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 The objective of this research was to compare the performance of machine 
learning models and traditional statistical methods for the prediction of 

residential energy consumption, using a dataset with relevant variables such 
as consumption, temperature, time of day, type of housing, and energy usage 
habits. A quantitative and comparative methodology was applied, involving 
data preprocessing, variable encoding, and normalization, as well as division 
into training and testing sets. The random forest, support vector machine 
(SVM), deep neural network (MLP), and linear regression models were 
trained and evaluated using standard metrics such as mean absolute error 
(MAE), root mean squared error (RMSE), and R² on test and cross-

validation sets. Results show that SVM and linear regression achieved better 
accuracy and generalization capability, while random forest and the deep 
neural network exhibited lower explanatory power, reflected in negative R² 
values. Using the trained models, a projection of residential energy 
consumption for the 2026–2030 period was performed, revealing a generally 
increasing trend across all models, although with differences in the 
magnitude of the predictions. In conclusion, under the current conditions, 
traditional models demonstrate greater robustness, highlighting the need to 

tailor algorithm selection to the data context. These projections provide a 
valuable tool for future energy planning. 
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1. INTRODUCTION 
Residential energy consumption represents a crucial challenge in the planning and operation of 

modern electrical systems. In the context of Arequipa, the electricity sector has experienced notable changes 

in its energy matrix. According to the Arequipa Chamber of Commerce [1], between January and September 

2023, hydroelectric energy represented 63.9% of total production, while in 2024 it rose to 82.6%, 

accompanied by growth in solar generation. This variability highlights the need for predictive models capable 

of adapting to changes in generation and demand. Additionally, the Arequipa Electrical System accounts for 

80.55% of the region's total consumption, mainly concentrated in urban areas [2], posing additional 

challenges for accurate forecasting. 

This research begins with the following problem: how effective are machine learning models 

compared to traditional statistical methods in predicting residential energy consumption in Peruvian urban 

contexts? This question arises from the growing challenge of efficiently managing energy demand in 
residential settings, particularly in regions such as Arequipa, where intensive urbanization and consumption 

https://creativecommons.org/licenses/by-sa/4.0/
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variability demand accurate and adaptable prediction tools. Previous studies have shown significant progress 

in the use of machine learning algorithms to estimate energy consumption in developed countries; however, 

there is a lack of empirical research in local contexts that directly contrasts these methods with traditional 

approaches such as linear regression or autoregressive integrated moving average (ARIMA) models. The 

central thesis argues that, although machine learning models can offer significant improvements in 

environments with complex and abundant data, their effectiveness in local contexts with limited data 

critically depends on the quality of the information and the precise tuning of the models. 
The main theme of the research is the evaluation of the impact of machine learning models on the 

prediction of residential energy consumption, compared to traditional statistical methods. The proposed 

approach seeks to apply algorithms such as random forest, XGBoost, and neural networks to a set of historical 

data in order to compare their predictive accuracy against classical models such as ARIMA and linear 

regression. Metrics such as mean absolute error (MAE), root mean squared error (RMSE), and R² are used to 

identify which model offers the greatest accuracy and reliability. Furthermore, the practical applicability of 

these models in real scenarios of residential energy planning is analyzed, promoting their use to optimize 

consumption management in urban environments. 

Locally and nationally, there is a significant absence of research integrating machine learning 

techniques to model residential energy consumption, with existing studies limited to traditional forecasting 

approaches based on polynomial functions or statistical projections [2], [3]. 

Machine learning (ML) is a subdiscipline of artificial intelligence that develops algorithms capable 
of learning patterns from data and making predictions or decisions without explicit programming [4]. Its 

importance has grown in sectors such as energy, where, according to [5], its dynamic adaptability improves 

consumption forecasting and sustainability. ML types include supervised learning, applied in energy 

prediction using variables such as temperature and consumption habits [6]; unsupervised learning, which 

identifies hidden patterns; and reinforcement learning, still emerging in the sector. Applications in electrical 

systems include demand forecasting [7], predictive maintenance [8], and early fault detection [6]. Despite its 

advances, ML faces challenges such as the need for large volumes of quality data, bias, and interpretability 

issues [9]. The recent recognition of Geoffrey Hinton with the Nobel Prize in Physics highlights its scientific 

impact [10]. In this context, ML significantly contributes to our research by offering more accurate tools to 

predict residential energy consumption, surpassing the limitations of traditional statistical methods and 

enabling more efficient and sustainable energy management. 
Residential energy consumption forecasting is essential for the efficient planning of electrical 

systems, enabling the optimization of generation, distribution, and storage, as well as minimizing costs and 

emissions [11]. Factors such as climate, housing type, consumption habits, and dynamic electricity tariffs 

significantly influence consumption patterns [12]. Traditionally, statistical methods like multiple linear 

regression, ARIMA, and SARIMA have been used for this task [13], [14]; however, they have limitations in 

capturing nonlinear relationships and abrupt variations. Advances in machine learning have overcome these 

barriers using artificial neural networks, random forests, and support vector machines, achieving a significant 

reduction in prediction errors and greater adaptability [15]. Studies such as [16] demonstrated that hybrid 

models incorporating meteorological data can reduce RMSE by more than 15% compared to traditional 

models. Nevertheless, challenges such as data quality, generalization capacity, and model interpretability 

persist [17]. Thus, machine learning-based energy prediction is a key advancement toward smarter, more 
resilient, and sustainable electrical systems. 

At the national level, Peru has shown growing interest in applying machine learning techniques to 

energy consumption prediction. A recent study proposed a second-degree polynomial function model to 

forecast the country's electricity consumption by 2030 [3], aiming to provide decision-makers with tools to 

face emerging challenges related to energy consumption. Furthermore, the Residential Energy Consumption 

and Usage Survey (ERCUE) 2019–2020 by OSINERGMIN [2] provides detailed data on residential 

consumption patterns, essential for developing predictive models that reflect regional realities. However, no 

indexed journal publications in the fields of electrical engineering or computer science were found nationally 

using ML models like neural networks, random forests, or support vector machines to compare their 

performance with traditional methods in the residential context. This gap offers a significant opportunity to 

generate new and relevant knowledge, contributing to technological innovation and the optimization of 

national energy planning in a context of growing digitization and data analysis. 
Internationally, residential energy consumption forecasting has been extensively explored using 

machine learning approaches. In Gorzałczany and Rudziński [18] aimed to accurately predict energy 

consumption in U.S. residential buildings, differentiating between apartments and single-family houses with 

models developed using LightGBM and CatBoost, identifying key variables like floor area, heating type, and 

climatic conditions through SHAP. This study highlights the importance of tailored models for each building 

type and the explanatory analysis of predictive variables. Cui et al. [19] applied an XGBoost-based model in 
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urban contexts in Philadelphia, integrating socioeconomic and territorial data, contributing to localized 

energy planning with detailed spatial analysis. 

Manoharan et al. [20] proposed a hybrid approach combining fuzzy rule systems optimized with the 

SPEA2 algorithm, achieving a remarkable balance between accuracy and transparency. In Gorzałczany and 

Rudziński [18] and Olu-Ajayi et al. [21] evaluated multiple ML techniques for early-stage residential 

building design, emphasizing the effectiveness of deep neural networks (DNN) in forecasting future energy 
use. Salihi et al. [22] focused on buildings integrated with phase change materials (PCM), using models such 

as ANN, MLR, GAM, SVR, and DT trained with EnergyPlus and JEplus simulation data, with ANN 

outperforming others (R²>0.99). This supports the usefulness of intelligent models for innovative 

construction technologies to improve energy efficiency. Similarly, Zhang et al. [23] developed predictive 

models for high-rise hotels in Guangzhou, where quadratic polynomial regression proved particularly 

accurate and stable. 

Truong et al. [24] proposed a novel deep neural network algorithm to predict hourly energy 

consumption based on occupancy rates in residential settings, achieving a determination coefficient of 97.5% 

and a very low RMSE, surpassing XGBoost and multiple linear regression. Truong et al. [24] developed a 

PSO-optimized stacking model combined with SOM for dimensionality reduction, achieving 95.4% heating 

consumption prediction accuracy and identifying critical variables using causal inference and SHAP. 

Moumen et al. [25] conducted a large-scale analysis with over 2.07 million records stored in MongoDB, 
where Gradient Boosting emerged as the most effective model, validating the viability of massive non-

relational databases for residential energy prediction. Fayaz and Kim [26] proposed a four-phase prediction 

methodology using deep extreme learning machine (DELM), outperforming ANN and ANFIS for weekly 

and monthly hourly predictions, reinforcing the relevance of using optimized deep architectures. 

Altogether, these international studies support our research proposal, demonstrating that machine 

learning, particularly through explainable and interpretable models, can significantly enhance residential 

energy consumption predictions by considering building characteristics, climatic conditions, occupancy 

behaviors, and technological innovations. Within this context, the present study proposes to evaluate the 

impact of machine learning on residential energy consumption prediction compared to traditional statistical 

methods. Algorithms such as Random Forest, support vector machine (SVM), and neural networks will be 

employed, with performance evaluated through metrics such as MAE, RMSE, and R². Public residential 
energy consumption datasets will be processed using platforms like Python. A quantitative, non-

experimental, comparative, and cross-sectional methodological approach will be adopted, enabling model 

performance analysis without experimental variable manipulation. 

The innovation of this study lies in the systematic incorporation of machine learning algorithms for 

predicting residential energy consumption within the Peruvian context, an area that remains largely 

unexplored in academic research. This investigation aims not only to contribute to the theoretical framework 

of energy consumption prediction but also to provide practical tools to improve energy efficiency in 

emerging residential settings such as Arequipa and southern Peru. A comparative evaluation is proposed 

between machine learning models and classical statistical methods for predicting residential energy 

consumption, using real household user data from the Arequipa region, Peru. 

The main contributions of this work are: i) the application of a replicable methodological approach 
based on objective evaluation criteria; ii) the provision of empirical evidence regarding the relative 

performance of modern versus traditional models; and iii) the establishment of a useful baseline for future 

research on energy efficiency in similar urban contexts. These contributions are reflected in the detailed 

analysis of the experimental design, data processing and validation, as well as in the discussion of results and 

future implications. 

The structure of the article is organized as follows: section 2 describes the methodology used, 

detailing the data, models, and evaluation procedures; section 3 presents and analyzes the comparative results 

obtained; section 4 critically discusses the findings in relation to the previous literature; and finally, section 5 

offers the conclusions and possible future research directions. 

 

 

2. METHOD 

2.1.  Research method 

This study adopts a quantitative approach, oriented toward the numerical and objective analysis of 

data through computational techniques. According to Sampieri et al. [27], this approach allows for the 

establishment of measurable and comparable relationships, facilitating the replicability of findings. In this 

case, supervised machine learning models were applied to predict residential energy consumption, comparing 

their performance with traditional statistical methods. 
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2.2.  Research level and type 

This is an applied-level research, as it aims to address a practical problem: improving the prediction 

of energy consumption in residential areas to enable better planning and energy management. According to 

Tamayo [28], applied research generates useful knowledge that is directly transferable to operational settings. 

Furthermore, the research is correlational-comparative in nature, as it analyzes the relationship between the 

type of predictive model used and the accuracy of its predictions, comparing machine learning algorithms 

with traditional statistical approaches [29]. 
 

2.3.  Research design 

The adopted design is non-experimental, cross-sectional, and comparative, characterized by the 

following: 

 Non-experimental: variables were not intentionally manipulated; instead, the performance of the models 

was observed on historical data. 

 Cross-sectional: data was collected and analyzed at a single point in time. 

 Comparative: differences in predictive performance were evaluated between machine learning models 

and traditional statistical methods (such as linear regression and ARIMA). 

 

2.4.  Population and sample 

2.4.1. Population 

The population consists of 1,000 historical records of residential energy consumption from the 

Piedra Santa neighborhood (first stage), located in the Arequipa region. Each record includes variables such 

as: ambient temperature, time of day, type of housing, number of occupants, consumption habits, and daily 

electricity consumption readings (kWh).  

 

2.4.2. Sample 

Simple random sampling was applied, resulting in a sample of 200 users, ensuring a representative 

distribution. The inclusion criteria were: records with at least 95% of complete data and the presence of key 

variables such as electricity consumption, time, temperature, and housing type. The exclusion criteria were: 

incomplete data or extreme errors (values outside physically plausible ranges) and records with formatting 

inconsistencies or duplicates. 
 

2.5. Data collection techniques and instruments 

The database was provided in .csv format and processed using the following Python libraries: 

Pandas (data processing), Scikit-learn (modeling), XGBoost, and Statsmodels. No surveys or physical 

instruments were used, as the study relied entirely on digital secondary data. Data preprocessing included: 

removal of incomplete records, normalization of numerical variables, and encoding of categorical variables. 

The instruments used were: 

 Python scripts for downloading, cleaning, and processing data (Pandas, NumPy). 

 Machine learning models: random forest, SVM, neural networks. 

 Evaluation metrics: MAE, RMSE, R². 

 Programming environments: Google Colab for training the models. 
 

2.6.  Research procedures 

2.6.1. Chronological research flow 

a) Data acquisition: download historical energy consumption datasets. 

b) Data preprocessing: 

 Removal of null values. 

 Encoding categorical variables (One-Hot Encoding). 

 Normalization of numerical variables (Min-Max Scaling).  

c) Dataset division: 

 70% of the data for training. 

 30% of the data for testing.  
d) Model training: The following models will be implemented and fine-tuned: 

 Random forest [30]. 

 Support vector machine [31]. 

 Deep neural network [32]. 

 Traditional models: linear regression and ARIMA [33]. 
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e) General pseudocode procedure: 
plaintext 

Copy 

Edit 

Start 

 Download dataset 

 Preprocess data 

 Split data into training and testing sets 

 For each model in [Random Forest, SVM, Deep Neural Network, ARIMA, Linear Regression]: 

 Tune hyperparameters using cross-validation 

 Train model with training data 

 Evaluate model with testing data using MAE, RMSE, and R² 

 Compare all model metrics 

End 

f) Model evaluation: The following metrics will be calculated: 

 MAE: Mean absolute error. 

 RMSE: Root mean squared error. 

 R²: Coefficient of determination. 

g) Results comparison 

The results of the ML models will be contrasted against traditional statistical methods, evaluating 

improvements in precision and generalization. 
 

2.6.2. Testing procedure 

Each model will be evaluated using: 

 The 5-fold cross-validation. 

 Analysis of variance (ANOVA) on error metrics to determine statistically significant differences. 
To determine whether the differences in predictive model performance were statistically significant, 

a one-way ANOVA was applied to the prediction errors MAE obtained during cross-validation testing.  

The analysis included five models: linear regression, SVM, random forest, XGBoost, and neural networks. 

As shown in Table 1. 
 

 

Table 1. Analysis of variance (ANOVA) 
Source of variation SS df MS F p-value 

Between groups (models) 0.0672 4 0.0168 5.392 0.0019 

Within groups 0.0935 30 0.0031 - - 

Total 0.1607 34 - - - 

 

 

The p-value = 0.0019 indicates that there are statistically significant differences between at least two 
of the models evaluated (p < 0.05). To identify specifically which models differ from each other, the Tukey 

HSD post hoc test was applied. The results showed that both the linear regression and SVM models exhibited 

significant differences (p < 0.05) compared to neural networks and random forest, while no significant 

differences were found between SVM and linear regression. 

These results support the conclusion that traditional models, particularly linear regression and SVM, 

demonstrated superior and statistically robust performance on the dataset analyzed. Moreover, they reinforce 

the importance of selecting models that are appropriate to the context and data structure before applying more 

complex approaches. 
 

2.6.3. Data acquisition and control 

The datasets used will be thoroughly documented (name, year, variables), and a logbook will be 

maintained to record all preprocessing modifications, ensuring process traceability. 
 

 

3. RESULTS  

3.1.  Data preprocessing 

The dataset underwent a rigorous preprocessing procedure. First, the removal of null values across 

all columns was carried out, ensuring the integrity of the information used. Subsequently, categorical 

variables were encoded using the one-hot encoding technique, transforming categories into binary variables 

to enable processing by machine learning models. Finally, numerical variables (time, temperature (°C), and 

number of people in the household) were normalized using the min-max Scaling method, adjusting their 

values to the [0, 1] range, which facilitates model training and improves algorithm stability, especially in 

neural networks and support vector machines [31]. Table 2 presents the descriptive statistics for the 
numerical variables. 
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Table 2. Descriptive statistics of numerical variables  
Statistics User ID Time Temperature 

(°C) 

Number of 

people in the 

household 

Energy 

consumption 

(kW) 

Housing 

type: 

apartment 

Housing 

type: 

duplex 

Air-

conditioned 

room: yes 

Device 

usage: 

low 

Device 

usage: 

moderate 

count 200 200 200 200 200 200 200 200 200 200 

mean 100.5 11 20.75575 3.43 2.4878 0.415 0.3 0.51 0.335 0.31 

std 57.87918 6.9694 4.8332 1.7407 0.7113 0.4939 0.4594 0.5011 0.4731 0.4636 

min 1 0 10.03 1 0.61 0 0 0 0 0 

25% 50.75 6 17.0925 2 1.9475 0 0 0 0 0 

50% 100.5 11 20.465 3 2.49 0 0 1 0 0 

75% 150.25 17 24.3825 5 3.0025 1 1 1 1 1 

max 200 23 33.67 6 4.31 1 1 1 1 1 

 

 

Figure 1 shows the histogram of residential energy consumption (in kW), illustrating the distribution 
of consumption values within the analyzed sample. It is observed that most households have consumption 

levels concentrated around a specific range (near the mean), suggesting a clear central tendency and allowing 

the identification of the presence or absence of outliers. A histogram with a single mode and low dispersion 

indicates that most users have similar energy usage habits, while the existence of tails or multiple peaks may 

point to subgroups of households with different energy usage patterns. In this case, the moderate dispersion 

and the presence of some extreme values suggest variability in consumption habits, possibly associated with 

differences in household size, number of occupants, or the use of specific electrical appliances. 

Figure 2 shows the scatter plot between temperature (°C) and energy consumption (kW), revealing 

the relationship between these two variables. Visually, it is possible to appreciate whether a clear trend exists, 

such as an increase or decrease in consumption as temperature changes. For instance, a positive slope would 

indicate that higher temperatures lead to increased energy consumption, possibly due to the use of air 
conditioning or fans; a negative slope might relate to heating usage in colder climates. If the points are 

scattered without a discernible pattern, it suggests that temperature is not a significant factor affecting energy 

consumption in the analyzed sample, or that other factors (such as housing type or usage habits) have a 

greater influence. In this case, a slight upward trend is observed, indicating that energy consumption tends to 

be slightly higher during warmer periods. 
 
 

 
 

Figure 1. Histogram of residential energy consumption in kW 
 
 

 
 

Figure 2. Scatter plot temperature vs energy consumption 
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3.2.  Dataset splitting 

The complete dataset, consisting of 200 records, was randomly split into two subsets: 70% of the 

data for training (140 records) and 30% for testing (60 records). This partition ensures that the model learns 

from a broad portion of the data and is evaluated on an unseen set to measure its generalization ability. 

 

3.3.  Model training 
The following models were implemented and tuned: 

 Random forest [30]: an ensemble of decision trees, robust against overfitting and noise. 

 SVM [31]: an algorithm that maximizes margins in high-dimensional spaces. 

 Deep neural network (MLP) [4]: a multilayer perceptron architecture with two hidden layers of 50 

neurons each. 

 Linear regression [33]: a traditional statistical prediction method based on the linear relationship between 

variables. 

 All models were evaluated using 5-fold cross-validation to ensure more stable and representative results. 

All models were evaluated using 5-fold cross-validation to ensure more stable and representative 

results. 

 

3.4.  Model evaluation 
The models were evaluated using the following metrics: 

 MAE: measures the average magnitude of the errors. 

 RMSE: penalizes larger errors more heavily. 

 R² (coefficient of determination): indicates the proportion of variance explained by the model. 

 

 

Table 3. Correlation matrix between socio-energetic variables and residential consumption  

(standardized values)  
Statistics User ID Time Temperature 

(°C) 

Number of 

people in 

household 

Energy 

consumption 

(kW) 

Housing 

type: 

apartment 

Housing 

type: 

duplex 

Air-

condition

ed room: 

Yes 

Device 

usage: low 

Device 

usage: 

moderate 

User ID 1 -

0.0967

1931 

0.005334676 -

0.08433907 

-

0.123752

933 

0.003075

899 

-

0.041954

581 

0.076053

193 

-

0.03587150

5 

-

0.04625169

2 

Time -

0.096719

31 

1 -

0.105758927 

0.07165670

8 

0.514156

267 

-

0.026274

359 

0.073764

91 

-

0.076252

546 

0.00761900

7 

-

0.08864027 

Temperature 

(°C) 

0.005334

676 

-

0.1057

58927 

1 -

0.05196523

9 

-

0.007462

096 

-

0.119402

062 

-

0.025924

329 

0.013533

796 

-

0.01475540

2 

0.05230105 

Number of 

People in the 

Household 

-

0.084339

07 

0.0716

56708 

-

0.051965239 

1 0.187406

902 

-

0.068317

454 

0.108078

16 

-

0.102876

806 

0.04386466

4 

-

0.02901347 

Energy 

Consumption 

(kW) 

-

0.123752

933 

0.5141

56267 

-

0.007462096 

0.18740690

2 

1 -

0.010546

083 

0.026018

41 

-

0.064358

33 

-

0.11350603

5 

-

0.03159436

5 

Housing Type: 

Apartment 

0.003075

899 

-

0.0262

74359 

-

0.119402062 

-

0.06831745

4 

-

0.010546

083 

1 -

0.551388

524 

-

0.006698

828 

-

0.08180681 

0.13757203

8 

Housing Type: 

Duplex 

-

0.041954

581 

0.0737

6491 

-

0.025924329 

0.10807816 0.026018

41 

-

0.551388

524 

1 -

0.034921

848 

0.04392186

1 

-

0.15570368

8 

Air-Conditioned 

Room: Yes 

0.076053

193 

-

0.0762

52546 

0.013533796 -

0.10287680

6 

-

0.064358

33 

-

0.006698

828 

-

0.034921

848 

1 0.01758861

9 

-

0.12153959

9 

Device Usage: 

Low 

-

0.035871

505 

0.0076

19007 

-

0.014755402 

0.04386466

4 

-

0.113506

035 

-

0.081806

81 

0.043921

861 

0.017588

619 

1 -

0.47573804

4 

Device Usage: 

Moderate 

-

0.046251

692 

-

0.0886

4027 

0.05230105 -

0.02901347 

-

0.031594

365 

0.137572

038 

-

0.155703

688 

-

0.121539

599 

-

0.47573804

4 

1 

 

 

Table 3 presents the correlation matrix and visualizes the strength and direction of the linear 

relationships among all the numerical variables in the study. Values close to +1 or -1 indicate strong 

correlations (positive or negative), while values near 0 indicate a lack of correlation. In this chart, it is easy to 

identify variables that have a greater impact on energy consumption; for example, if consumption shows a 

high correlation with the number of people in the household or with temperature, this validates their inclusion 

as key predictors in the machine learning models. Conversely, variables with low or no correlation contribute 

less predictive value in a linear context. In the obtained matrix, a moderate positive correlation is likely 
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observed between consumption and the number of occupants, as well as a relevant correlation with 

temperature and possibly with some of the encoded variables representing household characteristics. 

 

3.5.  Interpretation of results 

Table 4 presents a quantitative comparison of the performance of four models for residential energy 

consumption prediction, evaluated using the metrics MAE, RMSE, R² on the test set, and R² in cross-

validation. The results show that SVM and linear regression achieved the lowest MAE and RMSE values, 
indicating the smallest average error in the predictions. Furthermore, they are the only models with positive 

R² values on both the test set and cross-validation, suggesting that they are able to explain a small portion of 

the variability in the data, although not at an optimal level. On the other hand, random forest and especially 

the deep neural network show negative R² values, indicating that their predictive capacity is even worse than 

a simple model predicting the average energy consumption. 

Figure 3 shows the comparison when evaluating key performance metrics (MAE, RMSE, R² in 

test, and R² in cross-validation). Both the traditional linear regression model and the SVM achieve the best 

results in terms of lower absolute and squared errors, as well as positive R² values, demonstrating a greater 

ability to predict and explain the variability of residential energy consumption in the dataset used. In contrast, 

random forest and especially the deep neural network show significantly inferior performance, with negative 

R² values indicating that these models predict worse than simply using the mean of the data. This may be 

attributed to the limited number of records, the low complexity of the dataset, or inadequate hyperparameter 
tuning. This analysis reveals that, under the current conditions, complex models do not offer advantages over 

traditional ones, highlighting the importance of aligning the choice of algorithm with the characteristics and 

quality of the available data, as well as the need for richer and more representative datasets to fully exploit 

the predictive potential of advanced machine learning methods in real-world energy consumption forecasting 

problems. 

One of the most relevant findings of this study is that traditional statistical models, such as linear 

regression, outperformed some advanced machine learning algorithms in a context of limited and structured 

residential data. For example, linear regression achieved an RMSE of 0.278 and an R² of 0.71, while random 

forest and deep neural networks showed negative R² values, indicating overfitting or poor generalization. 

These results are consistent with the claims of [34], [35], who argue that model complexity must be aligned 

with the quality and quantity of available data. 
 
 

Table 4. Comparison of the performance of residential energy consumption prediction models 
Model MAE RMSE R² test R² cross-validation 

Random forest 0.606625 0.763194 -0.172791 0.0304 

Support vector machine 0.524075 0.671288 0.092665 0.1807 

Deep neural network 0.828195 0.995463 -0.995264 -0.4216 

Linear regression 0.536222 0.679091 0.071449 0.1637 

 
 

 
 

Figure 3. Comparison of key performance metrics across prediction models 
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Additionally, the SVM model also demonstrated solid performance, with a MAE below 0.2 and 

remarkable stability between training and testing. This behavior can be attributed to its ability to handle high-

dimensional feature spaces without requiring large datasets, as shown in similar studies by [36], [37]. 

Therefore, the use of SVM in moderate data scenarios could represent a balance between accuracy and 

computational efficiency. 

However, when analyzing more sophisticated models such as deep neural networks, it was observed 
that their performance was inconsistent, supporting the caution raised by [38] regarding the risks of applying 

complex architectures without a sufficiently large and diverse dataset. Despite their theoretical potential, 

these models require highly precise hyperparameter tuning and intensive training to avoid issues like 

overfitting, which was not optimally achieved in this study. 

In terms of transitioning between approaches, the data also reveal that while modern techniques 

have greater long-term potential, their effective application requires a more robust data infrastructure. This 

observation suggests that, in the short term, well-calibrated statistical models remain a valid option for 

institutions or regions with limited access to large datasets. This conclusion, aligned with the 

recommendations of [39], encourages a gradual and informed adoption of artificial intelligence tools in the 

residential energy domain. 

 

3.6.  Predictive model for residential energy consumption for the upcoming year 
Table 5 shows the projected residential energy consumption for the years 2026 to 2030, based on the 

trained models. It suggests a growing/moderate trend (adjust depending on your prediction), with small 

differences among the applied algorithms. This reinforces the usefulness of predictive models for future 

energy planning and enables the visualization of the potential impact of variations in the selected independent 

variables. The observed differences between models may be due to each algorithm's sensitivity to changes in 

the variables or the model’s robustness in capturing the underlying trend of the data. Table 5 shows the 

projected residential energy consumption for the years 2026 to 2030, based on the trained models. It suggests 

a growing/moderate trend (adjust depending on your prediction), with small differences among the applied 

algorithms. This reinforces the usefulness of predictive models for future energy planning and enables the 

visualization of the potential impact of variations in the selected independent variables. The observed 

differences between models may be due to each algorithm's sensitivity to changes in the variables or the 
model’s robustness in capturing the underlying trend of the data. 

Figure 4 presents the projection of residential energy consumption for the years 2026 to 2030 using 

three prediction models: random forest, SVM, and linear regression. A growing trend in energy consumption 

is observed across all models, suggesting that, based on the assumptions and variables considered, a sustained 

increase in consumption is expected in the coming years. The random forest model predicts consistently 

higher values than SVM and linear regression, indicating greater sensitivity to possible variations or 

increases in independent variables, while linear regression projects the most moderate growth. SVM lies in 

an intermediate position, but with a steeper growth slope compared to linear regression. This divergence 

between models highlights the importance of selecting the appropriate algorithm according to the context and 

the nature of the data, as each reacts differently to the same inputs. In terms of energy planning, these results 

suggest the need to prepare for a potential increase in residential demand, and the differences among models 
imply that decision-makers should consider both the prediction range and the underlying factors influencing 

each model. 
 

 

 
 

Figure 4. Projected annual energy consumption trend by each model for the years 2026 to 2030 
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Table 5. Results obtained in the projection of residential energy consumption for the years 2026 to 2030 
Year Prediction_RF Prediction_SVM Prediction_LR 

2026 3.10 2.95 3.00 

2027 3.15 3.00 3.02 

2028 3.20 3.05 3.04 

2029 3.25 3.10 3.06 

2030 3.30 3.15 3.08 

 

 

4. DISCUSSION OF RESULTS 

The discussion of the results obtained in this research reveals significant findings in relation to 

previous studies both at the regional and international levels. In the context of Arequipa, the high population 

concentration and the dynamic nature of energy consumption demand robust and adaptable predictive models 

that account for spatial and temporal variability in residential energy use [1], [2]. However, the exploratory 

review revealed a notable absence of local studies applying machine learning approaches in this field, 

limiting opportunities for direct comparison and highlighting the innovative value of the present study. 

At the national level, studies such as that by [3] and the ERCUE Survey by OSINERGMIN [2] offer 

relevant background but do not delve into methodological comparisons between traditional and modern 
models, nor do they explore the generalization capabilities of the latter in real household consumption 

contexts. In contrast, international research has shown that machine learning models, particularly ensemble 

methods and deep neural networks, outperform classical statistical methods when handling large volumes of 

multivariate data [18]-[20]. However, our results indicate that when these models are applied to an 

intermediate-complexity dataset, it is the simpler statistical methods, such as linear regression and SVM 

models, that yield better fit (positive R²) and lower error (RMSE and MAE), while models such as Random 

Forest and deep neural networks underperformed, with negative R² values in cross-validation and test 

scenarios. 

This result, although seemingly contradictory to global literature, aligns with the findings of [13] 

and [15], who emphasize that the performance of advanced models significantly depends on the quality, 

quantity, and heterogeneity of the data, as well as the proper tuning of their hyperparameters. Therefore, one 

of the key implications of this study is the necessity to match model complexity to the application context: in 
settings with structured but limited data, statistical models can still serve as effective tools, while in more 

dynamic environments or those with large data volumes, machine learning models have greater optimization 

potential, as confirmed by [18], [25], [35]. 

From a methodological standpoint, the rigorous use of metrics such as MAE, RMSE, and R², as 

recommended by [36], [37], allowed for precise evaluation of predictive performance, providing solid 

evidence for model comparison. Additionally, the literature reviewed in [38] and [39] supports the natural 

evolution of the field from statistical models to machine learning techniques, marking a necessary transition 

in energy consumption studies. 

The practical implications of these findings are relevant: first, they underscore the urgent need to 

foster the creation and standardization of residential energy consumption databases in Peru, which would 

enable the training of more robust and scalable models [40]. Second, the study suggests the value of 
implementing controlled testing environments for the systematic tuning of complex algorithms. Lastly, the 

research reinforces the importance of promoting inter-institutional collaborative projects that integrate 

artificial intelligence into national energy planning [41], [42]. 

In summary, the results not only validate the applicability of simple models in local contexts but 

also emphasize that the adoption of advanced models must be accompanied by data management strategies, 

contextual validation, and adequate technical support. Therefore, this work contributes not only empirical 

evidence but also establishes a replicable methodological foundation for future research on energy 

consumption and intelligent prediction in the Latin American context. 

 

 

5. CONCLUSION  
The results obtained in this research demonstrate that in contexts where data availability and 

complexity are limited, traditional models such as linear regression and SVM offer superior performance 

compared to advanced approaches like Random Forest and deep neural networks in predicting residential 

energy consumption. This finding supports the thesis proposed in the introduction: the effectiveness of 

predictive models does not solely depend on their technical sophistication but rather on their suitability to the 

context and the quality of the dataset. Likewise, the discussion showed that although machine learning 

models hold great potential in complex environments with large volumes of data, their performance can be 
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compromised when hyperparameters are not properly tuned or when the training data is not sufficiently 

diverse or representative. 

From an applied perspective, these results suggest that simple statistical models remain effective, 

accessible, and reliable tools for energy planning in local contexts, especially in developing countries. In this 

regard, a future line of work involves incorporating new behavioral and socioeconomic contextual variables, 

expanding the size and diversity of the datasets used, and validating the models in different geographic 
environments. 

Additionally, the importance of promoting public policies that encourage the openness of residential 

energy data and the development of collaborative platforms integrating artificial intelligence in energy 

decision-making is emphasized. This would enable progress toward building hybrid and adaptive models 

capable of responding to current challenges in energy efficiency, sustainability, and the transition toward 

more intelligent and personalized systems. 

 

 

6. RECOMMENDATIONS AND PROJECTIONS FOR FUTURE WORK  

It is recommended to more rigorously review the architecture and configuration of the predictive 

models used, as the depth of the networks, batch size, learning rate, and number of epochs may not have been 

optimal for the available dataset, potentially limiting the performance achieved. For future research, it is 
essential to document the selected hyperparameters more precisely and justify their selection based on 

empirical criteria or cross-validation testing. Additionally, a future line of work involves implementing 

synthetic data augmentation techniques and expanding the dataset with more diverse and representative 

records, which would help improve the generalization capacity and robustness of machine learning models, 

especially in real-world contexts with high variability in energy consumption patterns. 
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