electronics Engineering, HCMC University of Technology and Education, Ho Chi Minh City, Vietnam 

 

 

Article Info  ABSTRACT 

Article history: 

Received May 6, 2025 

Revised Jul 11, 2025 

Accepted Oct 14, 2025 

 

 Ternary neural networks (TNNs) with weights constrained to –1, 0, and +1 
offer an efficient deep learning solution for low-cost computing platforms 

such as embedded systems and edge computing devices. These weights are 
typically obtained by quantizing the real weight during the training process. 
In this work, we propose an adaptive threshold quantization method that 
dynamically adjusts the threshold based on the mean of weight distribution. 
Unlike fixed-threshold approaches, our method recalculates the quantization 
threshold at each training epoch according to the distribution of real  
valued synaptic weights. This adaptation significantly enhances both  
training speed and model accuracy. Experimental results on the MNIST 

dataset demonstrates a 2.5× reduction in training time compared to 
conventional methods, with a 2% improvement in recognition accuracy.  
On Google Speech Command dataset, the proposed method achieves an 8% 
improvement in recognition accuracy and a 50% reduction in training time, 
compared to fixed-threshold quantization. These results highlight the 
effectiveness of adaptive quantization in improving the efficiency of TNNs, 
making them well-suited for deployment on resource constrained edge 
devices. 
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1. INTRODUCTION 

Deep neural networks (DNN) have achieved remarkable success in human-like tasks such as speech 

recognition and image recognition over the past decades [1]-[7]. Increasing the number of layers and 

parameters enhances neural network accuracy, leading to the development of DNNs. However, state-of-the-

art DNN architectures require substantial computational resources and are typically deployed on high-

performance processor such as graphic processing units (GPUs) [8]. This is due to the large number of 

operations, including additions, multiplications, and activation functions, which demand significant 

processing power and storage. Consequently, deploying DNNs on low-cost computing platforms, such as 

embedded systems and edge devices, remains a challenge. 

To address this issue, various optimization techniques have been proposed, including quantization, 

pruning, and distillation [9]-[17]. Among these, quantization is particularly well-suited for low-cost 
embedded systems, which are usually used for IoT end-nodes and edge devices. By reducing full-precision 

synaptic weights and activations to as few as two or even one bit, quantization minimizes computational 

complexity and memory requirements. Binary neural networks (BNNs), where both weights and activations 

are quantized to a single bit, have been introduced to significantly accelerate computations by replacing 

multiplications with simple logical XOR operations [13]-[17]. However, BNNs suffer from reduced accuracy 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Enhancing the ternary neural networks with adaptive threshold quantization (Son Ngoc Truong) 

701 

compared to full-precision networks. To bridge this accuracy gap, ternary neural networks (TNNs) have been 

proposed, where weights and activations are constrained to –1, 0, and +1 [18]-[21]. For image recognition 

task, TNNs achieve accuracy within 2% of full-precision networks, offering a promising trade-off between 

computational efficiency and model performance [21]. 

The conventional backpropagation algorithm with gradient descent cannot be directly applied to 

binary or TNNs, as gradients descent relies on small weight updates, which are not feasible with discrete 
binary or ternary weight values. Typically, synaptic weights are first updated with small values and then 

binarized using a sign function [15], enabling gradient-based training for such networks. In this work, we 

present a TNN for image recognition and speech recognition that can be deployed on low-cost embedded 

systems and edge devices. The synaptic weights are quantized to –1, 0, and +1, and an adaptive threshold 

quantization method is proposed to enhance recognition accuracy and accelerate training. The use of a low-

cost embedded computing platform demonstrates the feasibility of deploying TNNs in resource-constrained 

environments, where computational efficiency and power consumption are critical factors. By leveraging 

ternary weight quantization and adaptive thresholding, our approach ensures a balance between model 

accuracy, training efficiency, and hardware suitability, making it well-suited for robotics applications 

requiring onboard neural network inference. 
 
 

2. METHOD 

DNNs with full-precision synaptic weights require substantial storage space and huge computational 

resources due to their reliance on 32-bit floating-point representations for both multiplications and additions. 

Each weight in fully-connected layer is typically represented with a high precision, and every forward and 
backward pass involves numerous floating-point operations, leading to significant memory consumption and 

computational overhead. As the depth of neural network increases, the demand for memory and processing 

power escalates exponentially, imposing severe limitations on hardware with limited resources. Furthermore, 

executing a large number of floating-point computations results in increased energy consumption and 

reduced processing speed, making full-precision DNNs impractical for deployment on power-constrained 

devices. 

To address these challenges, TNNs have emerged as an optimized alternative, offering a balance 

between computational efficiency and model accuracy. In a TNN, synaptic weights are quantized to three 

discrete values, typically –1, 0, and +1, significantly reducing memory requirements and eliminating the need 

for high-precision floating-point multiplications. Instead, the computational workload is simplified to 

additions and sign-based operations, which are more efficient and hardware-friendly. Due to their low 

memory footprint and reduced computational complexity, TNNs can be effectively deployed on low-cost 
edge devices, where storage space, energy efficiency, and real-time processing capabilities are critical 

constraints. 

Figure 1 presents a conceptual diagram of a ternary DNN, in which synaptic weights are constrained 

to three discrete values: –1, 0, and +1. In the convolutional layer, the kernel is a matrix of –1, 0, or +1 instead 

of full-precision weights. This quantization reduces the amount of storage required for model parameters and 

simplifies the computation of convolution operations. Similarly, in the fully-connected layer, the synaptic 

weights are also limited to –1, 0, or +1, ensuring that every layer of the network adheres to the ternary 

constraint. Ternary synaptic weights can be interpreted in terms of neuronal functionality, where the negative 

and the positive weights correspond to inhibitory and excitatory neuronal synapses, respectively, mirroring 

the way biological neurons regulate signal transmission [22], [23]. The synaptic weights are negative or 

positive for respectively representing the inhibitory or excitatory neuronal synapses [22], [23]. Additionally, 
synaptic weights assigned a value of zero represent unconnected synapses, effectively removing certain 

connections from the network. This mechanism is similar to the dropout technique used in DNNs,  

where randomly deactivating neurons during training helps prevent overfitting and enhance model 

generalization [24]. 

The TNN can be trained using the conventional backpropagation algorithm combined with a gradient 

descent-based optimization method. However, a fundamental challenge arises due to the nature of gradient 

descent: it updates synaptic weight using small real-valued increments, whereas ternary weight must be 

discretely switched among –1, 0, and +1. This discrepancy necessitates a specialized approach to weight 

updates to ensure effective training while maintaining ternary constraints. To address a similar challenge in 

BNN, Courbariaux et al. proposed a training methodology that restricts synaptic weights to –1 and +1 while 

still leveraging the backpropagation algorithm with gradient descent method [15]. In this approach, the 

network is trained using conventional weight update rule, where real-valued weight updates are computed in 
the backward pass, the synaptic weights are binarized using simple threshold function. 

 

𝑤𝑏 = 𝑠𝑖𝑔𝑛(𝑤𝑟) (1) 
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Where wb represents a binary synaptic weight and wr denotes a real-valued synaptic weight. In (1), a sign 

function with the zero-valued threshold is utilized to determine the corresponding binary weight values. 

Specifically, if the real-valued wr is negative, the resulting binary synaptic weight wb is assigned a valued of 

–1. Conversely, if wr is positive, wb is set to +1. This simple binarization method ensures that the weight 

values remain within the required constraints while still allowing the network to be trained conventional 

optimization technique. 

The proposed method, as formulated in (1), is not only applicable to BNN, but can also be extended 
to facilitate the training of TNN. By incorporating an additional step, ternary weight values are derived from 

real-valued synaptic weights, enabling the model to represent three discrete values of –1, 0, and +1. This 

quantization process is formally expressed in (2). 

 

𝑤𝑡 = {
−1, 𝑖𝑓𝑤𝑟 <= −𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑖𝑓 − 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝑤𝑟 < 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

+1, 𝑖𝑓𝑤𝑟 >= 𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (2) 

 

Here wthreshold represents the threshold weight, wr denotes the real-valued weight, and wt is the ternary weight, 

which can take on one of three discrete values: of –1, 0, or +1.  
It is important to note that there is no universally optimal method for selecting the threshold value.  

In practice, the threshold is typically chosen through empirical analysis to ensure that the training process 

converges efficiently with the fewest possible iterations while achieving the high accuracy. The optimal 

threshold often depends various factor, such as the dataset, model architecture, and the training condition. 

Additionally, as training progresses, the distribution of synaptic weights evolves across iterations. This 

phenomenon can be observed in Figure 2 which illustrates the variation in weight distributions during different 

training stages. In Figure 2, an epoch refers to a complete cycle in which all samples in the dataset are passed 

through the neural network during both the forward and backward propagation steps. The changes in weight 

distribution across epochs highlight the dynamic nature of the learning process in TNNs. 

Figure 2(a) illustrates the distribution of real-valued synaptic weights after five epochs of the 

training process. The synaptic weights are distributed within the range of –1 to +1, with a high density of 

values concentrated around zero. This distribution pattern suggests that a significant proportion of synaptic 
weights remain close to zero during training, which may influence the quantization process and the overall 

performance of the network. Figure 2(b) provides a comparative analysis of synaptic weight distributions at 

two different stages of training: the 5th epoch and the 10th epoch, represented by black and red lines, 

respectively. These variations indicate that the real-valued synaptic weights undergo continuous adaptation 

throughout the training process, leading to dynamic shifts in their distribution. A crucial implication of this 

changing distribution is the impact on weight quantization. If the threshold value for quantization remains 

fixed throughout training, the mapping of real-valued weights to ternary values (–1, 0, +1) will yield 

inconsistent results at different training stages. As a result, this inconsistency can slow down the convergence 

of the network and negatively affect overall accuracy. Furthermore, selecting an excessively large threshold 

value increases the number of synaptic weights quantized to zero, effectively removing a larger portion of 

connections in the network. This excessive sparsity can significantly degrade the model’s learning capability, 
leading to a substantial drop in recognition accuracy. 
 

 

 
 

Figure 1. The concept of a TNN for image recognition 
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(a) (b) 

 
Figure 2. Variation in weight distributions during different training stages (a) The distribution of synaptic 

weights after the 5th epoch of the training process, (b) the distribution of synaptic weights after the 5th and 

the 10th epochs of the training process 

 

 

In this work, we propose an adaptive thresholding method based on the Gaussian distribution to 

improve the quantization process in TNNs. Unlike fixed threshold approaches, which may lead to 

inconsistent weight distributions across training epochs, the proposed method dynamically updates the 

threshold epoch by epoch. This ensures that the proportions of negative synaptic weights (–1), zero-value 

synaptic weights (0), and positive synaptic weights (+1) remain approximately constant throughout the 

training process. The threshold value is determined based on the Gaussian distribution of the real-valued 
synaptic weights at each training epoch. By leveraging the statistical properties of the weight distribution, 

this method allows for an adaptive adjustment of the threshold, ensuring a more stable and balanced 

quantization process. A conceptual representation of this adaptive thresholding approach is illustrated in 

Figure 3, demonstrating how the Gaussian distribution guides the selection of threshold values for improved 

training convergence and model accuracy. 

To determine the adaptive threshold values, the mean (𝜇) and standard deviation (𝜎) of the real-

valued synaptic weights are first computed at each training epoch. Based on the properties of the Gaussian 

distribution, selecting threshold values at µ-0.44σ and µ+0.44σ ensures that the synaptic weights are 

quantized into three discrete categories with a balanced distribution. Specifically, this selection results in 

33% of the synaptic weights being negative (–1), 34% being zero (0), and 33% being positive (+1).  

By maintaining this distribution, the proposed quantization method prevents excessive sparsity or imbalance 
in the weight representation, which could otherwise degrade the performance of the neural network.  

The quantization process follows the mathematical formulation given in (3). 

 

𝑤𝑡 = {
−1, 𝑖𝑓𝑤𝑟 <= 𝜇 − 0.44𝜎
0, 𝑖𝑓𝜇 − 0.44𝜎 < 𝑤𝑟 < 𝜇 + 0.44𝜎
+1, 𝑖𝑓𝑤𝑟 >= 𝜇 + 0.44𝜎

 (3) 

 

 

 
 

Figure 3. The Gaussian distribution of synaptic weights. The threshold is chosen to be µ-0.44σ and µ+0.44σ 
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Here µ and σ represent the mean and standard deviation, respectively, of real-valued synaptic weights at each 

training epoch. In (3), the threshold is dynamically changed epoch by epoch of the training process. Here the 

threshold is set to be (µ–0.44σ) and (µ+0.44σ). By applying this adaptive thresholding approach, the 

proportions of negative (–1), zero-value (0), and positive (+1) synaptic weights remain approximately constant 

in every epoch. This stability in weight distribution helps mitigate issues associated with fixed-threshold 

quantization, such as training instability and performance degradation. As a result, the proposed method not 

only improves the accuracy of the TNN but also accelerates the training process, enabling more efficient 

convergence. 

 
 

3. RESULTS AND DISCUSSION 

To highlight the advantages of TNNs over full-precision neural networks, we first compare their 

inference times as they are deployed on a resource-constrained edge device. A convolutional neural network 

(CNN) consisting of 64 convolutional kernels of size 3×3, followed by a max pooling layer and a fully 

connected layer with 512 hidden units and 10 output units, is implemented on a low-cost edge device, the 

Raspberry Pi 5, for handwritten character recognition using the MNIST dataset. The Raspberry Pi 5 is 

equipped with a 64-bit ARM processor running at 2.4 GHz, making it a viable platform for edge computing 

applications. Both the full-precision and TNNs are trained on a server. The pre-trained models are 

implemented on the Raspberry Pi 5 to evaluate inference performance. Experimental results indicate that the 

full-precision CNN requires 3.2 ms to classify a single character, whereas the ternary CNN achieves the same 
task in only 0.84 ms. These findings demonstrate that the TNN significantly outperforms the full-precision 

model on resource-constrained edge devices. The advantages of TNNs have also been discussed in previous 

studies [20], [21]. 

One of the key advantages of edge computing is the ability to perform both training and inference of 

DNNs directly on the edge device. In this study, we train the TNN using both the conventional fixed-

threshold quantization method and the proposed adaptive threshold quantization approach on the MNIST 

dataset [25]. 

Figure 4 shows a comparison of the accuracy between the fixed-threshold quantization and the 

proposed adaptive threshold quantization over 100 training epochs. The accuracy of the fixed-threshold 

approach, represented by the black line in Figure 4, reaches 94% after 100 epochs. In contrast, the proposed 

adaptive threshold quantization achieves 97% accuracy in only 40 epochs. This demonstrate that the proposed 

method improves accuracy by 3% compared to the fixed-threshold approach. Moreover, training a TNN with 
the adaptive threshold quantization method is 2.5× faster than with the fixed threshold quantization. The 

ternary CNN is also evaluated on the Google Speech Commands dataset, which consists of 65,000 audio 

samples spanning 30 distinct words [26]. To ensure compatibility with resource-constrained edge device, a 

CNN is designed with 4 convolutional layers, a fully-connected layer with 1024 neurons, and a SoftMax layer 

with 30 output neurons. Mel-frequency cepstral coefficients (MFCCs) are used for feature extraction. The 

extracted coefficients are quantized by 8 bits. 

 

 

 
 

Figure 4. The comparison of the accuracy between the fixed threshold quantization and the proposed adaptive 

threshold quantization for 100 epochs of the training process 
 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Enhancing the ternary neural networks with adaptive threshold quantization (Son Ngoc Truong) 

705 

Figure 5 illustrate the accuracy of the ternary convolution neural network for speech command 

recognition. Using the proposed adaptive threshold quantization, the model achieves a recognition rate of 91% 

after 120 epochs. In contrast, with the fixed threshold quantization method, the recognition rate reaches 83% 

after 200 epochs, demonstrating an 8% improvement with the proposed approach. These results represent the 

first evaluation of TNNs with adaptive threshold quantization for object recognition for edge computing.  

The ternary CNN can be efficiently deployed on a resource-constrained edge device such as Raspberry Pi. The 
proposed adaptive threshold quantization method enhances both accuracy and training efficiency, making it a 

promising technique for low-cost, resource-constrained in edge computing. 

 

 

 
 

Figure 5. The comparison of the accuracy for speech recognition between the fixed threshold quantization 

and the proposed adaptive threshold quantization for 200 epochs of the training process 

 

 

4. CONCLUSION 

In this paper, we present a ternary CNN that constrains synaptic weights to –1, 0, and +1 for both 

image and speech recognition, using the proposed adaptive threshold quantization. The ternary CNN is 

deployed on low-cost and resource-constrained computers for edge computing. Training is performed using 

conventional backpropagation algorithm with gradient descent, alongside the proposed adaptive threshold 
quantization method, which dynamically adjust quantization thresholds based on the distribution of real-

valued synaptic weights. For MNIST image recognition, training the TNN with adaptive threshold is 2.5× 

faster and achieve a 2% higher recognition rate compared to fixed threshold quantization. For speech 

recognition, the proposed method improves recognition rate by 8% and accelerates training by 1.6× relative 

to the fixed-threshold approach. These results demonstrate that the proposed TNN, equipped with adaptive 

threshold quantization, is an effective solution for deployment on resource-constrained edge computing 

systems. 
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