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 In the dynamic field of artificial intelligence, genetic algorithms (GAs) offer 

a powerful approach to solving complex problems by mimicking biological 

mechanisms such as mutation, crossover, and natural selection. Their 
efficiency relies primarily on the fitness function, which evaluates the 

quality of candidate solutions and guides the evolutionary process toward an 

optimal outcome. A well-designed fitness function not only enhances 

convergence speed but also reduces the risk of stagnation and improves 
algorithmic accuracy. This paper explores the fundamental role of fitness 

functions in optimization, machine learning, multi-objective optimization, 

and cryptography, highlighting their impact on the performance of GAs.  

We propose a novel fitness function that incorporates the influence of 
crossover, mutation, and inversion rates on solution quality. This approach, 

which diverges from conventional models, demonstrates improved 

convergence behavior and adaptability across different problem domains. 

The proposed method enhances GA performance not only in secure data 

encryption but also in general optimization and learning tasks, making it a 

valuable contribution for both researchers and practitioners, which can open 

new avenues for research in the development of more robust evolutionary 

strategies that can adapt effectively to the specific characteristics and 
challenges of each problem domain. 
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1. INTRODUCTION 

In the ever-evolving field of artificial intelligence, genetic algorithms (GAs) are indispensable tools 

for efficiently solving complex problems [1], [2]. Their performance largely depends on the accuracy and 

relevance of their fitness function, a crucial criterion guiding the evolutionary process [3]. This function 

plays a fundamental role in recent research on optimization and artificial intelligence, particularly in 

evolutionary algorithms, machine learning, and multi-objective optimization. 

a. Optimization in evolutionary algorithms: 

 In GAs and evolutionary strategies (ES), the fitness function evaluates the quality of candidate 

solutions [4]. 

 It guides the selection of the fittest individuals for survival and reproduction, thereby influencing 

convergence toward an optimal solution [5]. 

b. Machine learning and neural networks: 

 In deep learning, fitness functions, often in the form of loss functions (cross-entropy and MSE), 

enable weight adjustments in networks through backpropagation [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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 In evolutionary neural networks (NEAT and CoDeepNEAT) [7], [8], the fitness function evaluates 

network architectures and directs their evolution. 

c. Multi-objective optimization and heuristics 

 Methods like NSGA-II and MOEA/D use fitness functions [9], [10] to balance multiple conflicting 

criteria. 

 Normalization and aggregation of criteria pose major challenges, with recent approaches integrating 

Pareto dominance-based methods and reinforcement learning [11], [12]. 

d. Cryptography and cybersecurity 

 In cryptanalysis, certain attacks leveraging evolutionary algorithms exploit a fitness function to 

recover a key or optimize a brute-force attack [13], [14]. 

 In steganalysis, it assesses the effectiveness of an algorithm for concealing or detecting hidden data 

[15], [16]. 

e. Bioinformatics and molecular design 

 In protein design, evolutionary approaches use the fitness function to identify optimal structures 

based on biochemical criteria [17]. 

 In personalized medicine [18], it is employed to optimize treatment protocols based on patient  

data. 

f. Blockchain and explainable artificial intelligence (AI) 

 In proof-of-work (PoW) systems, a fitness function can be likened to mining difficulty [19]. 

 In AI explainability, some research proposes fitness functions to optimize interpretability without 

compromising performance [20]. 

Defining and adapting fitness functions [21] is crucial for enhancing the efficiency and relevance of 

algorithms across various scientific and technological fields. Research in this domain is progressing along 

several promising directions: 

a. Adaptation and personalization of fitness functions 

 Auto-adaptation: dynamically adjusting the weighting of criteria during optimization [22]. 

 Fitness shaping [23]: transforming the fitness function to improve convergence and avoid local 

minima. 

b. Machine learning and fitness function generation 

 Using neural networks or Bayesian methods to optimize fitness function definitions [24]. 

 Meta-learning approaches where an algorithm evolves to identify the most suitable fitness function 

for a given task [25]. 

c. Multi-objective and hybrid functions 

 Developing advanced aggregation methods, such as nonlinear combinations of criteria [26]. 

 Adjusting fitness functions to better capture solution diversity based on Pareto dominance [27]. 

d. Specific applications and custom design 

 In cryptography [28], defining fitness functions tailored to evolutionary algorithm-based attacks. 

 In bioinformatics [29]: designing functions inspired by computational biology for molecular 

optimization. 

e. Information theory and complexity 

 Leveraging entropy measures and algorithmic complexity to enhance the robustness of fitness 

functions [30]. 

 Analyzing optimization landscapes to better understand the relationship between fitness functions 

and algorithmic efficiency [31]. 

In this context, we have designed a novel fitness function aimed at improving the performance of 

GAs. By integrating more advanced evaluation criteria and refining selection mechanisms, this approach 

enables: 

 Faster convergence toward optimal solutions. 

 Reduced risk of stagnation in local optima. 

 Enhanced accuracy and speed of evolutionary algorithms. 

This paper is particularly relevant to researchers and practitioners searching for more adaptive and 

efficient evolutionary algorithms. By improving convergence and robustness in different domains such as AI, 

cryptography, and bioinformatics, the proposed method addresses limitations in fitness design and provides 

practical solutions for specific problems with greater reliability. 
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2. PRIMITIVE TOOLS 

2.1.  Genetic algorithm 

GAs are a class of global optimization methods [2]. They are particularly effective for finding 

solutions to optimization problems (i.e., problems where the objective is to minimize or maximize a 

function’s value) where the function to be optimized may be non-differentiable and may exhibit multiple 

local minima (as seen in some single-variable functions). 

The framework implemented by GAs is inspired by Darwin’s theory [2], which posits that 

individuals within a population who are best suited to their environment are more likely to reproduce, thereby 

producing a new generation that is better adapted than the previous one through the inheritance of traits via 

genetic code. This concept is computationally realized through the integration of several key components:  

 A fitness measure: this measure [3] evaluates the degree of adaptation of each individual to their 

environment. 

 A selection operator: this operator selects the most fit individuals from a population to reproduce. 

Selection is generally based on the fitness value of individuals, and an individual may be selected 

multiple times. 

 A genome coding scheme: a coding scheme is necessary for the computational representation of an 

individual or genome, enabling the execution of the reproduction process. 

 A reproduction operator: this operator generates new genomes (typically two) from two parent genomes. 

The reproduction process must ensure the transmission of genetic material from both parents to the 

offspring. The reproduction operator usually involves two procedures: a crossover procedure, which 

involves the exchange of genome segments between the two parent genomes, and a mutation procedure, 

where certain genes in the offspring genomes are randomly altered with a very low probability. 

- Crossover: combines segments from two chromosomes to create offspring that inherit advantageous 

traits from the parents. 

- Mutation: randomly alters genes to introduce diversity. 

- Inversion: if utilized, it rearranges the genes within a segment to explore new solutions. 

 

2.1.1. Key principles of genetic algorithms 

The operation of GAs is based on several fundamental principles [2]. Understanding these principles 

can help you better grasp how GAs function. 

 Population: a set of potential solutions to a particular problem. 

 Fitness function: a method for evaluating or scoring each individual in the population. 

 Selection: the process of choosing individuals, based on their fitness scores, to reproduce and pass their 

genes to the next generation. 

 Crossover: also known as reproduction. It involves combining the genetic information of two parents to 

create offspring. 

 Mutation: random alterations of certain individuals in the population to maintain and introduce  

diversity. 

 

2.1.2. Building a genetic algorithm 

Constructing a basic GA [32] from scratch involves several systematic steps. The following guide 

presents these steps in a simple yet comprehensive manner: 

 Initialization: begin by randomly generating a population of candidate solutions. 

 Fitness evaluation: assess each candidate in the population using a fitness function. 

 Selection: based on fitness scores, select the parents who will reproduce to create new individuals for the 

next generation. 

 Crossover or reproduction: combine the genetic information of two parent candidates to create offspring. 

 Mutation: randomly alter some genes in the offspring to maintain diversity within the population. 

 New generation: replace the old population with the newly created offspring to form a new generation. 

 Termination condition: repeat steps 2 to 6 until a termination condition is met, such as finding a solution 

with sufficiently high fitness or reaching a fixed number of generations. 

 

2.2.  Fitness function 

A fitness function is a mathematical expression that evaluates the quality of a solution based on the 

problem’s objective [33], [34]. It may be based on a single criterion, such as minimizing costs or maximizing 

profits, or on multiple criteria, such as balancing efficiency and sustainability. The fitness function must be 

consistent, scalable, and computable, meaning it should always produce the same output for the same input, 

handle different sizes and complexities of solutions, and be easy to compute and compare. 
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In general, the fitness function assesses the quality of potential solutions according to specific criteria. 

Depending on the nature of the problem and the representation of the solution, various types of fitness 

functions can be used. However, incorporating the percentages of crossover, mutation, and inversion 

operators can add an additional dimension to this evaluation. 

 Crossover: assesses how the crossover of parents contributes to the performance of the offspring. 

 Mutation: examines how mutation affects the diversity and improvement of solutions. 

 Inversion: evaluates how inversion impacts the quality of solutions. 

There is a variety of sources and contexts in the literature on GAs that demonstrate an even broader 

range of percentages for the operators. Typical operator percentages in GAs are generally as follows: 

 Inversion: typically, less than 1% of the population, as it is a less common and more specialized 

operation. 

 Mutation: usually between 1% and 5%, sometimes up to 10%, to maintain diversity without introducing 

too much noise. 

 Crossover: typically, around 60% to 90%, meaning that most individuals in the population undergo a 

crossover operation in each generation. This rate may vary depending on the specific problem and the 

type of crossover used. 

- Single-point crossover: typically, between 70% and 80%, though some algorithms use higher rates, up 

to 90%. 

- Two-point crossover: rates are often comparable to those of single-point crossover, with values around 

70% to 90%. 

- Uniform crossover: this type of crossover can have rates ranging from 60% to 90%, depending on the 

exploration and exploitation strategy 

 Typical mixing (5% to 60%): when you mention a percentage between 5% and 60%, it could refer to a 

strategy where crossover and mutation rates are adjusted to achieve an optimal balance. Here are some 

typical scenarios where this mixing might appear: 

- Balanced crossover and mutation rates: in some algorithms, crossover and mutation rates are adjusted to 

optimize exploration and exploitation. For example, a higher crossover rate (close to 60%) with a lower 

mutation rate (around 5%) can favor exploiting good solutions found while maintaining moderate 

genetic diversity. 

- Exploration vs. Exploitation: a higher mutation rate (around 5% to 10%) with a more moderate 

crossover rate (around 60%) might be used for problems requiring greater exploration of the search 

space. 

- Dynamic mixing: some algorithms dynamically adjust crossover and mutation rates based on 

performance or population diversity. This could mean that the crossover and mutation percentages 

might vary within a range between these values to optimize results. 

These percentages can vary depending on the specific problem and the objectives of the GA. 

 

 

3. METHOD 

We designed our fitness function [35] by using, on one hand, the hyperbolic tangent values of 

chaotic data and, on the other hand, using this data in a specific algorithm. 

 

3.1.  Chaotic system used 

A chaotic system is a nonlinear, deterministic dynamic system characterized by its unpredictability 

due to extreme sensitivity to initial conditions. Chaos is defined as the strange and unpredictable behavior of 

a deterministic dynamic system. The idea behind designing the fitness function using a 5D chaotic system 

follows [36] (1). 

 

{
 
 

 
 
𝑥̇ = 𝑥 + 𝑦 + 𝑦𝑧 − 𝑎𝑢 + 𝑏𝑤

𝑦̇ = (𝑦 − 𝑥)𝑧
𝑧̇ = 𝑏 − 𝑧 − 𝑥𝑦

𝑢̇ = 𝑥
𝑤̇ = 𝑐𝑧

 (1) 

 

The system has chaotic behavior for the following parameters: 𝑎 = 0.8, 𝑏 = 0.4, and 𝑐 = 0.2. Using 

the following conditions: 𝑥0 = 0.1 𝑦
0
= 0.13 𝑧0 = 0.2, 𝑢0 = 0.05 and 𝑤0 = 0.11, we obtain three series 

of Figure 1. 
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a) The first series illustrates the temporal coordinates of the 5D system in Figure 1, where each of the five 

coordinates is represented by its respective curve: x (Figure 1(a)), y (Figure 1(b)), z (Figure 1(c)),  

u (Figure 1(d)), and w (Figure 1(e)). 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

 
(e) 

 

Figure 1. Temporal coordinates of the 5D system: (a) x, (b) y, (c) z, (d) u, and (e) w 

 

 

In Figure 1, each subfigure shows different shapes, which indicates that the five series produce different 

results. 

b) The second series represents the chaotic system in 2D in Figure 2, focusing on three coordinate plane 

curves: the plane (x, y) in Figure 2(a), the plane (z, u) in Figure 2(b), and the plane (x, w) in Figure 2(c). 
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(a) (b) (c) 

 

Figure 2. The 2D representation of the chaotic system; (a) x-y, (b) z-u, and (c) x-w 
 

 

In Figure 2, each subfigure shows a distinct projection of an attractor with complex and irregular trajectories, 

which confirms the chaotic behavior of the series in the 2D plane. 

c) The third series represents the chaotic system in 3D in Figure 3, highlighting three coordinate space 

curves: (x, y, z) Figure 3(a), (y, z, w) Figure 3(b), and (x, z, u) Figure 3(c). 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 3. The 3D representation of the chaotic system; (a) x-y-z, (b) y-z-w, and (c) x-z-u 
 
 

In Figure 3, each subfigure shows a unique shape of an attractor in 3D space, which demonstrates 

the chaotic behavior of the series in 3D. Figures 1-3, show that the uniqueness of this system lies in the shape 

of its attractor, and that all five series have chaotic behavior. 

 

3.2.  Steps of the fitness function 

In the following, we present the different steps of the proposed fitness function: 

a. Choose the initial conditions for the 5D hyperchaotic system. 

b. The hyperchaotic system generates 5 sequences based on the chosen initial conditions. 
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c. The variable x is used to create the fitness value. 

d. Calculate 𝑦 = actanh(x) =
𝒆𝒙+𝒆−𝒙

𝒆𝒙−𝒆−𝒙
. 

e. The values of the new sequence x modified by arctan (2) are used before being applied in the calculation 

of the fitness function: 
 

   𝑦 = actanh(x) =   
𝑒𝑥+𝑒−𝑥

𝑒𝑥−𝑒−𝑥
 (2) 

 

f. Each of the 10 values in the sequence x creates a vector to form N vectors (where N=8192). For each 

fitness vector (a vector containing 10 values), the following steps are taken: 

- Separate the positive values 𝒙𝒑 into a vector, and the negative values into another vector 𝒙𝒏 (negative 

values are stored as their absolute values.) (3). 
 

{
𝑥𝑝 = 𝑥1(𝑖)   𝑖𝑓 𝑥1(𝑖) > 0 

𝑥𝑛 = |𝑥1(𝑖)|  𝑖𝑓 𝑥1(𝑖) < 0
  𝑖 = 1 . . . , 10 (3) 

 

- The values in the vector 𝒙𝒑 are divided by their maximum value, and the values in the vector 𝒙𝒏 are 

divided by their maximum value (4). 
 

{
𝑥𝑝 = 𝑥𝑝/max (𝑥𝑝) 

𝑥𝑛 = 𝑥𝑛/max (𝑥𝑛)
 (4) 

 

- The values in the vector 𝒙𝒏 are modified according to the following (5): 
 

𝑥𝑛(𝑖) = 1 − 𝑥𝑛(𝑖) (5) 
 

- The values of the vectors 𝒙𝒑 and 𝒙𝒏 are multiplied by 10 (6): 
 

{
𝑥𝑝 = 𝑥𝑝 × 10

𝑥𝑛 = 𝑥𝑛 × 10
 (6) 

 

- Add the two vectors to obtain the fitness value (7). 
 

𝑓(𝑖) = 𝑥𝑝 + 𝑥𝑛 (7) 
 

This gives us a program written in MATLAB as mentioned in Figure 4: 
 

 
 

Figure 4. Algorithm of the fitness function 
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4. RESULTS AND DISCUSSION 

4.1.  Sensitivity to initial conditions 

We test the sensitivity of the chaotic system to initial conditions, specifically for the coordinate x 

used in generating the fitness function values [37]. Consider the following initial conditions: 𝑥01 = 0.1 , 

𝑥02 = 0.1 + 10−15 , 𝑦
0
= 0.13 𝑧0 = 0.2 𝑢0 = 0.05 𝑤0 = 0.11. We observe from Figure 5 the sensitivity of 

the system to initial conditions with negligible change in a single coordinate change. 

 

 

 

 
 

Figure 5. Sensitivity to initial conditions of the chaotic system 

 

 

4.2.  Shape of the fitness function: fitness landscape 

The fitness function is often characterized by its shape, as this shape determines how different 

solutions in a search space are evaluated and compared. The fitness landscape is the graphical representation 

of the fitness function relative to possible solutions. It can present valleys, peaks, plateaus, etc., which 

influence the difficulty of finding a global optimum.  
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Different values of the fitness function were generated and then sorted in ascending order to 

visualize the shape. In the ten figures that follow (from Figure 6 to Figure 15), each figure represents three 

graphs for different values of the fitness function: 

 The first graph represents the number of values generated successively (𝑓𝑣) according to their fitness 

values. 

 The middle graph represents the number of values generated successively (𝑓𝑣)and linked to each other 

according to their fitness values. 

 The third graph represents the values generated, sorted in ascending order: fitness landscape (𝑓). 
 

 

   
 

Figure 6. The first 100 values 

 

 

   
 

Figure 7. The first 500 values 

 

 

   
 

Figure 8. The first 1,000 values 
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Figure 9. The first 2,000 values 

 

 

   
 

Figure 10. The first 4,000 values 
 

 

   
 

Figure 11. The first 6,000 values 
 

 

   
 

Figure 12. The first 8,192 values 
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Figure 13. The 1000 values: between 4,000-5,000 

 

 

   
 

Figure 14. The 1,000 values: between 7,192-8,192 

 

 

   
 

Figure 15. The 1,000 random values between 1-8,192 

 

 

We can summarize the figures into four categories: 

 Figures 6 to 12: we gradually increase the number of generated values from 100 to 8192 and visualize the 

graphs. 

 Figure 13: we visualize the graphs for values generated between 4,000-5,000. 

 Figure 14: we visualize the graphs for values generated between 7,192-8,192. 

 Figure 15: we visualize the graphs for the 1000 values randomly selected from the 8192 generated values. 

The landscape of our fitness function has the shape of a hyperbolic tangent. 

 

4.3.  Distribution of fitness function values 

To analyse the structure and behaviour of the values generated by the proposed fitness function, we 

performed the process over 16 independent generations, each producing 8,192 values. Each generation was 

analysed according to five percentage intervals: 

 < 1% 

 1% – 5% 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 3, December 2025: 1669-1688 

1680 

 5% – 60% 

 60% – 90% 

 > 90% 

These intervals were chosen to reflect the statistical distribution of the function’s chaotic behaviour 

and to evaluate the density of extreme, moderate, and intermediate values. The detailed results for each 

generation are presented in Tables A1 to A16. Each table indicates the number of values falling within each 

interval. This level of granularity allows for a generation-by-generation examination and helps verify the 

stability of the model. To improve the readability of the results in the main body of the article, we provide 

below a synthesis of the data obtained from the 16 generations. Table 1 presents the average and approximate 

standard deviation of the number of values observed in each interval, along with their mean proportions. To 

further understand how the fitness values evolve across generations and intervals, we analyze the distribution 

per range for each sequence. Figure 16 presents a comparative visualization that captures the variation of 

values across the five percentage ranges over the 16 generations. 

 

Table 1. Average distribution of fitness values over 16 generations 
Interval (%) Average (Number of values) Approx. Std. Dev. Mean percentage (%) 

|< 1 1,553 ± 28 18.96 

1 – 5 835 ± 28 10.19 

5 – 60 2,113 ± 32 25.80  

60 – 90  1,142 ± 21 13.94 

> 90 2,546 ± 25 31.10 

 

 

 
< 1 

 
1 ≤ 𝑟 ≤ 5 

 
5 < 𝑟 < 60 

 

 
60 ≤ 𝑟 ≤ 90 

 
𝑟 > 90 

 

Figure 16. Variation of values for different ranges 
 
 

From Tables 1-16 and Figure 16, it can be observed that the values in different ranges vary for each 

sequence. We observe that the distribution of fitness values for each sequence differs from that of other 

sequences, demonstrating the random behavior of the values generated by the proposed algorithm. 

Figure 17 this pie chart visually represents the average distribution of fitness values across the five defined 

intervals. The predominance of extreme values (< 1% and > 90%) confirms the chaotic nature of the 

distribution, as previously observed in Table 1. 

From Table 1, it can be observed that most values are concentrated at the two extremes of the distribution: 
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 18.96% of the values are below 1%, 

 while 31.10% exceed 90%. 

This distribution is characteristic of a well-exploited chaotic behaviour, where the algorithm 

intensely explores extreme regions while maintaining density in intermediate zones (notably between 5% and 

60%, which account for 25.80% of the values). These results suggest that the fitness function: 

 Generates highly diverse populations. 

 Is strongly sensitive to initial conditions. 

 Successfully captures both promising solutions (values > 90%) and low-performing regions (values < 

1%) necessary for maintaining global exploration. 

In practice, this distribution promotes: 

 The search for optimal solutions. 

 The avoidance of local optima trapping. 

 A strong generalization capacity of the model in chaotic contexts (e.g., cryptography and multi-

objective optimization). 

 

 

 
 

Figure 17. Proportional distribution of fitness values per range over 16 generations (in %) 

 

 

To avoid overloading the main section, the full detailed data for the 16 generations are provided in  

Tables A1 to A16. This allows interested readers to examine each generation individually without 

compromising the clarity of the article. 

To complement the analysis presented in Section 4.3, this appendix provides the full detailed results 

for each of the 16 independent generations tested. Each generation produced 8192 fitness values. These 

values were categorized into five percentage intervals: (< 1%); (1% – 5%;) (5% – 60%); (60% – 90%) and  

(>  90%). 

Tables A1 through A16 present the number of values in each interval for Generations 1 to 16, 

respectively. These tables offer fine-grained insight into the variation and consistency of the fitness value 

distribution across generations. This level of detail is particularly useful for readers interested in the 

behaviour and stability of the proposed chaotic fitness function over time. 

 

 

Table A1. First generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1558 869 2126 1126 2513 

5 < 𝑟 ≤ 16.56 16.56 < 𝑟 ≤ 35.75 35.75 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.65 19.65 < 𝑟 ≤ 60 
40% 60% 

Minimum value:2.26287 × 10−7  Maximum value: 99.999999859933 

 

 

Table A2. Second generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1598 811 2056 1172 2555 

5 < 𝑟 ≤ 16.40 16.40 < 𝑟 ≤ 35.85 35.85 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.73 19.73 < 𝑟 ≤ 60 
40% 60% 

Minimum value: 8.358124 × 10−8 Maximum value: 99.99999989508 
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Table A3. Third generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1556 832 2054 1187 2563 

5 < 𝑟 ≤ 16.55 16.55 < 𝑟 ≤ 35.03 35.03 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 20.06 20.06 < 𝑟 ≤ 60 
40% 60% 

Minimum value:4.523204 × 10−6 Maximum value: 99.99998557983 

 

 

Table A4. Fourth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1543 834 2143 1155 2517 

5 < 𝑟 ≤ 15.97 15.97 < 𝑟 ≤ 34.60 34.60 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.33 19.33 < 𝑟 ≤ 60 
40% 60% 

Minimum value:1.12323790 × 10−6 Maximum value: 99.999974719915 

 

 

Table A5. Fifth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1583 816 2078 1148 2567 

5 < 𝑟 ≤ 16.21 16.21 < 𝑟 ≤ 35.38 35.38 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.73 19.73 < 𝑟 ≤ 60 
40% 60% 

Minimum value:1.085034193 × 10−6 Maximum value: 99.9999987504 

 

 

Table A6. Sixth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1519 839 2222 1121 2491 

5 < 𝑟 ≤ 15.11 15.11 < 𝑟 ≤ 35.59 35.59 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.01 19.01 < 𝑟 ≤ 60 
40% 60% 

Minimum value:1.450138278 × 10−5 Maximum value: 99.9999989166 

 

 

Table A7. Seventh generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1539 860 2071 1147 2575 

5 < 𝑟 ≤ 16.27 16.27 < 𝑟 ≤ 35.66 35.66 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.68 19.68 < 𝑟 ≤ 60 
40% 60% 

Minimum value:2.6272518161 × 10−7 Maximum value: 99.999959271 

 

 

Table A8. Eighth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1539 864 2130 1115 2544 

5 < 𝑟 ≤ 15.39 15.39 < 𝑟 ≤ 34.43 34.43 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 18.73 18.73 < 𝑟 ≤ 60 
40% 60% 

Minimum value:5.5533067033 × 10−9 Maximum value: 99.99999998573 

 

 

Table A9. Ninth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1565 823 2087 1162 2555 

5 < 𝑟 ≤ 16.38 16.38 < 𝑟 ≤ 35.54 35.54 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.67 19.67 < 𝑟 ≤ 60 
40% 60% 

Minimum value:6.2743631645 × 10−6 Maximum value: 99.99999959117 
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Table A10. Tenth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1546 836 2095 1162 2526 

5 < 𝑟 ≤ 15.99 15.99 < 𝑟 ≤ 35.24 35.24 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.70 19.70 < 𝑟 ≤ 60 
40% 60% 

Minimum value:3.9553095931 × 10−6 Maximum value: 99.99999400792 

 

 

Table A11. Eleventh generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1575 820 2132 1129 2536 

5 < 𝑟 ≤ 15.88 15.88 < 𝑟 ≤ 34.68 34.68 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.35 19.35 < 𝑟 ≤ 60 
40% 60% 

Minimum value:2.8225590753 × 10−8 Maximum value: 99.9999997424 

 

 

Table A12. Twelfth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1548 831 2116 1136 2561 

5 < 𝑟 ≤ 16.03 16.03 < 𝑟 ≤ 35.41 35.41 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.85 19.85 < 𝑟 ≤ 60 
40% 60% 

Minimum value:2.070461802006 × 10−8 Maximum value: 99.999988916694 

 

 

Table A13. Thirteenth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1543 846 2111 1181 2511 

5 < 𝑟 ≤ 15.29 15.29 < 𝑟 ≤ 33.66 33.66 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 18.65 18.65 < 𝑟 ≤ 60 
40% 60% 

Minimum value:8.16686406057 × 10−6 Maximum value: 99.999994581067 

 

 

Table A14. Fourteenth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1554 810 2111 1134 2583 

5 < 𝑟 ≤ 16.80 16.80 < 𝑟 ≤ 36.22 36.22 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 20.83 20.83 < 𝑟 ≤ 60 
40% 60% 

Minimum value:1.04604445105 × 10−7 Maximum value: 99.99999879164 

 

 

Table A15. Fifteenth generation of 8,192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1511 899 2155 1114 2513 

5 < 𝑟 ≤ 15.85 15.85 < 𝑟 ≤ 34.78 34.78 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.19 19.19 < 𝑟 ≤ 60 
40% 60% 

Minimum value:2.83692197511 × 10−6 Maximum value: 99.99999697049 

 
 

Table A16. Sixteenth generation of 8192 values 
Interval < 1 1 ≤ 𝑟 ≤ 5  5 < 𝑟 < 60 60 ≤ 𝑟 ≤ 90 𝑟 > 90 

Number 1593 808 2066 1154 2571 

5 < 𝑟 ≤ 16.34 16.34 < 𝑟 ≤ 34.33 34.33 < 𝑟 < 60 
33% 33% 34% 

5 < 𝑟 ≤ 19.77 19.77 < 𝑟 ≤ 60 
40% 60% 

Minimum value:5.74361863625 × 10−7 Maximum value: 99.9999890109 
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These detailed distributions confirm the statistical consistency of the proposed fitness function 

across multiple generations. The persistent presence of extreme and intermediate values reflects the 

function’s ability to preserve diversity and maintain chaotic dynamics throughout the optimization process. 

This supports the conclusions drawn in section 4.3 regarding the robustness and exploratory capacity of the 

Hadj-Said fitness function. 
 

4.4.  Randomness of values from the fitness function 

We will examine the random behaviour of the values generated by the proposed algorithm by 

generating a sequence of 65,536 values and testing the randomness of these values. 
 

4.4.1. Mean, variance, and autocorrelation factor test 

This involves calculating the following factors: mean, variance, and autocorrelation factor of the 

generated value sequence [37]. Given that xi, for i = 1…n, is a sequence uniformly distributed in the interval 

[0,1], we compare it to a sequence generated by a random data generator for which the calculation of the 

following factors: mean, variance, and autocorrelation factor are known. The results are given in Table 2 and 

Figure 18. We find that the data sequence satisfies only the mean test. 

 

 

Table 2. Mean, variance, and autocorrelation factor results 
Nature Equation Ideal value Found value (%) of ideal value 

Average 𝜇 =
1

𝑛
∑𝑢𝑖

𝑛

𝑖=1

 0.5 0.4843 < 96.86 

Variance 𝑣 =
1

𝑛
∑𝑢𝑖

2

𝑛

𝑖=1

− 𝜇2 0.0833 0.1713 > 48.64 

Autocorrelation 𝑟 =
1

𝑛
∑𝑢𝑖

𝑛=1

𝑖=1

× 𝑢𝑖+1 0.25 0.3777 > 66.19 

 

 

 
 

Figure 18. Mean, variance, and autocorrelation factor results 

 

 

4.4.2. Spectral test 

The spectral test is described as the most discriminating of all tests [37]. Indeed, no poor generator 

has been able to pass it. Very simple, the method involves visually examining the distribution of generated 

values in a k-dimensional space (2D or 3D) to assess quality. Figure 19 illustrates the spectral test results of 

the sequence in both 2D and 3D spaces: 

 2D representation: two consecutive values will be the coordinates of a point on the plane. In Figure 19, 

left, we check if the points are uniformly distributed within a square. 

 3D representation: three consecutive values will be the coordinates of a point in space. In Figure 19 right, 

we check if the points are uniformly distributed within a cube. 
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From Figure 19, it is evident that many points in both the 2D and 3D planes are not assigned.  

This implies that we cannot make a definitive statement about the pseudorandom behavior of the data 

generated by the proposed algorithm. 

 

 

  
 

Figure 19. The 2D and 3D spectral test 

 

 

4.4.3. Entropy test 

Entropy [37] measures the amount of information contained in the sequence of data generated by the 

proposed algorithm:  

 

𝑋𝑖 =  𝑚𝑜𝑑 (𝑥𝑖 × 10
7, 256), for i = 1…n, (8) 

 

The sequence (8) is considered as a series of 8-bit words. Entropy is calculated as follows (9): 

 

𝐻(𝑋) = −∑ 𝑃𝑖(𝑋)𝑙𝑜𝑔2(
2𝑛−1
𝑖=0 𝑃𝑖(𝑋)) (9) 

 

where X is the studied source, and Pi is the probability of occurrence of word i of n bits.  

The calculation of entropy represents the minimum number of bits per word required to contain the 

information. We consider a source with an alphabet of 256 characters. If all these characters are 

equiprobable, the entropy associated with each character is log2(256) = log2(2
8) =8 bits, which means 8 bits 

are needed to transmit a character; thus, its entropy is 8 bits. The entropy result of our sequence is given in 

Table 3. According to Table 3, the entropy of the data delivered by our algorithm is 83.91% of that of an 

ideal source. 

 

 

Table 3. Entropy results 
Nature source Entropy per bit/symbol Found value (%) of ideal value 

Source providing equiprobable characters: ideal source 8 6.71283 83.91 

 

 

5. CONCLUSION 

The fitness function is a fundamental concept in GAs, serving to guide the evolution of solutions.  

A thorough understanding of the fitness function and its implications can greatly enhance the efficiency and 

performance of GAs. Its design and calculation must be carefully tailored to the specifics of the problem, 

considering the objectives, constraints, and how solutions are evaluated and compared. We have created a 

fitness function well-suited to the specifics of the problem we defined (a cryptosystem based on genetic 

algorithms), integrating constraints correctly and being tested and refined to achieve the best possible results 

(perfect data encryption). For a sequence of data in the fitness function, we determined the weights for each 

operator (inversion, mutation, crossover), and the weights generated as percentages for each operator are 

almost identical to those found in the literature. The significance of the proposed method integrates the 

genetic operator influences into the fitness function, which improves convergence and solution quality in 
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cryptographic contexts. This makes it particularly relevant for researchers developing secure and efficient 

encryption methods using evolutionary computation. In the cryptosystem, the key experiment to evaluate the 

proposed fitness function was to study the randomness of the output sequences, which is a critical property 

for ensuring unpredictability and security. The results demonstrate that the proposed method has strong 

random behavior. 

The proposed algorithm, which features a fitness function with a hyperbolic tangent-shaped 

landscape, is named “Hadj-Said Fitness Function” for ease of reference. For future research, it can focus on 

adapting the proposed fitness function to different types of genetic models, such as hybrid or co-evolutionary 

algorithms. In addition, it can be integrated into explainable AI or combined with neuro- GAs to create new, 

efficient learning systems. 
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