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Ternary neural networks (TNNs) with weights constrained to -1, 0, and +1
offer an efficient deep learning solution for low-cost computing platforms
such as embedded systems and edge computing devices. These weights are
typically obtained by quantizing the real weight during the training process.
In this work, we propose an adaptive threshold quantization method that
dynamically adjusts the threshold based on the mean of weight distribution.
Unlike fixed-threshold approaches, our method recalculates the quantization
threshold at each training epoch according to the distribution of real
valued synaptic weights. This adaptation significantly enhances both
training speed and model accuracy. Experimental results on the MNIST
dataset demonstrates a 2.5x reduction in training time compared to
conventional methods, with a 2% improvement in recognition accuracy.
On Google Speech Command dataset, the proposed method achieves an 8%
improvement in recognition accuracy and a 50% reduction in training time,

compared to fixed-threshold quantization. These results highlight the
effectiveness of adaptive quantization in improving the efficiency of TNNs,
making them well-suited for deployment on resource constrained edge
devices.
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1. INTRODUCTION

Deep neural networks (DNN) have achieved remarkable success in human-like tasks such as speech
recognition and image recognition over the past decades [1]-[7]. Increasing the number of layers and
parameters enhances neural network accuracy, leading to the development of DNNs. However, state-of-the-
art DNN architectures require substantial computational resources and are typically deployed on high-
performance processor such as graphic processing units (GPUs) [8]. This is due to the large number of
operations, including additions, multiplications, and activation functions, which demand significant
processing power and storage. Consequently, deploying DNNs on low-cost computing platforms, such as
embedded systems and edge devices, remains a challenge.

To address this issue, various optimization techniques have been proposed, including quantization,
pruning, and distillation [9]-[17]. Among these, quantization is particularly well-suited for low-cost
embedded systems, which are usually used for 10T end-nodes and edge devices. By reducing full-precision
synaptic weights and activations to as few as two or even one bit, quantization minimizes computational
complexity and memory requirements. Binary neural networks (BNNs), where both weights and activations
are quantized to a single bit, have been introduced to significantly accelerate computations by replacing
multiplications with simple logical XOR operations [13]-[17]. However, BNNSs suffer from reduced accuracy
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compared to full-precision networks. To bridge this accuracy gap, ternary neural networks (TNNSs) have been
proposed, where weights and activations are constrained to —1, 0, and +1 [18]-[21]. For image recognition
task, TNNs achieve accuracy within 2% of full-precision networks, offering a promising trade-off between
computational efficiency and model performance [21].

The conventional backpropagation algorithm with gradient descent cannot be directly applied to
binary or TNNs, as gradients descent relies on small weight updates, which are not feasible with discrete
binary or ternary weight values. Typically, synaptic weights are first updated with small values and then
binarized using a sign function [15], enabling gradient-based training for such networks. In this work, we
present a TNN for image recognition and speech recognition that can be deployed on low-cost embedded
systems and edge devices. The synaptic weights are quantized to -1, 0, and +1, and an adaptive threshold
quantization method is proposed to enhance recognition accuracy and accelerate training. The use of a low-
cost embedded computing platform demonstrates the feasibility of deploying TNNSs in resource-constrained
environments, where computational efficiency and power consumption are critical factors. By leveraging
ternary weight quantization and adaptive thresholding, our approach ensures a balance between model
accuracy, training efficiency, and hardware suitability, making it well-suited for robotics applications
requiring onboard neural network inference.

2. METHOD

DNNs with full-precision synaptic weights require substantial storage space and huge computational
resources due to their reliance on 32-bit floating-point representations for both multiplications and additions.
Each weight in fully-connected layer is typically represented with a high precision, and every forward and
backward pass involves numerous floating-point operations, leading to significant memory consumption and
computational overhead. As the depth of neural network increases, the demand for memory and processing
power escalates exponentially, imposing severe limitations on hardware with limited resources. Furthermore,
executing a large number of floating-point computations results in increased energy consumption and
reduced processing speed, making full-precision DNNs impractical for deployment on power-constrained
devices.

To address these challenges, TNNs have emerged as an optimized alternative, offering a balance
between computational efficiency and model accuracy. In a TNN, synaptic weights are quantized to three
discrete values, typically -1, 0, and +1, significantly reducing memory requirements and eliminating the need
for high-precision floating-point multiplications. Instead, the computational workload is simplified to
additions and sign-based operations, which are more efficient and hardware-friendly. Due to their low
memory footprint and reduced computational complexity, TNNs can be effectively deployed on low-cost
edge devices, where storage space, energy efficiency, and real-time processing capabilities are critical
constraints.

Figure 1 presents a conceptual diagram of a ternary DNN, in which synaptic weights are constrained
to three discrete values: —1, 0, and +1. In the convolutional layer, the kernel is a matrix of -1, 0, or +1 instead
of full-precision weights. This quantization reduces the amount of storage required for model parameters and
simplifies the computation of convolution operations. Similarly, in the fully-connected layer, the synaptic
weights are also limited to -1, 0, or +1, ensuring that every layer of the network adheres to the ternary
constraint. Ternary synaptic weights can be interpreted in terms of neuronal functionality, where the negative
and the positive weights correspond to inhibitory and excitatory neuronal synapses, respectively, mirroring
the way biological neurons regulate signal transmission [22], [23]. The synaptic weights are negative or
positive for respectively representing the inhibitory or excitatory neuronal synapses [22], [23]. Additionally,
synaptic weights assigned a value of zero represent unconnected synapses, effectively removing certain
connections from the network. This mechanism is similar to the dropout technique used in DNNSs,
where randomly deactivating neurons during training helps prevent overfitting and enhance model
generalization [24].

The TNN can be trained using the conventional backpropagation algorithm combined with a gradient
descent-based optimization method. However, a fundamental challenge arises due to the nature of gradient
descent: it updates synaptic weight using small real-valued increments, whereas ternary weight must be
discretely switched among -1, 0, and +1. This discrepancy necessitates a specialized approach to weight
updates to ensure effective training while maintaining ternary constraints. To address a similar challenge in
BNN, Courbariaux et al. proposed a training methodology that restricts synaptic weights to —1 and +1 while
still leveraging the backpropagation algorithm with gradient descent method [15]. In this approach, the
network is trained using conventional weight update rule, where real-valued weight updates are computed in
the backward pass, the synaptic weights are binarized using simple threshold function.

wy = sign(w,) @)
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Where w, represents a binary synaptic weight and w; denotes a real-valued synaptic weight. In (1), a sign
function with the zero-valued threshold is utilized to determine the corresponding binary weight values.
Specifically, if the real-valued w is negative, the resulting binary synaptic weight wy is assigned a valued of
—1. Conversely, if w, is positive, wy is set to +1. This simple binarization method ensures that the weight
values remain within the required constraints while still allowing the network to be trained conventional
optimization technique.

The proposed method, as formulated in (1), is not only applicable to BNN, but can also be extended
to facilitate the training of TNN. By incorporating an additional step, ternary weight values are derived from
real-valued synaptic weights, enabling the model to represent three discrete values of —1, 0, and +1. This
quantization process is formally expressed in (2).

=L ifw, <= ~Wepreshola
Wy = 0, lf — Wepreshold < Wr < Wepreshold (2)
+1,if Wy >= Wyresiola

Here Winreshola represents the threshold weight, wy denotes the real-valued weight, and w: is the ternary weight,
which can take on one of three discrete values: of -1, 0, or +1.

It is important to note that there is no universally optimal method for selecting the threshold value.
In practice, the threshold is typically chosen through empirical analysis to ensure that the training process
converges efficiently with the fewest possible iterations while achieving the high accuracy. The optimal
threshold often depends various factor, such as the dataset, model architecture, and the training condition.
Additionally, as training progresses, the distribution of synaptic weights evolves across iterations. This
phenomenon can be observed in Figure 2 which illustrates the variation in weight distributions during different
training stages. In Figure 2, an epoch refers to a complete cycle in which all samples in the dataset are passed
through the neural network during both the forward and backward propagation steps. The changes in weight
distribution across epochs highlight the dynamic nature of the learning process in TNNS.

Figure 2(a) illustrates the distribution of real-valued synaptic weights after five epochs of the
training process. The synaptic weights are distributed within the range of —1 to +1, with a high density of
values concentrated around zero. This distribution pattern suggests that a significant proportion of synaptic
weights remain close to zero during training, which may influence the quantization process and the overall
performance of the network. Figure 2(b) provides a comparative analysis of synaptic weight distributions at
two different stages of training: the 5" epoch and the 10" epoch, represented by black and red lines,
respectively. These variations indicate that the real-valued synaptic weights undergo continuous adaptation
throughout the training process, leading to dynamic shifts in their distribution. A crucial implication of this
changing distribution is the impact on weight quantization. If the threshold value for quantization remains
fixed throughout training, the mapping of real-valued weights to ternary values (-1, 0, +1) will yield
inconsistent results at different training stages. As a result, this inconsistency can slow down the convergence
of the network and negatively affect overall accuracy. Furthermore, selecting an excessively large threshold
value increases the number of synaptic weights quantized to zero, effectively removing a larger portion of
connections in the network. This excessive sparsity can significantly degrade the model’s learning capability,
leading to a substantial drop in recognition accuracy.
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Figure 1. The concept of a TNN for image recognition
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Figure 2. Variation in weight distributions during different training stages (a) The distribution of synaptic
weights after the 5th epoch of the training process, (b) the distribution of synaptic weights after the 5™ and
the 10" epochs of the training process

In this work, we propose an adaptive thresholding method based on the Gaussian distribution to
improve the quantization process in TNNs. Unlike fixed threshold approaches, which may lead to
inconsistent weight distributions across training epochs, the proposed method dynamically updates the
threshold epoch by epoch. This ensures that the proportions of negative synaptic weights (-1), zero-value
synaptic weights (0), and positive synaptic weights (+1) remain approximately constant throughout the
training process. The threshold value is determined based on the Gaussian distribution of the real-valued
synaptic weights at each training epoch. By leveraging the statistical properties of the weight distribution,
this method allows for an adaptive adjustment of the threshold, ensuring a more stable and balanced
quantization process. A conceptual representation of this adaptive thresholding approach is illustrated in
Figure 3, demonstrating how the Gaussian distribution guides the selection of threshold values for improved
training convergence and model accuracy.

To determine the adaptive threshold values, the mean (1) and standard deviation (o) of the real-
valued synaptic weights are first computed at each training epoch. Based on the properties of the Gaussian
distribution, selecting threshold values at p-0.44c and p+0.44c ensures that the synaptic weights are
quantized into three discrete categories with a balanced distribution. Specifically, this selection results in
33% of the synaptic weights being negative (-1), 34% being zero (0), and 33% being positive (+1).
By maintaining this distribution, the proposed quantization method prevents excessive sparsity or imbalance
in the weight representation, which could otherwise degrade the performance of the neural network.
The quantization process follows the mathematical formulation given in (3).

-1,ifw, <=pu— 0440
w, =10,ifu — 0.440 <w, < u+ 0.440 3)
+1,ifw, >=u+ 0.440
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Figure 3. The Gaussian distribution of synaptic weights. The threshold is chosen to be p-0.44c and p+0.44c

Enhancing the ternary neural networks with adaptive threshold quantization (Son Ngoc Truong)



704 a ISSN: 2502-4752

Here 1 and o represent the mean and standard deviation, respectively, of real-valued synaptic weights at each

training epoch. In (3), the threshold is dynamically changed epoch by epoch of the training process. Here the
threshold is set to be (u-0.44c) and (u+0.44c). By applying this adaptive thresholding approach, the
proportions of negative (-1), zero-value (0), and positive (+1) synaptic weights remain approximately constant
in every epoch. This stability in weight distribution helps mitigate issues associated with fixed-threshold
quantization, such as training instability and performance degradation. As a result, the proposed method not
only improves the accuracy of the TNN but also accelerates the training process, enabling more efficient
convergence.

3. RESULTS AND DISCUSSION

To highlight the advantages of TNNs over full-precision neural networks, we first compare their
inference times as they are deployed on a resource-constrained edge device. A convolutional neural network
(CNN) consisting of 64 convolutional kernels of size 3x3, followed by a max pooling layer and a fully
connected layer with 512 hidden units and 10 output units, is implemented on a low-cost edge device, the
Raspberry Pi 5, for handwritten character recognition using the MNIST dataset. The Raspberry Pi 5 is
equipped with a 64-bit ARM processor running at 2.4 GHz, making it a viable platform for edge computing
applications. Both the full-precision and TNNs are trained on a server. The pre-trained models are
implemented on the Raspberry Pi 5 to evaluate inference performance. Experimental results indicate that the
full-precision CNN requires 3.2 ms to classify a single character, whereas the ternary CNN achieves the same
task in only 0.84 ms. These findings demonstrate that the TNN significantly outperforms the full-precision
model on resource-constrained edge devices. The advantages of TNNs have also been discussed in previous
studies [20], [21].

One of the key advantages of edge computing is the ability to perform both training and inference of
DNNs directly on the edge device. In this study, we train the TNN using both the conventional fixed-
threshold quantization method and the proposed adaptive threshold quantization approach on the MNIST
dataset [25].

Figure 4 shows a comparison of the accuracy between the fixed-threshold quantization and the
proposed adaptive threshold quantization over 100 training epochs. The accuracy of the fixed-threshold
approach, represented by the black line in Figure 4, reaches 94% after 100 epochs. In contrast, the proposed
adaptive threshold quantization achieves 97% accuracy in only 40 epochs. This demonstrate that the proposed
method improves accuracy by 3% compared to the fixed-threshold approach. Moreover, training a TNN with
the adaptive threshold quantization method is 2.5x faster than with the fixed threshold quantization. The
ternary CNN is also evaluated on the Google Speech Commands dataset, which consists of 65,000 audio
samples spanning 30 distinct words [26]. To ensure compatibility with resource-constrained edge device, a
CNN is designed with 4 convolutional layers, a fully-connected layer with 1024 neurons, and a SoftMax layer
with 30 output neurons. Mel-frequency cepstral coefficients (MFCCs) are used for feature extraction. The
extracted coefficients are quantized by 8 bits.
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Figure 4. The comparison of the accuracy between the fixed threshold quantization and the proposed adaptive
threshold quantization for 100 epochs of the training process
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Figure 5 illustrate the accuracy of the ternary convolution neural network for speech command
recognition. Using the proposed adaptive threshold quantization, the model achieves a recognition rate of 91%
after 120 epochs. In contrast, with the fixed threshold quantization method, the recognition rate reaches 83%
after 200 epochs, demonstrating an 8% improvement with the proposed approach. These results represent the
first evaluation of TNNs with adaptive threshold quantization for object recognition for edge computing.
The ternary CNN can be efficiently deployed on a resource-constrained edge device such as Raspberry Pi. The
proposed adaptive threshold quantization method enhances both accuracy and training efficiency, making it a
promising technique for low-cost, resource-constrained in edge computing.
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Figure 5. The comparison of the accuracy for speech recognition between the fixed threshold quantization
and the proposed adaptive threshold quantization for 200 epochs of the training process

4.  CONCLUSION

In this paper, we present a ternary CNN that constrains synaptic weights to -1, 0, and +1 for both
image and speech recognition, using the proposed adaptive threshold quantization. The ternary CNN is
deployed on low-cost and resource-constrained computers for edge computing. Training is performed using
conventional backpropagation algorithm with gradient descent, alongside the proposed adaptive threshold
quantization method, which dynamically adjust quantization thresholds based on the distribution of real-
valued synaptic weights. For MNIST image recognition, training the TNN with adaptive threshold is 2.5x
faster and achieve a 2% higher recognition rate compared to fixed threshold quantization. For speech
recognition, the proposed method improves recognition rate by 8% and accelerates training by 1.6x relative
to the fixed-threshold approach. These results demonstrate that the proposed TNN, equipped with adaptive
threshold quantization, is an effective solution for deployment on resource-constrained edge computing
systems.
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