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ABSTRACT

Human gait analysis is a key component of rehabilitation, prosthetics, and sports
science, especially for clinical evaluation and the development of adaptive assis-
tive technologies. Accurate joint-angle estimation and dependable joint-type
classification remain difficult because of the complex temporal behavior of gait
signals and the limited interpretability of many deep learning (DL) approaches.
While recent techniques have enhanced predictive accuracy, their clinical appli-
cability is often limited by insufficient transparency and adaptability in learning
mechanisms. To overcome these limitations, this work proposes an integrated
framework that unifies DL, reinforcement learning (RL), and explainable arti-
ficial intelligence (XAI). Stochastic depth neural networks (SDNN) are applied
for joint-angle regression, whereas deep feature factorization networks (DFFN)
are used for multi-class joint-type classification. Optimization is achieved using
Q-learning (QL) and mutual information maximization (MIM), ensuring stable
convergence and improved learning efficiency. To improve interpretability, the
framework incorporates counterfactual and contrastive explanations, feature ab-
lation studies, and prediction probability analysis. Experimental findings show
that the SDNN MIM model attains an R2 score of 0.9881, with RL rewards
increasing from 0.997 to 0.999 during regression training. For joint-type clas-
sification, the DFFN MIM model achieves an accuracy of 0.95, with reward
values improving from 0.90 to 0.98. These results demonstrate the effective-
ness of the proposed framework in delivering accurate and interpretable gait
predictions, supporting its relevance to biomechanics, healthcare, personalized
rehabilitation, and intelligent assistive systems.
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1. INTRODUCTION
Human gait analysis constitutes a core research domain in biomechanics, rehabilitation, prosthetics,

and sports science, with significant relevance to clinical diagnosis, rehabilitation evaluation, and the devel-
opment of intelligent assistive technologies. Accurate gait assessment supports early detection of movement
impairments, facilitates improved prosthetic and orthotic design, and aids in injury prevention. Conventional
gait analysis approaches primarily rely on motion-capture systems, force plates, and handcrafted biomechanical
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models. While effective in controlled laboratory settings, these methods often face challenges related to high-
dimensional data, inter-subject variability, limited generalization across diverse movement patterns, and exten-
sive manual feature engineering requirements. In recent years, deep learning (DL) methods have been widely
adopted to address these limitations by automatically learning hierarchical representations from gait data. De-
spite their effectiveness, DL–based gait models still exhibit notable limitations, including overfitting, restricted
interpretability, and inefficient optimization, which constrain their clinical reliability. To mitigate these issues,
explainable artificial intelligence (XAI) and deep reinforcement learning (DRL) have gained increasing atten-
tion in gait analysis research. In the context of clinical gait analysis (CGA), Slijepcevic et al. [1] categorized
XAI techniques into data exploration, prediction explanation, and model explanation using approaches such
as t-SNE and layer-wise relevance propagation (LRP). Although these methods enhanced interpretability, re-
inforcement learning (RL)–based optimization was not explored. Likewise, Madanu et al. [2] employed XAI
for pain assessment, reducing subjectivity but without capturing the sequential and biomechanical complex-
ity of gait. SHAP-based explanation techniques reported in [3], [4] improved clinical confidence; however,
these studies were limited to supervised learning paradigms and lacked adaptive optimization strategies. RL
has shown strong potential in sequential decision-making and continuous control tasks. The soft actor-critic
(SAC) framework presented in [5], [6] enabled stable learning in continuous action spaces, and autonomous
locomotion without predefined motion models was investigated in [7]. These studies mainly addressed robotic
locomotion, where biomechanical constraints, safety requirements, and interpretability differ from human gait
analysis. Guided SAC methods, such as [8], enhanced performance in partially observable environments; how-
ever, limited policy transparency restricts their clinical applicability. Model-based RL extensions incorporating
uncertainty modeling and model predictive control (MPC) in [9] improved sample efficiency, yet their relevance
to human gait remains constrained by safety and explainability concerns. Recent surveys and reviews [10]–[12]
highlighted the promise of DRL for gait analysis and rehabilitation while identifying ongoing challenges, in-
cluding small clinical datasets, dependence on simulated environments, and limited interpretability of learned
policies. Explainable RL taxonomies in [12] and roadmap studies in [13] further emphasized the difficulty of
explaining sequential decision-making processes in safety-critical applications. IMU-based gait investigations
such as [14] demonstrated effective prediction of dynamic balance but did not incorporate reinforcement-driven
optimization or biomechanical interpretability. Similarly, GRF-based gait classification in [15] utilized SHAP-
based explanations without adaptive learning mechanisms. Beyond gait-focused research, XAI applications in
healthcare and sports analytics [15], [16] reported challenges related to dataset quality, predictive performance,
and generalization. Ethical transparency and accountability in machine learning were emphasized in [17], while
sensitivity to dataset bias was discussed in [18] and [19]. Recent XAI-enabled gait decision-support studies
[20], [21] applied LIME and SHAP to support clinical reasoning but encountered scalability and real-time in-
terpretability limitations. Finally, [13] achieved strong foot-condition classification using handcrafted features
and LIME explanations, yet lacked automated feature learning and reinforcement-based optimization. Over-
all, although prior studies demonstrate substantial progress in XAI and DRL for human movement analysis, a
unified framework integrating deep neural networks, RL–driven optimization, and explainable mechanisms for
accurate, adaptive, and clinically interpretable human gait prediction remains insufficiently investigated.

Despite the substantial progress achieved through deep learning in human gait analysis, several open
challenges still restrict its clinical applicability. Most existing works depend on post-hoc interpretability meth-
ods applied to supervised learning models, which provide limited insight into model behavior and offer minimal
explanation of sequential decision-making processes. As a result, the integration of XAI within RL–based gait
analysis frameworks remains largely underexplored. Furthermore, current gait modeling strategies frequently
face optimization challenges, including unstable training behavior, limited adaptability to time-varying gait
patterns, and reduced generalization across subjects and movement conditions. Although RL approaches, such
as SAC, have demonstrated strong performance in robotic locomotion, their effectiveness for modeling human
gait dynamics—particularly for combined regression and multi-class classification tasks—has not been thor-
oughly examined. Addressing these gaps, this study proposes a unified deep learning framework augmented
with RL and explainability components to enhance predictive accuracy, learning stability, and clinical inter-
pretability in gait analysis. For joint-angle estimation, stochastic depth neural networks (SDNN) are adopted to
improve generalization by dynamically bypassing network layers during training. To ensure stable and efficient
optimization, QL and MIM are integrated into the learning process. For joint-type classification, deep feature
factorization networks (DFFN) are employed to derive discriminative spatio-temporal gait representations, sup-
porting robust multi-class decision-making. In addition, advanced XAI techniques—including counterfactual
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and contrastive explanations, feature ablation analysis, and prediction confidence assessment—are incorporated
to deliver clinically meaningful insights and enhance trust in model predictions. Overall, this work contributes
a RL–driven and explainable gait analysis framework that unifies accurate prediction, adaptive learning, and
transparent decision-making. The proposed methodology establishes a basis for reliable gait modeling applica-
ble to intelligent assistive systems and future clinical deployment. The remainder of this paper is structured as
follows: section 2 describes the dataset, preprocessing steps, problem formulation, model architectures, and the
integration of RL and XAI strategies, section 3 presents the experimental results and interpretability analysis,
and section 4 concludes the study with clinical implications and future research directions.

2. METHOD

2.1. Research design

The increasing demand for data-driven and clinically dependable human movement analysis high-
lights the challenge of accurately modeling complex gait dynamics. This study concentrates on developing a
unified framework capable of performing joint-angle regression and multi-class joint-type classification while
maintaining robustness, learning stability, and clinical interpretability. To accomplish this, the proposed ap-
proach integrates deep neural architectures with RL and mutual information–based optimization, forming a
cohesive pipeline illustrated in Figures 1–4. For joint-angle estimation, SDNN are employed to capture tem-
poral joint trajectories. As shown in Figure 1, SDNN utilizes a probabilistic layer-skipping strategy in which
each network block (P0–P3) is assigned a survival probability. Shallower layers remain active during training,
while deeper layers are selectively bypassed. When a layer is skipped, its output is substituted with a shortcut
connection from the preceding layer, enabling uninterrupted forward propagation. This architecture mitigates
overfitting, enhances generalization, and promotes stable learning from noisy and variable gait signals by learn-
ing hierarchical temporal representations. For multi-class joint-type classification, deep feature factorization
(DFF), depicted in Figure 2, is applied to enable structured feature decomposition and dimensionality reduc-
tion. Raw gait signals are initially processed through feature extraction and reshaped into matrix form, which
is subsequently factorized into basis and activation matrices. Methods such as singular value decomposition,
non-negative matrix factorization, or principal component analysis produce compact yet informative represen-
tations that preserve essential spatio-temporal characteristics while reducing redundancy, thereby improving
both discriminative capability and computational efficiency. To support adaptive optimization, RL is incor-
porated through a QL mechanism, as illustrated in Figure 3. In this configuration, the model functions as an
agent that receives reward feedback based on prediction performance. Incorrect predictions generate correc-
tive rewards, directing iterative Q-value updates and policy refinement. Through continuous interaction and
feedback, the model progressively improves learning stability and classification accuracy. Complementing this
process, MIM, shown in Figure 4, is employed to reinforce feature relevance across modalities. By maximizing
shared information among complementary feature representations, MIM ensures that retained features remain
informative and non-redundant, ultimately improving representation quality and downstream performance.

Figure 1. Flow diagram of SDNN Figure 2. Flow diagram of DFF
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2.2. Data sources and preprocessing
This study utilizes a multivariate human gait dataset sourced from the UCI machine learning repos-

itory, released on December 14, 2022. The dataset consists of 181,800 time-series samples acquired from 10
healthy participants performing gait under three experimental conditions: unbraced, knee-braced, and ankle-
braced. Under each condition, participants completed 10 gait cycles, with joint-angle trajectories captured at
101 discrete time points corresponding to a complete gait cycle. Each sample is characterized by seven at-
tributes, including subject identifier, walking condition, replication index, leg side, joint type (ankle, knee, or
hip), time step, and joint angle expressed in degrees. Data acquisition was conducted at the Human Dynamics
and Controls Laboratory, University of Illinois at Urbana–Champaign [22]–[24], and the dataset contains no
missing entries. The balanced distribution across subjects, walking conditions, limbs, and joint types makes
the dataset appropriate for both regression and classification tasks in biomechanical gait analysis. For the
joint-angle regression task, the objective was to estimate continuous joint-angle values using subject-specific
and gait-related features. Data preprocessing involved loading the dataset with Pandas, encoding categorical
variables, and normalizing numerical features using MinMaxScaler. A feature matrix comprising 29 predic-
tors was formed, with joint angle designated as the regression target. The dataset was subsequently split into
training and testing subsets and reshaped into sequential formats compatible with the SDNN-based regression
architecture. For multi-class joint-type classification, the aim was to identify joint categories using the same
input attributes. Joint labels were one-hot encoded, numerical features were normalized, and a dataset con-
taining 27 input features was constructed using the identical train–test split. The classification data were then
arranged into structured sequences suitable for the DFFN-based architecture. Overall, these preprocessing pro-
cedures produced clean, balanced, and well-organized datasets, establishing a reliable basis for accurate and
interpretable gait analysis across varying walking conditions.

Figure 3. Flow diagram of QL Figure 4. Flow diagram of MIM

2.3. Model architecture and justification
This study proposes a unified framework that integrates neural networks (NN), RL, and XAI to ad-

dress joint-angle regression and multi-class joint-type classification in human gait analysis. The overall work-
flow starts with dataset preparation, where noise and outliers are managed, categorical variables are encoded,
and numerical features are normalized using Min–Max scaling. The processed data are then partitioned into
training and testing sets to enable balanced and unbiased evaluation. For joint-angle regression, two variants of
the SDNN are developed. The SDNN QL model incorporates QL to support policy-driven optimization dur-
ing training, while the SDNN MIM model applies MIM to enhance feature representation and generalization
performance. Both variants are designed to effectively capture temporal gait dynamics while minimizing pre-
diction error in joint-angle estimation. Regression performance is assessed using mean squared error (MSE),
mean absolute error (MAE), and the coefficient of determination (R2), complemented by residual and per-
formance plots that assist in validating learning stability and predictive reliability. For multi-class joint-type
classification, two DFFN variants are utilized. The DFFN QL model integrates QL to optimize action-selection
behavior during classification, whereas the DFFN MIM model employs MIM to reinforce learned feature em-
beddings. These models are trained to discriminate among ankle, knee, and hip joint categories. Classification
performance is measured using accuracy, precision, recall, F1 score, and prediction probability distributions,
with additional insights derived from confusion matrices, ROC curves, and precision–recall plots. To enhance
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transparency and clinical interpretability, the framework incorporates multiple XAI techniques. Counterfactual
explanations identify minimal changes in input features required to modify predictions, while contrastive ex-
planations highlight differences between predicted outcomes and alternative classes. Feature ablation analysis
evaluates the contribution of individual input variables, and prediction probability analysis demonstrates model
confidence across both regression and classification tasks. These interpretability findings are presented through
visual and textual representations to support clear understanding of model decision-making. The complete
architecture is shown in Figure 5, where Figure 5(a) illustrates the SDNN QL MIM regression model and Fig-
ure 5(b) displays the DFFN QL MIM classification model.

(a) (b)

Figure 5. Model architectures (a) SDNN QL MIM for regression and (b) DFFN QL MIM for multi-class
classification

2.4. Performance metrics
The proposed gait analysis framework is assessed using standard performance metrics suitable for both

joint-angle regression and multi-class joint-type classification. These metrics are selected to capture prediction
accuracy, learning stability, and generalization capability, which are critical for clinically dependable evaluation
using the SDNN QL MIM and DFFN QL MIM models. For joint-angle regression, model performance is
evaluated using MSE, MAE, and the coefficient of determination (R2). MSE places greater emphasis on
larger discrepancies between predicted and actual joint-angle values, whereas MAE offers a more intuitive
measure of average prediction error. The R2 metric reflects how effectively the model explains variance in joint-
angle data, enabling meaningful comparison across different regression models and optimization strategies.
For multi-class joint-type classification, evaluation concentrates on accuracy, precision, recall, F1 score, and
prediction probability distributions. Accuracy represents overall classification effectiveness, while precision
and recall characterize class-specific reliability and sensitivity. The F1 score balances these measures to provide
a unified performance indicator. To further analyze class-level behavior and decision boundaries, confusion
matrices, receiver operating characteristic (ROC) curves, and precision–recall plots are utilized. Collectively,
these metrics provide a comprehensive evaluation of the robustness and effectiveness of the proposed gait
prediction framework.

2.5. Integration of XAI techniques
The proposed framework incorporates multiple XAI techniques to improve transparency and confi-

dence in black-box learning models applied to human gait analysis. When interpretability is needed, input data
are preprocessed and forwarded through the trained model to obtain predictions. Counterfactual explanations
are subsequently generated by identifying minimal and plausible modifications in the input that result in differ-
ent prediction outcomes, ensuring clinical relevance. In parallel, contrastive explanations are utilized to com-
pare the predicted outcome with alternative scenarios, thereby emphasizing the key features that drive model
decisions. To further examine feature relevance, feature ablation is performed by systematically removing or
perturbing individual input variables and analyzing the resulting variations in model outputs. This procedure
enables a quantitative evaluation of feature importance. In the multi-class classification setting, prediction prob-
ability analysis is applied to assess class-wise confidence levels and determine the features that most strongly
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influence the predicted joint category. For instance, when a sample is classified as Joint Class 2, the associated
probability scores reflect the relative contribution of the corresponding input features (X variables). Collec-
tively, these XAI techniques deliver clear and actionable insights into model behavior. When combined with
RL–based decision refinement and mutual information–guided feature optimization, the framework enables
accurate, interpretable, and clinically meaningful joint-angle prediction and joint-type classification.

2.6. Real-world implications
The proposed framework, integrating deep learning with RL and XAI, demonstrates strong practical

relevance for biomechanics, rehabilitation engineering, prosthetics, and CGA. Accurate joint-angle prediction
and joint-type classification can support clinicians in the early detection of movement disorders, enable person-
alized rehabilitation strategies, and contribute to the design of more effective prosthetic and assistive devices.
The incorporation of RL allows the models to adapt to evolving gait patterns and sustain stable performance
across varying walking conditions. Moreover, the inclusion of XAI techniques—such as counterfactual and
contrastive explanations, feature ablation, and prediction probability analysis—enhances transparency by en-
abling clinicians and domain experts to interpret and validate model predictions. This level of interpretability
addresses common concerns related to black-box learning models and promotes responsible clinical deploy-
ment. By unifying adaptive learning with explainable decision-making, the proposed framework provides a
practical basis for implementing intelligent gait analysis systems in real-world environments. As data-driven
human movement analysis continues to advance, such adaptive and explainable approaches are expected to
play a significant role in the development of assistive technologies and evidence-based healthcare solutions.

2.7. Mathematical formulation
This section presents concise mathematical formulations of the XAI techniques used in this study,

namely counterfactual explanations, contrastive explanations, and feature ablation. These formulations de-
scribe how minimal input perturbations influence model predictions and enable transparent interpretation for
both regression and multi-class classification tasks.

2.8. Counterfactual explanations
Counterfactual explanations identify the minimal modification to an input instance that changes the

model’s prediction. Input features are normalized using Min–Max scaling is defined as (1):

xnorm =
x− xmin

xmax − xmin
(1)

The counterfactual objective is defined by minimizing a loss function that shifts the prediction from the original
output to a target outcome is defined as (2):

L(x) = −P (ytarget | x) + P (yorig | x) (2)

The optimal counterfactual instance is obtained as (3):

x∗ = argmin
x

L(x) (3)

2.9. Contrastive explanations
Contrastive explanations analyze how small perturbations in the input alter the model’s prediction.

A contrastive instance is generated by adding bounded Gaussian noise as (4):

xcon = clip(x+N (0, σ2), 0, 1) (4)

The model prediction for both original and perturbed inputs is given by (5):

ŷ = f(x) (5)

Differences between these predictions highlight features that most strongly influence decision boundaries.

Joint angle prediction and joint-type classification in human gait analysis using explainable... (Deepak N. R.)



570 ❒ ISSN: 2502-4752

2.10. Feature ablation
Feature ablation evaluates the importance of individual features by measuring prediction changes after

feature removal. For a given feature j, the perturbed input is defined as (6):

X ′ = X with X[:, j] = 0 (6)

The impact of the ablated feature is quantified by the absolute prediction difference as (7):

Lj = |f(X)− f(X ′)| (7)

To enable fair comparison across features, the ablation scores are normalized as (8):

Lnorm
j =

Lj√∑n
j=1 L

2
j

(8)

Higher normalized scores indicate greater influence of the corresponding feature on the model’s output.

2.11. Hyperparameter tuning strategy
Hyperparameter tuning was conducted independently for the joint-angle regression and multi-class

joint-type classification tasks to ensure stable convergence and dependable model performance. For the regres-
sion task, the SDNN model was trained using a test split of 0.3 and a fixed random seed of 42 to guarantee
reproducibility. The network architecture comprised five stochastic depth layers with a survival probability
of 0.8. Each hidden layer included 32 neurons with ReLU activation, while a linear activation function was
employed at the output layer to enable continuous joint-angle prediction. Model optimization was carried out
using the Adam optimizer, which supported training stability and reduced overfitting. For the multi-class joint-
type classification task, the DFFN model defined target variables as features beginning with joint , with 30%
of the dataset allocated for testing and the same random seed of 42. The architecture incorporated a feature
factorization layer with 512 neurons, followed by interaction layers consisting of 256, 128, and 64 neurons.
Additional non-linear transformation layers with 128 and 64 neurons were included, and a dropout rate of 0.4
was applied to enhance generalization. The final softmax layer contained three neurons corresponding to the
joint-type classes. Training was performed using the Adam optimizer with an initial learning rate of 0.0001,
exponential decay steps of 10,000, a decay rate of 0.8, staircase decay enabled, and categorical cross-entropy
as the loss function to ensure stable and reliable classification.

Tables 1 and 2 summarize the experimental configurations applied for the regression and multi-class
classification tasks, respectively. Across all experiments, deep learning and RL parameters were maintained
consistently to ensure fair comparison across different XAI techniques. To support interpretability, XAI expla-
nations were generated for both the initial and final predictions.

Table 1. RL parameter settings for regression (QL vs. MIM)
Parameters QL-regression MIM-regression

Total training epochs for RL model 30 30
Batch size for training 64 64
Initial exploration rate (ϵ) 0.5 0.5
Exploration decay rate 0.99 0.99
Discount factor (γ) 0.95 0.95
Frequency of updating target model 10 5
Target model for RL updates – Clone of main model
Possible learning rate values [0.00001, 0.00005, 0.0001, 0.0005,

0.001]
–

Possible dropout rate values [0.2, 0.3, 0.3, 0.4, 0.5] –
Possible action values – [(0.00001, 0.2, 0.6), (0.00005, 0.3, 0.7),

(0.0001, 0.3, 0.8), (0.0005, 0.4, 0.9),
(0.001, 0.5, 0.9)]

Learning rate for Q-table updates 0.5 –
Number of features in training set – Xtrain.shape[1]
Counter for successful episodes – 0
Reward function 1/(1 + MSE) 1/(1 + MSE)
Maximum reward value 1.0 1.0
Reward threshold for success count 0.8 0.8
Verbosity level 0 0
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Table 2. RL parameter settings for multi-class classification (QL vs. MIM)
Parameters QL-multi class MIM-multi class

Number of training epochs 50 50
Batch size for training 64 64
Initial exploration rate (ϵ) 0.9 0.9
Exploration decay rate 0.98 0.98
Discount factor (γ) 0.99 0.99
Frequency of updating target model 10 epochs 10
Possible action values [(0.00001, 0.3, 128), (0.00005, 0.4,

256), (0.0001, 0.4, 512), (0.0005, 0.5,
1024), (0.001, 0.6, 2048)]

[(0.00001, 0.3, 128), (0.00005, 0.4,
256), (0.0001, 0.4, 512), (0.0005, 0.5,
1024), (0.001, 0.6, 2048)]

Learning rate for Q-table updates 0.9 –
Number of features in dataset – Xtrain.shape[1]
Scaling factor for intrinsic reward – 0.5
Dropout rate in hidden layers – 0.4
Number of neurons in interaction layers – 128, 256, 512, 1024, 2048

3. RESULTS AND DISCUSSION
3.1. Experimental setup

The experimental setup utilizes advanced DL, RL, and XAI techniques to support efficient and robust
gait analysis. Data preprocessing and performance evaluation were performed using the scikit-learn library,
while deep neural network architectures were designed and trained with TensorFlow/Keras. RL components
were incorporated to enable adaptive optimization during training, and XAI techniques were integrated to
improve transparency and interpretability. This unified setup facilitates reliable joint-angle regression and
multi-class joint-type classification with clinically meaningful insights.

3.2. Exploratory data analysis and feature insights
Figure 6 illustrates a lollipop chart summarizing the mean values of all input features. The time fea-

ture shows the highest mean value (approximately 50), followed by the angle feature (approximately 12.15),
indicating their dominant numerical magnitude within the dataset. In contrast, features such as subject, con-
dition, replication, leg, and joint exhibit lower mean values (ranging from 1 to 5), reflecting their categorical
or discrete nature. Figure 7 presents a line plot with error bars representing the mean and standard deviation
of each feature. The time feature demonstrates both the highest mean and the greatest variability, whereas
angle shows moderate variation. The remaining features display shorter error bars, indicating limited vari-
ability consistent with categorical attributes. Figure 8 depicts a hexbin plot visualizing the joint distribution
of Class and Hypertension, where color intensity denotes data density. This visualization emphasizes dom-
inant class–hypertension combinations while minimizing visual clutter from individual data points. Finally,
the correlation matrix in Figure 9 indicates generally weak linear relationships among features, with a modest
positive correlation (0.22) identified between time and angle. The overall low linear dependency supports the
application of nonlinear and multivariate modeling approaches to capture complex gait dynamics.

Figure 6. Lollipop chart of feature means Figure 7. Mean and standard deviation for each
feature
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Figure 8. Hexbin plot Figure 9. Correlation matrix

3.3. Regression performance analysis
Figure 10 provides a comparative evaluation of integrated NN and RL-based regression models, where

the SDNN framework is optimized using QL and MIM. In Figure 10(a), the QL–based model displays a gradual
rise in reward values from approximately 0.992 to 0.998 over 30 epochs, indicating steady performance im-
provement with minor fluctuations. In contrast, Figure 10(b) illustrates that the MIM-based model converges
more quickly, increasing from about 0.997 to nearly 0.999 within the same epoch range. Overall, although both
optimization strategies demonstrate effective learning behavior, SDNN MIM achieves faster convergence and
marginally higher reward values than SDNN QL, indicating superior optimization efficiency for joint-angle
regression tasks.

Figure 11 presents a comparative assessment of integrated NN and RL-based regression models for
joint-angle prediction, specifically SDNN QL and SDNN MIM. Performance is evaluated using MSE, MAE,
and R2. The SDNN MIM model records lower errors (MSE = 0.0003, MAE = 0.0125) compared to SDNN QL
(MSE = 0.0006, MAE = 0.0183) and achieves a higher R2 score (0.9881 vs. 0.9750), reflecting improved vari-
ance explanation and model fit. These findings suggest that MIM strengthens feature learning and regression
accuracy, whereas QL is relatively less effective. Overall, SDNN MIM emerges as the most effective model
for joint-angle regression, while maintaining strong interpretability.

(a) (b)

Figure 10. Model performance analysis (a) SDNN QL MIM for regression and (b) SDNN QL MIM for
regression

Figure 11. Comparative analysis of combined NN and RL-based regression models
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Figure 12 integrates regression performance analysis with XAI-based explanations. In Figure 12(a),
counterfactual explanations of the SDNN QL MIM model analyze feature contributions across the first, sec-
ond, last, and last-to-first predictions under QL and MIM. For QL, the initial prediction is mainly driven by
time, joint 2, leg 2, replication 1, condition 3, and subject 9, while the final prediction shifts toward joint 3,
replication 3, condition 3, and subject 4. Under MIM, the second prediction emphasizes time, joint 3, leg 2,
replication 8, condition 3, and subject 10, whereas the last-to-first prediction highlights time, joint 2, leg 1,
replication 4, condition 3, and subject 9. Across all predictions, time and condition 3 consistently emerge as
dominant features. Figure 12(b) presents contrastive explanations that further examine feature variations across
prediction stages. For QL, the first prediction is influenced by time, joint 2, leg 2, replication 1, condition 3,
and subject 9, while the final prediction shifts toward joint 3, replication 3, condition 3, and subject 4. Under
MIM, the second prediction highlights time, joint 3, leg 2, replication 8, condition 3, and subject 10, whereas
the last-to-first prediction emphasizes time, joint 2, leg 1, replication 4, condition 3, and subject 9. These find-
ings indicate stable temporal and condition-related features, with other variables adapting based on the learning
strategy. In Figure 12(c), feature ablation analysis assesses feature importance through sensitivity comparisons
across predictions. For QL, the initial prediction is affected by time, joint 2, leg 2, replication 1, condition 3,
and subject 9, while the final prediction shifts toward joint 3, replication 3, condition 3, and subject 4. For
MIM, the second prediction is influenced by time, joint 3, leg 2, replication 8, condition 3, and subject 10,
whereas the last-to-first prediction highlights time, joint 2, leg 1, replication 4, condition 3, and subject 9.
Across all XAI techniques, time and condition 3 consistently emerge as the most dominant and stable fea-
tures influencing the target variable (angle). Overall, temporal and condition-related factors govern prediction
stability, while joint, leg, replication, and subject identifiers contribute adaptively to model refinement in gait
joint-angle regression.

(a) (b) (c)

Figure 12. Regression performance analysis with XAI-based explanations: (a) counterfactual explanations,
(b) contrastive explanations, and (c) feature ablation

3.4. Multi-class classification performance analysis
Figure 13 presents a comparative analysis of integrated NN- and RL-based multi-class classification

models using DFFN optimized with QL and MIM across 50 epochs. In Figure 13(a), the QL–based model
exhibits a gradual and oscillatory increase in reward values from approximately 0.70 to 0.96, indicating slower
and less stable convergence. In contrast, Figure 13(b) shows that the MIM-based model rapidly exceeds 0.90
within the first 10 epochs and stabilizes around 0.98 by epoch 50. Overall, while both optimization strategies
demonstrate effective learning behavior, MIM achieves faster convergence and greater learning stability, mak-
ing it a more efficient optimization strategy than QL for multi-class joint-type classification.

(a) (b)

Figure 13. Model performance analysis: (a) DFNN QL MIM for multi-class classification and
(b) DFNN QL MIM for multi-class classification
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Figure 14 presents a comparative assessment of combined NN and RL-based classification models for
multi-class joint-type classification, specifically DFFN QL and DFFN MIM, evaluated using accuracy, preci-
sion, recall, F1 score, and Cohen’s Kappa. The DFFN MIM model attains higher accuracy (0.95 vs. 0.94),
recall (0.95 vs. 0.94), and F1 score (0.95 vs. 0.94), while both models achieve identical precision (0.95) and
Cohen’s Kappa (0.92). These findings suggest that MIM improves feature representation and class discrimi-
nation relative to QL. Overall, DFFN MIM exhibits superior and more consistent performance for multi-class
joint-type classification, while preserving strong interpretability.

Figure 14. Comparative analysis of combined NN and RL-based multi-class classification models

Figure 15 illustrates the integration of multi-class classification performance with XAI-based expla-
nations. In Figure 15(a), counterfactual explanations for DFFN QL and DFFN MIM examine feature contri-
butions across four prediction stages. For DFFN QL, the first prediction is influenced by angle, time, leg 2,
replication 1, condition 3, and subject 9, whereas the final prediction shifts toward replication 3, condition 3,
and subject 4, with angle and time remaining dominant. In DFFN MIM, the second prediction emphasizes an-
gle, time, leg 2, replication 8, and subject 10, while the last-to-first prediction highlights leg 1, replication 4,
and subject 9. Across all predictions, angle, time, and condition 3 consistently emerge as the most influential
features. Figure 15(b) presents contrastive explanations that further analyze feature variations across identical
prediction stages. For DFFN QL, the first prediction is affected by angle, time, leg 2, replication 1, condi-
tion 3, and subject 9, whereas the final prediction shifts toward replication 3, condition 3, and subject 4. Un-
der DFFN MIM, the second prediction emphasizes angle, time, leg 2, replication 8, and subject 10, while the
last-to-first prediction highlights leg 1, replication 4, and subject 9. These findings indicate that biomechanical
and temporal features remain stable, whereas other variables adapt across learning strategies. In Figure 15(c),
feature ablation analysis assesses feature importance through sensitivity comparisons across prediction stages.
For DFFN QL, the first prediction is most sensitive to the removal of angle, while the final prediction is strongly
influenced by time, leg 2, replication 3, and subject 4. In DFFN MIM, the second prediction is affected by
angle, leg 2, condition 3, and subject 10, whereas the last-to-first prediction is dominated by angle. Across all
XAI techniques, time and condition 3 consistently emerge as the most dominant and stable features influenc-
ing the target variable (joint). Overall, temporal and condition-related factors drive prediction stability, while
joint, leg, replication, and subject identifiers contribute adaptively and dynamically to model refinement in gait
multi-class joint-type classification.

(a) (b) (c)

Figure 15. Multi-class classification performance analysis with XAI-based explanations: (a) counterfactual
explanations, (b) contrastive explanations, and (c) feature ablation
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Figure 16 integrates the multi-class classification performance analysis with prediction probability
analysis for the DFFN QL MIM model, demonstrating high confidence across all four test samples in the
multi-class classification task as shown in Figures 16(a) and (b). For the first and last-to-first samples, the
model assigns a probability of 1.0 to Class 1, whereas for the second and last samples it assigns a probability of
1.0 to Class 2, with all remaining classes receiving zero probability. These results indicate highly decisive and
unambiguous class predictions for each instance. Overall, Class 1 emerges as the most frequently predicted
class, highlighting its dominant contribution to the target variable joint in gait joint-type classification.

(a) (b)

Figure 16. Prediction probabilities analysis (a) DFFN QL for multi-class classification and
(b) DFFN MIM for multi-class classification

Table 3 indicates that the proposed hybrid framework exceeds existing studies in both regression and
multi-class classification tasks. By integrating NN with RL and XAI, the proposed method delivers higher
predictive accuracy and enhanced model transparency compared to previous approaches based on classical
machine learning, deep learning without explainability, or XAI without RL, in line with the findings reported
in [1], [11], [14], [25].

Table 3. Comparative summary of performance metrics across gait analysis studies
Study Hybrid MSE MAE R2 Accuracy Accuracy Reward Reward

approach (regression) (regression) regression) (binary) (multi) (regression) (multi)

[1] No – – – – 0.92 – –

[25] Yes 3.31 – 0.99 0.97 0.94 – –

[11] Yes – – – 0.94 – – –

[14] Yes – 3.8 – – – – –

Proposed study Yes 0.0003 0.0125 0.9881 – 0.95 0.999 0.98

3.5. Limitations and future work
Although the proposed framework demonstrates strong predictive performance and enhanced inter-

pretability, its generalizability is affected by the reliance on gait data collected from healthy participants under
controlled experimental conditions. Furthermore, the NN, RL, and XAI components are assessed in an offline
setting, necessitating additional validation in real-time and clinically diverse environments. While counter-
factual, contrastive, feature ablation, and prediction probability analyses improve transparency, their direct
influence on clinical decision-making has not yet been empirically evaluated. Future research will therefore
concentrate on exploring more adaptive RL strategies, extending validation to clinical populations with gait
impairments, and enabling real-time deployment through wearable sensing technologies. These efforts are
expected to enhance robustness, learning stability, and personalization across diverse gait conditions, thereby
strengthening the practical and clinical relevance of the proposed framework.
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4. CONCLUSION
This study investigates the integration of deep learning, RL, and XAI for joint-angle prediction and

joint-type classification in human gait analysis. Experimental findings show that models optimized through
MIM exhibit more consistent performance than QL–based models in both regression and multi-class classifi-
cation tasks, particularly in modeling complex gait patterns. The incorporation of XAI techniques, including
counterfactual and contrastive explanations, feature ablation, and prediction probability analysis, enhances
model transparency by clarifying feature-level and class-level influences on prediction outcomes. These find-
ings are significant for applications in rehabilitation, prosthetic control, and human motion analysis, where
accurate predictions and interpretable models are essential for clinical decision-making. Although the present
work relies on controlled experimental data collected from healthy individuals, it establishes a valuable founda-
tion for interpretable gait modeling. Future research will concentrate on extending the proposed framework to
clinical populations, assessing performance in real-world environments, exploring more adaptive RL strategies,
and enabling real-time deployment using wearable sensing systems. Overall, this study contributes toward the
development of more accurate, interpretable, and practically applicable gait analysis methods for personalized
healthcare solutions.
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