Indonesian Journal of Electrical Engineering and Computer Science
Vol. 41, No. 2, February 2026, pp. 515~531
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v41.i2.pp515-531 a 515

A new approach for distance vector-Hop localization algorithm
Improvement in wireless sensor networks

Omar Arroub?, Anouar Darif?, Rachid Saadane®, My Driss Rahmani?, Zineb Aarab!
ILRIT-GSCM Associated Unit to CNRST (URAC 29), FSR Mohammed V-Agdal University, Rabat, Morocco
2LIMATI, Faculte Polydisciplinaire, University of Sultan Moulay Slimane, Beni Mellal, Morocco
3SIR2C2S/LASI-EHTP, Hassania School of Public Labor, Oasis, Morocco

Article Info

ABSTRACT

Article history:

Received Mar 14, 2025
Revised Nov 14, 2025
Accepted Dec 30, 2025

Keywords:

Distance vector-Hop
Grey wolf optimization
Localization
Opposition-based learning
Wireless sensor network

This article shows a new range-free localization technique based on a meta-
heuristic algorithm (MA) dedicated to wireless sensor network (WSN),
named sequential online-grey wolf optimization-distance vector-Hop (SO-
GWO-DVHOP). Indeed, we use the improved GWO based on selective
opposite learning to improve GWO in order to enhance the traditional
DVHORP localization algorithm. In reality, we choose GWO due to its better
outcomes compared to other meta-heuristics, which leads us to improve this
algorithm further. In the literature, the improvement works of GWO try to
reconstruct the hierarchy of GWO or improve specifically the role of omega
individuals. In our contribution, we opt for opposition-based learning (OBL)
to ameliorate GWO, aiming to further enhance the quality of localization
made by DVHOP. On the other hand, we make an empirical comparison of
DVHOP and its improved versions in terms of accuracy. The results of the
simulation demonstrate that SO-GWO-DVHOP gives the best performance

when we vary the anchor ratio and the density of nodes.
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1. INTRODUCTION

Nowadays, researchers have devoted a special interest to wireless sensor network (WSN) [1] due to
its importance in several fields. Indeed, a sensor contains a battery for energy storage, antennas for receiving
and sending information, memory, and GPS. However, using GPS doesn't guarantee a long sensor lifetime
because the latter consumes more energy than other components. At this point, it was seen to use range-free
techniques instead of ordinal techniques such as time of arrival (TOA) [2], time different of arrival (TDOA)
[3], Angle of arrival [4]. Indeed, range-fee techniques don't depend entirely on using GPS. That's to say, we
need just a few nodes to be equipped with GPS which are named beacons or anchors, and those latters help
the target nodes to have their proper locations on the basis of the connectivity between nodes. It's worth
mentioning that distance vector-Hop (DVHOP) localization algorithm [5], [6] is still the best technique
among other range-free techniques because, experimentally, with a few anchors, DVHOP can locate the
majority of nodes that constitute the network. We assume that several improvements have been made to
ameliorate the precision of DVHOP. The problems that arise in those works are either they don't take the
time calculation taken by the enhanced method into account or those improvements only take one way of
distribution of nodes (random, uniform). In our approach, we have used two variants of GWO metaheuristic
for the purpose of replacing the last step of DVHOP and reducing more localization errors of DVHOP. It's
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worth mentioning that we have proven our improvements work in the uniform and random distribution of
nodes for WSN.

GWO [7] is a robust metaheuristic that was proposed in 2014 by Mirjalili. It's worth mentioning that
GWO has attracted researchers and scientists due to its simplicity and precise results, among other
metaheuristics [8]. Also, we assume that GWO has the ability to offer a precise result for complex
optimization problems, especially those that have high dimensions or have more than one local solution. In
addition to that, GWO may serve resolution purposes for a discrete or continuous problem. In detail, this
technique performs on the basis of the behavior adopted by grey wolves in the operations of searching and
encircling the prey. In detail, the pack contains four individual classes. The individuals displace by respecting
the hierarchy; the alpha is the leader who has the role of making the decision and guiding the whole pack, the
beta assists the alpha and replaces the alpha in the case of death, the delta is responsible for hunting and
attacking, the omega just follows the behavior of their leaders. The efficiency of the wolf to hunt well has
given the algorithm GWO the reputation of good convergence and precise results. Also, this algorithm is easy
to deploy because it has a minimum number of control parameters; it needs just two parameters, a and C. In
addition to that, GWO guarantees an equilibrium between the exploration and exploitation phases. Hence, we
find GWO is applied to many engineering problems that require optimization processes, especially the
battery energy storage problem and the image-processing field. Its drawbacks reside in the lack of diversity
in the population and its weakness in the exploitation phase.

In reality, each metaheuristic has its advantages and drawbacks. For example, PSO [9] can give a
solution with a few control parameters, but its drawbacks reside in slow convergence and sticking to the local
optimum for problems with high dimensions. Also, our GWO can provide a better solution than other MAs.
Its disadvantages reside in the weakness in the exploitation phase, especially for the multi-modal problems
that trap the algorithm in premature convergence, which leads to the apparition of several improvement
works to overcome the issues that reside in GWO. For example, the apparition of opposition-based learning
(OBL) [10], [11] consists of establishing the opposite positions of individuals not only at the beginning of the
algorithm but also at each iteration. Also, we can apply dimension learning hunting (DLH) [12], [13] in order
to increase the precision offered by GWO. In detail, DLH uses DLH learning, which consists of two phases:
the initializing step: creating the neighbors of individuals based on certain rules and equations, and the
updating phase: selecting or rejecting the new position created according to the fitness function. In the
literature, OBL is still the most commonly used method to enhance GWO and there are many kinds of OBL
that appear for that purpose, such as ROBL [14] based on luminous refraction, OBL based on the jump [15],
which consist of creating an avoiding or a jump when we find a minimum local. In our contribution, we have
used selective opposition-based learning because we found experimentally that SOBL suits our localization
problem and effectively has the role of enhancing the precision of DVHOP localization algorithm.

The rest of the article is organized as follows: Firstly, we present different improved versions of
DVHOP presented in literature. In section 3, we present the research method used to accomplish our work. In
section 4, we define DVHOP, highlighting the source of its imprecision. Then, we present our ameliorated
versions of the traditional DVHOP. Simulation and discussions are presented in section 5. We conclude the
paper by presenting the conclusion and the perspective in section 6.

2. RELATED WORKS

Researchers and scientists have invented many meta-heuristics over the past few years. In our case
of localization, we find that intelligent swarm-based algorithms are mostly used to improve DVHOP
localization algorithm. That reflects that swarm-based algorithms may optimize several kinds of problems
better than other cited meta-heuristics. Long et al. [16], it’s shown that Amorphous gives better accuracy than
DVHOP by varying the density of sensor nodes and anchor ratio. The experimental results prove that
Amorphous localization algorithm offers a high level of accuracy with just a few anchors. That means
Amorphous is a prominent solution for localization in WSN with minimal energy consumption. Ali et al.
[17], the authors use a genetic algorithm (GA) for the purpose of ameliorating the precision of DVHOP.
However, they also use PSO to ameliorate the crossover step of GA. The results obtained prove that DVHOP
based on GA-PSO gives better accuracy than traditional DVHOP. Han et al. [18], the authors adopt PSO in
order to optimize DVHOP. Also, they use LDIW [19] to create a balance between the diversification and test
steps of PSO. However, the solution obtained by the modified PSO denotes the optimal location of nodes in
WSN. Kessentini and Barchiesi [20] the authors try to improve the quality of convergence made by PSO-
DVHOP. Indeed, they use QPSO for the purpose of reaching a global solution to the localizing problem. In
general, the goal of QPSO-DVHOP is to ameliorate the accuracy of positioning. Additionally, QPSO-
DVHOP performs with a good time of calculation in comparison with the traditional PSO-DVHOP. Zhang
et al. [21], the authors present Centroid, APIT, DVHOP, and explain in detail the principle of functioning of
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each cited localization algorithm. In addition to that, they present DVHOPmax which presents an enhanced
version of DVHOP owned by maxhop parameter that's adjustable according to the topology of the network in
order to reach a high level of accuracy. A performance comparison has been done in terms of the precision
for the purpose of proving the efficiency of DVHOPmax.

3. RESEARCH METHODOLOGY

The research method is organized as follows: Firstly, we present the algorithm-based hop DVHOP
highlighting the source of its huge errors in the localization process. Secondly, we interpret the last step of
DVHOP as an optimization problem that is able to be resolved under GWO and two other improved GWO
algorithms. Finally, our simulation is split into two steps. In the first phase, we set all the parameters of GWO
and improved GWO algorithms properly for the regular deployment of nodes. Indeed, we set the number of
nodes to 36, and we vary the percentage of nodes. Then, we keep the percentage of nodes at 30% and vary
the number of nodes. We make such manipulations in order to compare the performance of our algorithms in
uniform WSN. In the second phase, we re-set the parameters of our algorithms correctly by reducing the
search space of our improved GWO algorithms for the random deployment. Then, repeat to handle the
anchor ratio and the density of nodes as we do for uniform deployment. It's worth mentioning that in random
deployment of nodes we reduced the surface area from 100x100 m? to 20x20 m? in order to narrow the
search space of our metaheuristic.

4. PROPOSED NEW VERSIONS OF DVHOP
4.1. Traditional DVHOP localization algorithm

DVHOP is a range-free positioning technique; it belongs to a multi-hop localization algorithm, it
makes positioning on the basis of the distance calculation. Also, this algorithm adopts an online method to
calculate hop size. Contrary to other range-free techniques, this hop-based algorithm is known for its high
coverage of localization. That means the cited localization algorithm is able to locate the majority of
unknown sensors by using only a few anchor nodes. DVHOP takes the following steps to accomplish the
localization process:
Stepl: Flooding
A broadcast is done by anchors in order to assign each sensor by its number of jumps to their anchor.
Step2: Distance calculation
After the step of flooding, we calculate the size of the jump presented between anchors by using the

following equation:
St i Cimx 2+ (vimy; :
J=1 j# ] ( ]) (1)

hopsizei =
opsize T7_, hopcount;;

where (xi,yi), (x;,y;) denote the positions of beacons i, j.
Then, we use (2) in order to calculate the distance that separates anchor i and the target sensor node.

dui= hopsize; x hopcounty, 2

Step3: Determination of target node position
In this part, we calculate the positions of all target nodes. For that purpose, we use the least square method to
specify the position of each unknown node.

(x,y) represents the position of the target nodes, (aj,bi) denotes the coordinates of the anchor node,
where i = 1,2,..n and n is the number of beacons. Therefore, we can calculate the distance that separates
unknown nodes and n anchors by using the non-linear equations.

(x—a)?+ (x—b)*+(z—c)? = df

(= @) + (= by)? + (2= ) = dj ©
Then we find:
x%—2a,x + a? +y? —2by + b = d?
’ 4)

x? = 2a,x + a% +y? —2b,y + b% = d?
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In (4) can be reformulated to,

—2x(a; — a,) + a? —a? — 2y(b, — b,) + b? — b2 = d?

_ (5)
—2x(ap_q —ay) + a121—1 - a721 - zy(bn—l - bn) + b121—1 - brzl = d121—1
The solution of the system may be interpreted as the resolution of the equation Ax=b,
21— a)  2(by = by)
A= : (6)

2@n-1= @) (b, ~ by)

a? —a%+b? — bE +c? —ct—d?
b= : @
@y —ap+bi—bi+ iy —ci—di,

The main advantage of DVHOP is its simplicity of implementation. Also, it makes localization
faster. In addition to that, it doesn’t require many anchor nodes for offering a high coverage of localization.
However, in DVHOP algorithm, it’s assumed that the resolution method adopted by the algorithm causes an
imprecision in estimating each position of the unknown node, which negatively impacts the accuracy of
DVHOP. Additionally, DVHOP needs more anchors to offer the best accuracy. That’s to say. DVHOP
performs with high energy consumption. Hence, DVHOP requires amelioration in purpose to mitigate its
issues.

In our approach, we replace the least squares method with an optimization problem. It’s noted that
we keep the two first steps of DVHOP as they are without making any changes to them because those steps
allow DVHOP to make localization with good coverage of. In detail, our improved method is described as
follows: Firstly, we calculate the number of hops between beacons and target nodes. In the second step, we
calculate the distance between beacons and target nodes on the basis of the size-hop. Finally, a specified
metaheuristic is applied in order to minimize the function described below:

fey) = 2T, G —a)” + (o = b)? — dil ®)

Where n denotes the number of beacons, (a;,bi) are the positions of beacons, d; represents the distance that
separates the unknown node and anchor i.

4.2. DVHORP algorithm-based GWO

The GWO technique is an optimization tool based on a swarm that can imitate the hierarchy and
hunting model of grey wolves. The GWO algorithms consider only three individuals named o, £, and 4. In
addition to that, the best solution is considered as a wolves. The technique adopted by the wolves in chasing
uses three steps: encircling, hunting, and attacking. Indeed, the pack of wolves follows the described
organization:

The alpha ones are the leaders of the pack. Their role is to make decisions about hunting, location of
sleep, wake-up time, and so on. The rest of the pack should follow the alpha’s judgment. The alpha category
is the controlling wolf because their orders must be respected by the individuals of the pack. The alpha ones
are not allowed in mating operations. It’s worth mentioning that it's not conditioned that the alpha be the
strongest member of the pack. However, the alpha ones are the best individuals to manage and guide the
whole pack. That reflects that the hierarchy of wolves is based upon discipline and good management, not
strength.

The beta wolves present the second class of the hierarchy; they assist the alpha to make decisions
and to do other tasks. Also, they may be male or female, and they replace the alpha when alpha wolves are
dead or would be weak (very old). The beta wolves should obey the orders of alphas, but the beta ones
command the delta ones and omegas (the lowest level of the hierarchy). Delta wolves must respect alphas
and betas. However, they make orders to the omegas.

Omega wolves represent the lowest ranking of the pack. On the other hand, omega should respect
the orders of other controlling wolves. It could appear that omega wolves aren’t important members of the
pack, but it seems that the pack has trouble, such as fighting between members, when we lose the omega
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wolves. That reflects the role of the omegas to maintain peace between the other members. Also, the omega
ones may be the baby sisters of the pack.

In the following, we explain mathematically all the steps taken by wolves before attacking their
prey. Briefly, we summarize those steps to encircling, hunting and attacking the prey that are described as
follows:

4.2.1. Encircling the prey
After the initialization step, the wolves encircle the prey. We illustrate the mathematical model of
the encircling operation by the following equations:

D = |C*Xp(t) - X(1)] )
X(t+1) = Xp(t) ~A*D (10)

where: A and C are controlling parameters, X, indicates the prey location, X is the grey wolf's coordinates.
We calculate A and C on the basis of the following equations:

A=2**rl—a (11)
C=2*r2 (12)
where: A decrease in a linear manner from 2 to 0 , We assume that rl , r2 are values between 0 and 1.
4.2.2. Hunting the prey
We suppose that alpha, beta, delta individuals know the prey coordinates. However, the omega

wolves update the positions according to the positions of alpha, beta, delta. We illustrate the mathematical
model of hunting operations by the following equations:

Do = | C1¥Xa - X| (13)
DB =| C2*Xp - X| (14)
D5 =| C3*X5 - X| (15)
X1 = Xa— Al*Da (16)
X2 =Xp— A2*Dp (17)
X3 = X5 — A3*Ds (18)
X(t+1) = (X1 + X2 + X3)/3 (19)

4.2.3. Exploitation/attacking

When we execute encircling and hunting prey, we pass to attacking the prey. This behavior is
mathematically formulated by the linear decrease of the value of a from 2 to 0. Also, we note that the position
of the wolf in this step is taken randomly throughout the position of the prey. It’s worth mentioning that
during this stage, the value of |A] is kept less than 1.

4.2.4. Summarize

The search operation begins by creating a population of individuals (chosen randomly). During the
iterations of the algorithm, the different wolves try to know the position of prey. That’s to say, each of the
categorized individuals mentioned makes a change to its distance from the prey in order to create an
equilibrium between the diversification and test phases. It’s noted that the termination of the method is
conditioned by the specified number of iterations. Algorithm 1 describes the different steps of GWO.

Algorithm 1: Algorithm of GWO
Initialize the grey wolf population Xi=(i=1,....,n)
Initialize a, A and C
Calculate the fitness of different agents
Xo, XB, Xd are the solutions
while ( t < Max nbre iterations)
for each agent
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make a change to the current position by using (19)
end for

modification of a, A and C

find fitness of the agents

update Xo, XpB, X&

t=t+1
end while
return Xo

In the beginning, we generate hop-size and the distance targets and anchors using the first two steps
of DVHOP. Then we select a population of wolves generated randomly and presented in the search space.
Also, we use the cost function to evaluate the wolves’s position. Then we repeat the following steps until we
reach the specified number of iterations (max_iter). Indeed, in each step, we consider just leader wolves
because their positions minimize the cost function. Then, each individual makes a change to its location on
the basis of the attacking steps followed by wolves. Finally, we repeat those steps until we reach the a
position that presents the best position and denotes the best coordinates of the target node. Figure 1 shows in
detail the different steps of the GWO-DVHOP algorithm,

(Lstere )

=

calculate the

avergae hopsize

calculate the distance
between anchors and nodes
Dui=hopsize *hopcountu,

|

Initialize population and
max_iteration

IS

<_It < max_iteration >

output : best coordinates |«

( lendii) calculate the fitness
e function of each wolf

XB = the second wolf
X6 = the third wolf

l

update a, Aand C

l

update the position of each
wolf by equations (1) and (3)

l

best coordinates = XA
It=it1 + 1

|

Figure 1. Flowchart of GWO-DVHOP algorithm

Xa = the best wolf

4.3. DVHOP algorithm based DLH-GWO

In fact, the traditional GWO doesn't have diversity in the population and has an imbalance between
diversification and test steps. As a consequence, GWO makes optimization with trapping in the local
minimum. In order to overcome those issues, a new DLH-GWO is presented. The improved algorithm
enhances the hunting strategy of search agents by using DLH. This method serves to enlarge the search space
of individuals by using DLH learning. Furthermore, DLH-GWO creates two wolves through DLH learning
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and the strategy adopted by GWO for updating the position. Additionally, DLH-GWO adds an updating step
for selecting the best wolf. This process is repeated at each iteration. Briefly, we summarize the DLH-GWO
into two steps: the initializing phase and the updating phase.

Initializing phase: In this step, we consider N individuals that are chosen randomly throughout the space of
searching. Also, we consider the search space equal to [l, u;]. The initial position of the wolf is described by
the (20).

Xi,j = lj + randj[0,1] * (uj - j) , i € [L,N], j € [1,D] (20)

where D denotes the dimension of the problem.

DLH-GWO add DLH learning that consists of the following idea: each wolf calculates its position
according to its learning by its neighbors, then we calculate the position taken by the wolf using a canonical
GWO search strategy and adopting the (21).

_ XiL(©+Xi2(0)+Xi3(D)

Xigwowry =— 5 (21)

DLH search strategy makes the calculation of another wolf’s new position named Xi.pn. To accomplish that,
another radius calculation is made. In detail, the radius Ri(t) is the distance presented between the positions
Xi(t) and Xi.ewo(t+1). Mathematically, Ri(t) is calculated by using equation (22),

Ri(t) = [ Xi(t) — Xi-owo(t+1)|] (22)
then, we calculate mathematically the neighbors of Xi(t) by using the (23),
Ni(t) = {Xj(t) | Di( Xi(t) , Xj(t) ) <Ri(t) , Xj(t) € Pop} (23)

where D; is the distance that separates the position Xi(t) and the position X;(t).
After calculating all the possible neighbors of Xi(t), we execute multi-neighbor learning using the (24):

Xi-oLrd(t+1) = Xia(t) + rand * ( Xna(t) — Xr.a(t)) (24)

where Xi pLn is calculated according to the neighbor X, q(t) chosen from Ni(t) and a random individual X «(t).
Updating phase: In this step, we make a comparison between the fitness of Xicwo(t+1) and Xi.
pur(t+1) aiming to select the good solution. The (25) describes the updating step.

Xi—ewo( + 1), if fXi—pru) > fXi—gwo)
Xi_peu( + 1), if fXi—prw) < fKi—gwo)

After executing this process for all individuals, we increase the number of iterations by one. That’s
to say, we stop the search operation when the condition of ternination is satisfied. Figure 2 illustrates the
functioning of DLH-GWO.

We prepare a surface of capting, where we properly set the number of nodes, and we also designate
the nodes that denote the anchors. Then, we serve by DLH-DVHOP algorithm to locate precisely the
unknown nodes. Algorithm 2 describes the process of DLH-GWO-DVHOP.

Xi(t+1) = { (25)

Algorithm 2: pseudo-code of DLH-GWO-DVHOP

Initialization:

number of nodes =NB,

number of anchors=NA,

area surface =1000x1000m2 ,

radio radius=500m

l.calculation of hopcounti,j by using the shortest path
2.calculate the size of hop by using (1)

3.target positions calculation

for i=NA to NB

4. calculate required distance

unknown_to_anchrs dist=hopsize (i) x shortest path(i,1 to NA);
5.calculate fitness function f by using (8)

6.execute DLH-GWO algorithm

initializing parameters: A, C, a , t=0 , max iter =500 and population size N = 30 ,
for t=1 to max iter

select Xo, XB, Xd

for i=1 to N

Xi,1 = Xo(t) - Ai,1* Do(t)
Xi,2 = XB (t) - Ai,2* DB (t)
Xi,3 = X5 (t) - Ai,3* D& (t)

A new approach for distance vector-Hop localization algorithm improvement ... (Omar Arroub)
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X (t+l) = (Xi,1(t)+ Xi,2(t)+ Xi,3(t))/3
Ri(t) = || Xi(t) - Xi-GWO(t+1) ||
calculate the neighbors of Xi(t)
NLi (t) = {Xi(t)| Di(Xi(t), Xj(t)) Ri(t), Xj(t) € pop}
for d =1 to D
Xi DLH (t) = X(i,d) (t) + rand( X(n,d) (t) - X(r,d) (t))
end for
if (fitness (Xi GWO(t+1) < fitness(Xi DLH(t+1))
Xi(t+1) = Xi GWO(t+1)
else
Xi(t+1) = Xi_ DLH(t+1)
update population
end for
end for
return global solution
6.assign the result of DLH-GWO to target node
node.estimated (i,1lto 2)= global solution;
( Start >

Initialize population
and iter_max

N

yes
A 4

Calculate Xi_swo(t+1)
according (21)

I

DLH learning

v

|

Calculate Ri(t) according (22) ‘

|

Construct the neighborhood
of X(t) With radius R

according (21)

Selecting and updating

Yes
v
Calculate Xi_ow(t+1)

4.4. SO-GWO- DVHOP algorithm

In our improved version of GWO, the new integrated parameters help us to realize an equilibrium
between exploration and exploitation. In detail, we develop a decent method of calculation in order to
enhance the exploration phase adopted by the algorithm, and we reach that by using opposition-based
learning (OBL). However, OBL helps GWO converge faster to the global optimum. The process is as
follows: In each iteration, we select candidate solutions using Spearmn’s rank Correlation Coefficient in
order to avoid unnecessary exploration, which will also serve to ensure fast convergence. On the other hand,

Figure 2. Flowchart of DLH-GWO algorithm
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if ® wolves in the inverse direction, then d has a negative correlation. This relation will serve us to determine
the dimensions and the bounds of search of o, where d denotes the threshold, and it will vary linearly as we
advance in iterations. The disparity between positions X and Xa is calculated by (26):

diff(j) = [ X({) - Xo() | (26)

where: j denotes the dimension, g is determined on the basis of the value of diff(j). Indeed, if diff(j) >
threshold, then gno =gno -1. Also, it’s noted that if (N — gno) < gno and diff(j) > threshold, then X’(i) is
calculated by (27),

X’(i) = ub(i) + Ib(i) - X(i) (27)

where: i€ {j: diff(j) < threshold} and X’(i) denotes the inversed vector. ub(i) and Ib(i) denote the upper and
lower bounds.

In the traditional GWO, we aim to calculate the positions of individuals according to the locations of
a, B, and & individuals. Indeed, if the leaders get trapped at the local minimum, the rest of the population also
has the vulnerability to be trapped in local extremes. To address this issue. The new configuration adopted in
GWO tackles this problem by combining OBL with GWO. Indeed, spearman’s rank correlation coefficient is
exploited to decide the omega wolves on which to apply OBL. This helps us avoid useless exploration and
expands the search space. Hence, by adopting SO-GWO we realize an equilibrium between exploration and
exploitation. Additionally, SO-GWO reduces the time of calculation without causing any mistakes in finding
the global solution. Figure 3 shows in detail the steps of SO-GWO.

(’/ Start \\)

Initialize population
and iter_max

g

~ ~ P ~

End No </Ii< iter_max >
= ¥
ol

yes

Vi

i=1

2R

SN > No

i+1 yes
-~ i

Update fitness function Update threshold th
fora,B,dand ®

SR
For each w wolf, we calculate _ /gR = I\
ranked correlation SRC \ ~
l " No

For each dimension, we calculate
difference diff(k) between a and w Iter = iter +1
A
No

No

N
~.

<diff <th>

yes

i

Oppose the w wolves
corresponding dimensions
where diff (k) > th

Figure 3. Flowchart of SO-GWO algorithm
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SO-GWO-DVHORP consists of the following descriptions: We make selective opposition to the pack
of wolves inside the browsing of unknown nodes. That’s to say, in each iteration, we assign to an unknown
node the value returned by SO-GWO according to the number of search agents, the maximal number of
iterations, the value of control parameter a, the upper and lower bounds, and the distance that separates
anchors and the unknown node generated by the second step of DVHOP. It's noted that the population vector
is initialized randomly. Algorithm 3 describes in detail the steps followed by SO-GWO-DVHOP.

Algorithm 3: pseudo-code of SO-GWO-DVHOP

1.Assign for each unknown node the value returnd by SO-GWO
for i=1 to total number of unknown nodes

2 .Generate the distance between unknown node and anchors according the two first steps of
DVHOP

3.Execute SO-GWO algorithm

Initialize n search agent positions, o, B and & positions, t
while (t < max iterations)

for i=1 to n

reinitialize the wolf dimensions

for each search agent, we calculate fitness function

end for

sort the search agents and update o, B and d positions
a=2- [iter* (2/max_iterations)]

threshold=a

for i=1 to number w search agents

for j=1 to nbre dimensions

diff (3)=1X(3) - X_o(3) |

if diff(j)> thresh

g_no=g_no+l

end if

end for

src = 1 - Y3(diff (3))?%/[dim* (dim?-1) ]

if src <=0

if (dim-g n0O<g n0)

for k € {j : diff(j) > thresh}

X (k) = 1lb(k) + ub(k) - X(k)

end for

end if

end if

end for

make change to the position of each agent by using equation (19)
t=t+1

end while

return position of «

4.Assign the result of SO-GWO to a target node
node.estimated(i,lto 2)=position of o ;

end for

5. SIMULATIONS AND RESULTS

In this part, we make a performance comparison of SO-GWO-DVHOP, DLH-GWO-DVHOP,
GWO-DVHOP and DVHOP in terms of precision. It's noted that we can judge the quality of the localization
on the basis of several metrics, such as energy consumption and coverage of localization. In reality, DVHOP
has a significant success in locating the whole nodes of the network with a minimum of anchors, and we
confirmed that in several scenarios of simulation by varying other metrics such as radio radius, percentage of
anchors. Consequently, we don’t consider assessment in terms of coverage, and we evaluate our methods just
on the basis of their precision of localization in a network with regular and random distribution of sensor
nodes. The metric of comparison is average localization error (ALE). Obviously, we make such simulations
in order to choose the most performant algorithm with a specified configuration. The work that has already
been done in the field of localization presented in WSN did not give a high accuracy of localization [21]-
[25]. 1t’s worth mentioning that the works that have already been done in the field of positioning did not give
a high accuracy of localization [22]-[25]. The parameter settings of SO-GWO-DVHOP, DLH-GWO-
DVHOP, GWO-DVHORP are listed in Table 1, summarizing the pertinent variables used in our assessment.

We use ALE in order to assess the quality of each cited algorithm in terms of precision. ALE
denotes the ratio of localization error to the total number of nodes. However, ALE is used to determine the
accuracy of each positioning technique according to the total number of nodes, the anchor ratio, and the
topology of the nodes's distribution. Indeed, we say that a technique is less precise if it has high ALE. We
calculate ALE using (28):
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—Ae —Je
ALE = Y&e=xe)*+e-ye)? (28)

(ng—npr

Where (x;, y;) represents the true location of nodes
Where (x,, y.) represents the estimated location of nodes
nt is the number of nodes

nh is the non-positioned nodes

r denotes the radio radius of a sensor node

Table 1. Parameter’s settings of GWO-DVHOP, DLH-GWO-DVHAP and SO-GWO-DVHOP

Parameter Value
Dimension 2
Lower bound 0
Upper bound 100 in uniform deployment of nodes
20 in random deployment of nodes
Number of iterations 500
a Linearly decrease from 2 to 0
Number of population 30
Cost function Cost function of DVHOP

5.1. Simulation results

To compare our algorithms in terms of accuracy, we split the simulation scenario into two phases.
We first compare GWO-DVHOP, DLH-GWO-DVHAP, and SO-GWO-DVHOP in a WSN with a uniform
distribution of nodes, and we vary the anchor ratio and the total number of nodes. Secondly, another
comparison is made by keeping the same set of algorithms and the same metrics. The only difference is that
we change the distribution of nodes to a non-regular distribution. The parameter settings used in our
simulation are summarized in Table 2. We assume that we use an area whose surface equals 100x100m?.

The strategy followed in our simulation consists of two phases. Firstly, we keep the total number of
nodes at a value of 36 and the radio radius at 34 m. Then, we change the anchor ratio between the values of
5% and 30%. In the second phase, we vary the number of nodes by keeping the beacon ratio at 20% and the
radio radius at 34m. Figure 4 illustrates the initial field of sensing. Indeed, the number of nodes is 16 nodes
(3 anchors and 13 unknown nodes). In Figure 4(a), we use a regular topology. In Figure 4(b), we change the
network topology to a random distribution. Also, we change the surface area from the value of 100x100 m?to
20x20 m? on purpose to decrease the search space of GWO algorithm and its variants.

Table 2. Parameter settings of simulations

Parameter Value
Area 100x100 m? in grid topology
20%20 in random topology

Total number of nodes 16, 25, 36, 49, 64, 81
Distribution of nodes Uniform
Random

Anchor rachio (%) 5-10-15-20-25-30
radio radius 34 m, [100/(number_of_nodes_by_side-1)]*2 (29)

Model of communication Regular

5.2. Discussions
5.2.1. The comparison under a regular distribution

In this part, we compare the algorithms SO-GWO-DVHOP, DLH-GWO-DVHOP, GWO-DVHOP
and DVHOP in terms of precision by changing the anchor ratio. It’s worth mentioning that the total number
of nodes is 36 and the radio radius is set to 34 m. Figure 5 shows the variation of ALE according to the
anchor ratio. According to Figure 5, it’s clear that DVHOP gives the worst results because there’s an
accumulation of errors during its last step, which leads to huge errors in estimating the position of each node
by that algorithm. Also, it’s noted that the precision of each method augments when we augment the anchor
ratio. However, SO-GWO-DVHOP, DLH-GWO-DVHOP show better performance due to the efficiency of
both SO-GWO and DLH-GWO for optimization purposes. Indeed, the two meta-heuristics aim to diversify
the population of wolves. Hence, they could improve the precision of DVHOP better than the traditional
GWO. Also, it can be seen that GWO has successfully enhanced the precision of DVHOP because GWO is
based on the hunting hierarchy of individuals. Also, it's shown its ability to minimize our cost function
despite its complexity and multi-modality. However, the results offered by GWO-DVHOP are still less
precise than those offered by DLH-GWO-DVHOP and SO-DLH-DVHOP.
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Figure 5. Variation of average location error of algorithms with communication range =34m

In Figure 6, we vary the total number of nodes between 16 nodes and 81 nodes. Also, we vary the
communication range according to (29), and we keep the percentage of anchors at the value of 20%.
According to the results, we can observe that the performance of SO-GWO-DVHORP is outstanding compared
to other algorithms, and the accuracy offered by that algorithm is less than the others. We first explain the
high precision of SO-GWO-DVHOP, DLH-GWO-DVHOP by the efficiency of the resolution methods
adopted and their suitability to our cost function. Secondly, when we increase the total number of nodes, we
also increase the connectivity between nodes because we keep the same area size. That contributes positively
to generating input parameters for our meta-heuristics. Hence, SO-GWO-DVHOP and DLH-GWO-DVHOP
could locate more precisely the unknown nodes and give a high level of precision compared to GWO-
DVHOP and DVHOP. We also observe that GWO-DVHOP has shown good outcomes, and its results are
close to those of the improved version of GWO-DVHOP. Finally, DVHOP takes the worst rank, and its
results are far from the results of the mentioned algorithms. We also note the non-stability of its results when
we augment the total number of nodes.

In Tables 3 and 4, we show maximum and minimum ALE of our algorithms. It's shown that SO-
GWO-DVHOP has the best performance in comparison to other localization methods in a network with
regular deployment of nodes.

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 2, February 2026: 515-531



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 527

[
il T W == o __
0.35 A - =
0.30
-®- SO-GWO-DVHOP
w GWO-DVHOP
= 0.95 4 -m- DLH-GWO-DVHOP
| B -#- DVHOP
oS
\:\
i
0.20 4 TNl
~imoo
““““ t:::‘_.._‘ﬁ
""“::—_::_‘:1
0.15 1 =1
20 30 40 50 60 70 80

Number of nodes

Figure 6. Variation of average location error of algorithms

Table 3. Localization error comparison in uniform distribution of nodes (variation of the ratio of anchors)
Localization algorithm ~ Max. average localization ~ Min. average localization ~ Mean. average localization

error (M) error (M) error (M)
DVHOP 0.500 0.470 0.485
GWO-DVHOP 0.382 0.350 0.366
DLH-GWO-DVHOP 0.370 0.340 0.355
SO-GWO-DVHOP 0.360 0.335 0.347

Table 4. Localization error comparison in uniform distribution of nodes (variation of the number of nodes)
Localization algorithm ~ Max. average localization Min. average localization ~ Avg. average localization

error (M) error (M) error (M)
DVHOP 0.365 0.350 0.358
GWO-DVHOP 0.248 0.175 0.211
DLH-GWO-DVHOP 0.246 0.170 0.208
SO-GWO-DVHOP 0.240 0.152 0.196

5.2.2. Performance comparison with random distribution

In this part, we compare SO-GWO-DVHOP, DLH-GWO-DVHOP, GWO-DVHOP, DVHOP by
changing the anchor ratio. Also, we note that the value of the radio radius is fixed at 34m and the number of
nodes is set at 36. Figure 7 shows the variation of ALE of our algorithms according to the anchor ratio.

According to the results, we observe that SO-GWO-DVHOP gives the best result that reflects the
efficiency of SOBL to create a diversity of population and expands positively the search space aiming to
avoid local. Also, it’s observed that when we augment the anchor ratio, the ALE of the improved method still
decreases because, when we increase the total number of anchors, we also augment the precision of the
distance between anchors and target nodes. Hence, that serves the algorithm to estimate precisely the target.
Additionally, it’s clear that DLH-GWO-DVHOP and GWO-DVHOP give approximately the same result, but
their performances are still less than those offered by SO-GWO-DVHOP. However, OBL consists of
selecting some individuals in the opposite direction in order to avoid that omega wolves follow their leaders
mistakenly, so SO-GWO has succeeded in diversifying the population more efficiently than GWO and its
variant DLH-GWO. Consequently, the performance of SO-GWO-DVHORP is greater than that done by DLH-
GWO-DVHOP and GWO-DVHOP. Finally, we remark that DVHOP shows the worst outcomes, and it's
sensitive enough to add more anchors to offer a slight increase in its accuracy.

In the configuration shown below, we change the total number of nodes between 16 and 81. Also,
we change the value of communication range according to (29) and keep the percentage of anchors at 20%.
The results of the experiments are shown in Figure 8.

According to Figure 8, a non-stability in DVHOP calculation is observed. That reflects the non-
stability of the resolution method adopted by DVHOP. Indeed, in non-uniform deployment of nodes, we are
facing the huge imprecision of averaging hop-size made by the algorithm that leads DVHOP to locate the
whole nodes of the network imprecisely. Also, we observe that the error ratio of DVHOP is superior to the
ratio of other improved algorithms. On the other hand, it’s noted that SO-GWO-DVHOP is the most precise
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algorithm, indicating that Selective-OBL has significantly enhanced the quality of searching made by GWO.
Hence, the resulting algorithm has successfully optimized the cost function of localization. Although DLH
learning is devoted to enhancing GWO and the performance of DLH-GWO-DVHOP is greater than that of
GWO-DVHOP as shown in Figure 8. Nevertheless, this offered performance is still less than that of SO-
GWO-DVHOP. We can conclude that in our case of localization and the form of our cost function, SO-OBL
is the most appropriate solution to optimize GWO. Consequently, SO-GWO still the most convenient choice
to optimize DVHOP.

In Table 5 and Table 6, we show maximum, minimum average localization error of our algorithms.
It's shown that SO-GWO-DVHOP has the best performance in comparison to other localization algorithms
when we vary the total number of nodes and the percentage of anchors in network with non-regular
distribution of nodes. In Table 7 we present the relevant work that has already been done to optimize
DVHOP in terms of precision.
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Table 5. Localization error comparison in random distribution of nodes (variation of the ratio of anchors)
Localization algorithm ~ Max. average localization ~ Min. average localization ~ Avg. average localization

error (M) error (M) error (M)
DVHOP 0.640 0.600 0.620
GWO-DVHOP 0.460 0.400 0.430
DLH-GWO-DVHOP 0.450 0.390 0.420
SO-GWO-DVHOP 0.400 0.300 0.350
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Table 6. Localization error comparison in random distribution of nodes (variation of the number of nodes)
Localization algorithm Max. average localization Max. average localization Max. average localization

error (M) error (M) error (M)
DVHOP 0.520 0.450 0.485
GWO-DVHOP 0.280 0.240 0.260
DLH-GWO-DVHOP 0.270 0.230 0.250
SO-GWO-DVHOP 0.260 0.210 0.235
Table 7. Summarizes the relevant works
Researchers Algorithm Network settings Metric Value
Sharma and DVHOP with Genetic Random deployment of nodes with Average Localization 2.48
Kumar [23] Algorithm variation of percentage of anchors error (m)
Random deployment of nodes by Average Localization 2.86
varying the number of nodes error (m)
Messous et al. DVHOP with polynomial Random deployment of nodes by Average Localization 2.58
[24] approximation varying the percentage of anchors error (m)
Random deployment of nodes by Average Localization 2.83
varying the communication range error (m)
Cheng et al. [25] DVHOP with Random deployment of nodes by Average Localization 0.30
Archimedes algorithm varying the number of nodes error (m)
Random deployment by varying Average Localization 0.37
the percentage of anchors error (m)
Xue 2019 [19] DVHOP with PSO Random deployment by varying Average Localization 0.39
the percentage of anchors error (m)
Random deployment of nodes by Average Localization 0.39
varying the communication range error (m)
Zhang et al. [21] DVHOP with Quantum- Uniform distribution of nodes by Average Localization 0.21
Behaved Particle Swarm varying the communication range error (m)
Optimization
Uniform distribution of nodes by Average Localization 3.68
varying the number of anchors error (m)
Uniform distribution of nodes by Average Localization 0.18
varying the node density error (m)

6. CONCLUSION

DVHORP is our target for improvement, to reach that we present a combined SO-GWO-DVHOP.

The main idea of SO is to enhance the opposite learning process by using Spearmn’s rank Correlation
Coefficient. This strategy serves to expand the search space of wolves. Also, it creates a variety of
populations and can create an equilibrium between exploration and exploitation. Additionally, we use the
first two steps of DVHOP for generating the distance that separate the target node from anchors which will
denote input parameters for our improved GWO algorithm. On the other hand, the coordinates of nodes in
WSN will be calculated iteratively by adopting the resultant algorithm SO-GWO-DVHOP. Our simulation
consists of comparing DVHOP with its enhanced versions. The results obtained confirm that SO-GWO-
DVHOP gives the best precision of localization in a network with both regular and non-random distribution
of nodes compared to DVHOP and their other variants GWO-DVHOP and DLH-GWO-DVHOP.

Although SO-GWO-DVHOP has shown superior efficiency against other algorithms. However,
there are some obstacles, such as noise and multipath, that occur in communication between nodes, and those
phenomena reduce the localization accuracy of algorithms. As a consequence, we suggest making another
deep study aiming to enhance SO-GWO-DVHOP in a network with regular and non-regular deployment of
nodes by taking the presence of noise effect into account.

FUNDING INFORMATION
The authors state no funding is involved.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

A new approach for distance vector-Hop localization algorithm improvement ... (Omar Arroub)



530 a ISSN: 2502-4752
Name of Author C M So Va Fo || R D O E Vi Su P Fu
Omar Arroub v v v v v v v v v v
Aouar Darif v v v v v
Rachid Saadane v
My Driss Rahmani v v v
Zineb Aarab v v
C : Conceptualization I Investigation Vi . Visualization
M : Methodology R : Resources Su : Supervision
S0 : Software D : Data Curation P : Project administration
Va : Validation O : writing - Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT

To Authors state no conflict of interest.

DATA AVAILABILITY

Simulation data about this study are available from the corresponding author.

REFERENCES

[1]
[2]
B3]
(4]
(5]
(6]
[71
(8]
[9]
[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of wireless sensor networks: An up-to-date survey,” Applied
System Innovation, vol. 3, no. 1, pp. 1-24, 2020, doi: 10.3390/asi3010014.

T. E. Oliveira, J. R. Reis, and R. F. S. Caldeirinha, “Implementation of a WSN for environmental monitoring: From the base
station to the small sensor node,” Sensors, vol. 22, no. 20, p. 7976, 2022.

K. Yu, Y. J. Guo, and M. Hedley, “TOA-based distributed localisation with unknown internal delays and clock frequency offsets
in wireless sensor networks,” IET Signal Processing, vol. 3, no. 2, pp. 106-118, 2009, doi: 10.1049/iet-spr:20080029.

W. Li and B. Zhao, “Analysis of TDOA location algorithm based on ultra-wideband,” Proc. of International Conference in
Communications, Signal Processing, and Systems, pp. 1257-1261, 2020.

H. Li and Z. Cheng, “Angle-of-arrival estimation using difference beams in localized hybrid arrays,” Sensors, vol. 21, no. 5, pp.
1-11, 2021, doi: 10.3390/s21051901.

W. Liu, J. Li, A. Zheng, Z. Zheng, X. Jiang, and S. Zhang, “DV-Hop algorithm based on multi-objective salp swarm algorithm
optimization,” Sensors, vol. 23, no. 7, 2023, doi: 10.3390/s23073698.

S. Messous and H. Liouane, “Online sequential DV-hop localization algorithm for wireless sensor networks,” Mobile Information
Systems, vol. 2020, 2020, doi: 10.1155/2020/8195309.

W. Gai, C. Qu, J. Liu, and J. Zhang, “A novel hybrid meta-heuristic algorithm for optimization problems,” Systems Science and
Control Engineering, vol. 6, no. 3, pp. 64-73, 2018, doi: 10.1080/21642583.2018.1531359.

S. Rajendran, N. Ganesh, R. Cep, R. C. Narayanan, S. Pal, and K. Kalita, “A conceptual comparison of six nature-inspired
metaheuristic algorithms in process optimization,” Processes, vol. 10, no. 2, 2022, doi: 10.3390/pr10020197.

A. M. Nassef, M. A. Abdelkareem, H. M. Maghrabie, and A. Baroutaji, “Review of metaheuristic optimization algorithms for
power systems problems,” Sustainability (Switzerland), vol. 15, no. 12, 2023, doi: 10.3390/su15129434.

Y. Wang et al., “A dynamic opposite learning-assisted grey wolf optimizer,” Symmetry, vol. 14, no. 9, 2022, doi:
10.3390/sym14091871.

V. Chandran and P. Mohapatra, “Enhanced opposition-based grey wolf optimizer for global optimization and engineering design
problems,” Alexandria Engineering Journal, vol. 76, pp. 429467, 2023, doi: 10.1016/j.aej.2023.06.048.

A. A. Z. Diab, H. I. Abdul-Ghaffar, A. A. Ahmed, and H. A. Ramadan, “An effective model parameter estimation of PEMFCs
using GWO algorithm and its variants,” |IET Renewable Power Generation, vol. 16, no. 7, pp. 1380-1400, 2022, doi:
10.1049/rpg2.12359.

M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, “An improved grey wolf optimizer for solving engineering problems,”
Expert Systems with Applications, vol. 166, 2021, doi: 10.1016/j.eswa.2020.113917.

L. Sun, B. Feng, T. Chen, D. Zhao, and Y. Xin, “Equalized grey wolf optimizer with refraction opposite learning,” Computational
Intelligence and Neuroscience, vol. 2022, 2022, doi: 10.1155/2022/2721490.

W. Long, J. Jiao, X. Liang, S. Cai, and M. Xu, “A random opposition-based learning grey wolf optimizer,” IEEE Access, vol. 7,
pp. 113810-113825, 2019, doi: 10.1109/ACCESS.2019.2934994.

A. Ali, Y. Ming, S. Chakraborty, and S. Iram, “A comprehensive survey on real-time applications of WSN,” Future Internet, vol.
9, no. 4, 2017, doi: 10.3390/fi9040077.

D. Han, Y. Yu, K. C. Li, and R. F. de Mello, “Enhancing the sensor node localization algorithm based on improved DV-Hop and
DE algorithms in wireless sensor networks,” Sensors (Switzerland), vol. 20, no. 2, 2020, doi: 10.3390/s20020343.

D. Xue, “Research on range-free location algorithm for wireless sensor network based on particle swarm optimization,” Eurasip
Journal on Wireless Communications and Networking, vol. 2019, no. 1, 2019, doi: 10.1186/s13638-019-1540-z.

S. Kessentini and D. Barchiesi, “Particle swarm optimization with adaptive inertia weight,” International Journal of Machine
Learning and Computing, vol. 5, no. 5, pp. 368-373, 2015, doi: 10.7763/ijmlc.2015.v5.535.

D. Zhang, X. Zhang, and H. Qi, “A new location sensing algorithm based on DV-Hop and quantum-behaved particle swarm
optimization in WSN,” ASP Transactions on Pattern Recognition and Intelligent Systems, vol. 1, no. 2, pp. 1-17, 2021, doi:
10.52810/tpris.2021.100034.

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 2, February 2026: 515-531



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 531

[22]
[23]
[24]

[25]

E. Shakshuki, A. Abu Elkhail, I. Nemer, M. Adam, and T. Sheltami, “Comparative study on range free localization algorithms,”
Procedia Computer Science, vol. 151, pp. 501-510, 2019, doi: 10.1016/j.procs.2019.04.068.

G. Sharma and A. Kumar, “Improved range-free localization for three-dimensional wireless sensor networks using genetic
algorithm,” Computers and Electrical Engineering, vol. 72, pp. 808-827, 2018, doi: 10.1016/j.compeleceng.2017.12.036.

S. Messous, H. Liouane, O. Cheikhrouhou, and H. Hamam, “Improved recursive dv-hop localization algorithm with rssi
measurement for wireless sensor networks,” Sensors, vol. 21, no. 12, 2021, doi: 10.3390/s21124152.

M. Cheng, T. Qin, and J. Yang, “Node localization algorithm based on modified Archimedes optimization algorithm in wireless
sensor networks,” Journal of Sensors, vol. 2022, 2022, doi: 10.1155/2022/7026728.

BIOGRAPHIES OF AUTHORS

omar Arroub © EJES € received the bachelor in computer sciences and mathematics from
Faculty of Sciences Rabat in 2011. He received the Master's in Computer Sciences and
networks from Faculty of Sciences and Techniques of Tanger in 2014. He is currently a Ph.D.
student at University Mohamed 5, Morocco. His research interests include wireless sensor
network (WSN), internet of things (IoT), metaheuristics, and machine learning. He can be
contacted at email: omar_arroub@um5.ac.ma.

Aouar Darif Bd 2 received the diplome d’etudes supérieurs approfondies in
computer sciences and telecommunications from Faculty of Sciences Rabat in 2007. He
received the Ph.D. degree in computer sciences and telecommunications from Faculty of
Sciences of Rabat in 2015. He is currently a research and teaching associate in the
multidisciplinary Faculty at University of Sultan Moulay Slimane Beni Mellal, Morocco. His
research interests include wireless sensor network (WSN), mobile edge computing (MEC),
internet of things (loT), cloud cumputing and neural networks. Anouar Darif is an active
reviewer of various international conferences and journals. He can be contacted at email:
anouar.darif@usms.ac.ma.

Rachid Saadane © E:J B3 12 received the B.S. degree in physic electronic from the Faculty
of Science of Rabat, Rabat, Morocco, in 2001. He received the Dipléme d 'Etudes Supérieurs
Approfondies in computer sciences and telecommunications from the Faculty of Sciences of
Rabat, in 2003. He received the Ph.D. degree in computer sciences and telecommunications
from Faculty of Sciences of Rabat jointly with Eurecom Institute in 2007. He currently works
as a research and a teaching Associate at the EHTP. He can be contacted at email:
saadane@ehtp.ac.ma.

My Driss Rahmani © EJ B3 © is full professor of computer science in Mohammed V
University in Rabat (Morocco) where he was Head of Department of Computer Science until
2015. He holds a Ph.D. in Sciences from University of Montpellier 2 (France) in 1989. He has
over 25 years of teaching experience (concurrent programming, graphic user interface,
compilation, and XML technology). His main area of interest includes wireless sensor
network, urban modelling, Car-following modelling, business process modelling, and smart
cities. He can be contacted at email: d.rahmani@umb5r.ac.ma.

Zineb Aarab © BJ B € is an assistant professor of computer science and applied computer
science at Mohammadia School of Engineers (EMI). She is a collaborator researcher at
Computer Science and Telecommunications Research Laboratory LRIT. Her doctoral thesis
has been prepared in the Computer Science and Telecommunications Research Laboratory
LRIT. Her research interests lie in model-driven engineering (MDE) and information systems
(IS) with a focus on context awareness. She can be contacted at email: aarab@emi.ac.ma.

A new approach for distance vector-Hop localization algorithm improvement ... (Omar Arroub)


mailto:anouar.darif@usms.ac.ma
mailto:saadane@ehtp.ac.ma
mailto:d.rahmani@um5r.ac.ma
mailto:aarab@emi.ac.ma
https://orcid.org/0009-0006-1466-6323
https://www.scopus.com/authid/detail.uri?authorId=58476312000
https://orcid.org/0000-0001-8026-9189
https://scholar.google.com/citations?user=rrT2_nMAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=55612058000
https://orcid.org/0000-0002-0197-8313
https://scholar.google.com/citations?hl=fr&user=VNsLOwIAAAAJ&view_op=list_works&sortby=pubdate
https://www.scopus.com/authid/detail.uri?authorId=56074327000
https://orcid.org/0000-0002-1602-4109
https://scholar.google.com/citations?user=syfjXVcAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=56606818100
https://orcid.org/0000-0002-0546-8804
https://scholar.google.fr/citations?hl=fr&user=gnwiGxMAAAAJ&view_op=list_works&sortby=pubdate
https://www.scopus.com/authid/detail.uri?authorId=56607242800

