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 This article shows a new range-free localization technique based on a meta-

heuristic algorithm (MA) dedicated to wireless sensor network (WSN), 

named sequential online-grey wolf optimization-distance vector-Hop (SO-

GWO-DVHOP). Indeed, we use the improved GWO based on selective 

opposite learning to improve GWO in order to enhance the traditional 

DVHOP localization algorithm. In reality, we choose GWO due to its better 

outcomes compared to other meta-heuristics, which leads us to improve this 

algorithm further. In the literature, the improvement works of GWO try to 

reconstruct the hierarchy of GWO or improve specifically the role of omega 

individuals. In our contribution, we opt for opposition-based learning (OBL) 

to ameliorate GWO, aiming to further enhance the quality of localization 

made by DVHOP. On the other hand, we make an empirical comparison of 

DVHOP and its improved versions in terms of accuracy. The results of the 

simulation demonstrate that SO-GWO-DVHOP gives the best performance 

when we vary the anchor ratio and the density of nodes.  
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1. INTRODUCTION  

Nowadays, researchers have devoted a special interest to wireless sensor network (WSN) [1] due to 

its importance in several fields. Indeed, a sensor contains a battery for energy storage, antennas for receiving 

and sending information, memory, and GPS. However, using GPS doesn't guarantee a long sensor lifetime 

because the latter consumes more energy than other components. At this point, it was seen to use range-free 

techniques instead of ordinal techniques such as time of arrival (TOA) [2], time different of arrival (TDOA) 

[3], Angle of arrival [4]. Indeed, range-fee techniques don't depend entirely on using GPS. That's to say, we 

need just a few nodes to be equipped with GPS which are named beacons or anchors, and those latters help 

the target nodes to have their proper locations on the basis of the connectivity between nodes. It's worth 

mentioning that distance vector-Hop (DVHOP) localization algorithm [5], [6] is still the best technique 

among other range-free techniques because, experimentally, with a few anchors, DVHOP can locate the 

majority of nodes that constitute the network. We assume that several improvements have been made to 

ameliorate the precision of DVHOP. The problems that arise in those works are either they don't take the 

time calculation taken by the enhanced method into account or those improvements only take one way of 

distribution of nodes (random, uniform). In our approach, we have used two variants of GWO metaheuristic 

for the purpose of replacing the last step of DVHOP and reducing more localization errors of DVHOP. It's 

https://creativecommons.org/licenses/by-sa/4.0/
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worth mentioning that we have proven our improvements work in the uniform and random distribution of 

nodes for WSN. 

GWO [7] is a robust metaheuristic that was proposed in 2014 by Mirjalili. It's worth mentioning that 

GWO has attracted researchers and scientists due to its simplicity and precise results, among other 

metaheuristics [8]. Also, we assume that GWO has the ability to offer a precise result for complex 

optimization problems, especially those that have high dimensions or have more than one local solution. In 

addition to that, GWO may serve resolution purposes for a discrete or continuous problem. In detail, this 

technique performs on the basis of the behavior adopted by grey wolves in the operations of searching and 

encircling the prey. In detail, the pack contains four individual classes. The individuals displace by respecting 

the hierarchy; the alpha is the leader who has the role of making the decision and guiding the whole pack, the 

beta assists the alpha and replaces the alpha in the case of death, the delta is responsible for hunting and 

attacking, the omega just follows the behavior of their leaders. The efficiency of the wolf to hunt well has 

given the algorithm GWO the reputation of good convergence and precise results. Also, this algorithm is easy 

to deploy because it has a minimum number of control parameters; it needs just two parameters, a and C. In 

addition to that, GWO guarantees an equilibrium between the exploration and exploitation phases. Hence, we 

find GWO is applied to many engineering problems that require optimization processes, especially the 

battery energy storage problem and the image-processing field. Its drawbacks reside in the lack of diversity 

in the population and its weakness in the exploitation phase. 

In reality, each metaheuristic has its advantages and drawbacks. For example, PSO [9] can give a 

solution with a few control parameters, but its drawbacks reside in slow convergence and sticking to the local 

optimum for problems with high dimensions. Also, our GWO can provide a better solution than other MAs. 

Its disadvantages reside in the weakness in the exploitation phase, especially for the multi-modal problems 

that trap the algorithm in premature convergence, which leads to the apparition of several improvement 

works to overcome the issues that reside in GWO. For example, the apparition of opposition-based learning 

(OBL) [10], [11] consists of establishing the opposite positions of individuals not only at the beginning of the 

algorithm but also at each iteration. Also, we can apply dimension learning hunting (DLH) [12], [13] in order 

to increase the precision offered by GWO. In detail, DLH uses DLH learning, which consists of two phases: 

the initializing step: creating the neighbors of individuals based on certain rules and equations, and the 

updating phase: selecting or rejecting the new position created according to the fitness function. In the 

literature, OBL is still the most commonly used method to enhance GWO and there are many kinds of OBL 

that appear for that purpose, such as ROBL [14] based on luminous refraction, OBL based on the jump [15], 

which consist of creating an avoiding or a jump when we find a minimum local. In our contribution, we have 

used selective opposition-based learning because we found experimentally that SOBL suits our localization 

problem and effectively has the role of enhancing the precision of DVHOP localization algorithm. 

The rest of the article is organized as follows: Firstly, we present different improved versions of 

DVHOP presented in literature. In section 3, we present the research method used to accomplish our work. In 

section 4, we define DVHOP, highlighting the source of its imprecision. Then, we present our ameliorated 

versions of the traditional DVHOP. Simulation and discussions are presented in section 5. We conclude the 

paper by presenting the conclusion and the perspective in section 6. 

 

 

2. RELATED WORKS  

Researchers and scientists have invented many meta-heuristics over the past few years. In our case 

of localization, we find that intelligent swarm-based algorithms are mostly used to improve DVHOP 

localization algorithm. That reflects that swarm-based algorithms may optimize several kinds of problems 

better than other cited meta-heuristics. Long et al. [16], it’s shown that Amorphous gives better accuracy than 

DVHOP by varying the density of sensor nodes and anchor ratio. The experimental results prove that 

Amorphous localization algorithm offers a high level of accuracy with just a few anchors. That means 

Amorphous is a prominent solution for localization in WSN with minimal energy consumption. Ali et al. 

[17], the authors use a genetic algorithm (GA) for the purpose of ameliorating the precision of DVHOP. 

However, they also use PSO to ameliorate the crossover step of GA. The results obtained prove that DVHOP 

based on GA-PSO gives better accuracy than traditional DVHOP. Han et al. [18], the authors adopt PSO in 

order to optimize DVHOP. Also, they use LDIW [19] to create a balance between the diversification and test 

steps of PSO. However, the solution obtained by the modified PSO denotes the optimal location of nodes in 

WSN. Kessentini and Barchiesi [20] the authors try to improve the quality of convergence made by PSO-

DVHOP. Indeed, they use QPSO for the purpose of reaching a global solution to the localizing problem. In 

general, the goal of QPSO-DVHOP is to ameliorate the accuracy of positioning. Additionally, QPSO-

DVHOP performs with a good time of calculation in comparison with the traditional PSO-DVHOP. Zhang  

et al. [21], the authors present Centroid, APIT, DVHOP, and explain in detail the principle of functioning of 
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each cited localization algorithm. In addition to that, they present DVHOPmax which presents an enhanced 

version of DVHOP owned by maxhop parameter that's adjustable according to the topology of the network in 

order to reach a high level of accuracy. A performance comparison has been done in terms of the precision 

for the purpose of proving the efficiency of DVHOPmax.  

 

 

3. RESEARCH METHODOLOGY 

The research method is organized as follows: Firstly, we present the algorithm-based hop DVHOP 

highlighting the source of its huge errors in the localization process. Secondly, we interpret the last step of 

DVHOP as an optimization problem that is able to be resolved under GWO and two other improved GWO 

algorithms. Finally, our simulation is split into two steps. In the first phase, we set all the parameters of GWO 

and improved GWO algorithms properly for the regular deployment of nodes. Indeed, we set the number of 

nodes to 36, and we vary the percentage of nodes. Then, we keep the percentage of nodes at 30% and vary 

the number of nodes. We make such manipulations in order to compare the performance of our algorithms in 

uniform WSN. In the second phase, we re-set the parameters of our algorithms correctly by reducing the 

search space of our improved GWO algorithms for the random deployment. Then, repeat to handle the 

anchor ratio and the density of nodes as we do for uniform deployment. It's worth mentioning that in random 

deployment of nodes we reduced the surface area from 100×100 m2 to 20×20 m2 in order to narrow the 

search space of our metaheuristic. 

 

 

4. PROPOSED NEW VERSIONS OF DVHOP  

4.1.  Traditional DVHOP localization algorithm 

DVHOP is a range-free positioning technique; it belongs to a multi-hop localization algorithm, it 

makes positioning on the basis of the distance calculation. Also, this algorithm adopts an online method to 

calculate hop size. Contrary to other range-free techniques, this hop-based algorithm is known for its high 

coverage of localization. That means the cited localization algorithm is able to locate the majority of 

unknown sensors by using only a few anchor nodes. DVHOP takes the following steps to accomplish the 

localization process: 

Step1: Flooding 

A broadcast is done by anchors in order to assign each sensor by its number of jumps to their anchor. 

Step2: Distance calculation 

After the step of flooding, we calculate the size of the jump presented between anchors by using the 

following equation: 
 

hopsizei = 
∑ √(𝑥𝑖−𝑥𝑗)2+(𝑦𝑖−𝑦𝑗)

2𝑛
𝑗=1 𝑗#𝑖

∑ ℎ𝑜𝑝𝑐𝑜𝑢𝑛𝑡𝑖𝑗
𝑛
𝑗=1

 (1) 

 

where (xi,yi), (xj,yj) denote the positions of beacons i, j. 

Then, we use (2) in order to calculate the distance that separates anchor i and the target sensor node.  
 

du,i= hopsizei × hopcountu,I (2) 
 

Step3: Determination of target node position 

In this part, we calculate the positions of all target nodes. For that purpose, we use the least square method to 

specify the position of each unknown node.  

(x,y) represents the position of the target nodes, (ai,bi) denotes the coordinates of the anchor node, 

where i = 1,2,..n and n is the number of beacons. Therefore, we can calculate the distance that separates 

unknown nodes and n anchors by using the non-linear equations. 
 

{
(𝑥 − 𝑎1)2 + (𝑥 − 𝑏1)2 + (𝑧 − 𝑐1)2 =  𝑑1

2

..
(𝑥 − 𝑎𝑛)2 + (𝑥 − 𝑏𝑛)2 +  (𝑧 − 𝑐𝑛)2 =  𝑑𝑛

2
  (3) 

 

Then we find: 
 

{

𝑥2 − 2𝑎1𝑥 + 𝑎1
2 + 𝑦2 − 2𝑏1𝑦 + 𝑏1

2  = 𝑑1
2

.

.
𝑥2 − 2𝑎𝑛𝑥 + 𝑎𝑛

2 + 𝑦2 − 2𝑏𝑛𝑦 + 𝑏𝑛
2  = 𝑑1

2

   (4) 
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In (4) can be reformulated to,  

 

{

−2𝑥(𝑎1 − 𝑎𝑛) + 𝑎1
2 − 𝑎𝑛

2 − 2𝑦(𝑏1 − 𝑏𝑛) + 𝑏1
2 − 𝑏𝑛

2 = 𝑑1
2

.

.
−2𝑥(𝑎𝑛−1 − 𝑎𝑛) + 𝑎𝑛−1

2 − 𝑎𝑛
2 − 2𝑦(𝑏𝑛−1 − 𝑏𝑛) + 𝑏𝑛−1

2 − 𝑏𝑛
2  = 𝑑𝑛−1

2

  (5) 

 

The solution of the system may be interpreted as the resolution of the equation Ax=b,  

 

A= [

2(𝑎1 − 𝑎𝑛) 2(𝑏1 − 𝑏𝑛)
..

2(𝑎𝑛−1 − 𝑎𝑛)

.

.
2(𝑏𝑛−1 − 𝑏𝑛)

] (6) 

 

b=[

𝑎1
2 − 𝑎𝑛

2 + 𝑏1
2 − 𝑏𝑛

2 + 𝑐1
2 − 𝑐𝑛

2 − 𝑑1
2

.

.
𝑎𝑛−1

2 − 𝑎𝑛
2 + 𝑏𝑛−1

2 − 𝑏𝑛
2 +  𝑐𝑛−1

2 − 𝑐𝑛
2 − 𝑑𝑛−1

2

] (7) 

 

The main advantage of DVHOP is its simplicity of implementation. Also, it makes localization 

faster. In addition to that, it doesn’t require many anchor nodes for offering a high coverage of localization. 

However, in DVHOP algorithm, it’s assumed that the resolution method adopted by the algorithm causes an 

imprecision in estimating each position of the unknown node, which negatively impacts the accuracy of 

DVHOP. Additionally, DVHOP needs more anchors to offer the best accuracy. That’s to say. DVHOP 

performs with high energy consumption. Hence, DVHOP requires amelioration in purpose to mitigate its 

issues. 

In our approach, we replace the least squares method with an optimization problem. It’s noted that 

we keep the two first steps of DVHOP as they are without making any changes to them because those steps 

allow DVHOP to make localization with good coverage of. In detail, our improved method is described as 

follows: Firstly, we calculate the number of hops between beacons and target nodes. In the second step, we 

calculate the distance between beacons and target nodes on the basis of the size-hop. Finally, a specified 

metaheuristic is applied in order to minimize the function described below: 
 

𝑓(𝑥, 𝑦) =  
1

𝑛
∑ ǀ√(𝑥 − 𝑎𝑖)2 + (𝑦 − 𝑏𝑖)

2𝑛
𝑖=1 − 𝑑𝑖ǀ (8) 

 

Where n denotes the number of beacons, (ai,bi) are the positions of beacons, di represents the distance that 

separates the unknown node and anchor i.  

 

4.2.  DVHOP algorithm-based GWO 

The GWO technique is an optimization tool based on a swarm that can imitate the hierarchy and 

hunting model of grey wolves. The GWO algorithms consider only three individuals named α, 𝛽, and δ. In 

addition to that, the best solution is considered as α wolves. The technique adopted by the wolves in chasing 

uses three steps: encircling, hunting, and attacking. Indeed, the pack of wolves follows the described 

organization: 

The alpha ones are the leaders of the pack. Their role is to make decisions about hunting, location of 

sleep, wake-up time, and so on. The rest of the pack should follow the alpha’s judgment. The alpha category 

is the controlling wolf because their orders must be respected by the individuals of the pack. The alpha ones 

are not allowed in mating operations. It’s worth mentioning that it's not conditioned that the alpha be the 

strongest member of the pack. However, the alpha ones are the best individuals to manage and guide the 

whole pack. That reflects that the hierarchy of wolves is based upon discipline and good management, not 

strength. 

The beta wolves present the second class of the hierarchy; they assist the alpha to make decisions 

and to do other tasks. Also, they may be male or female, and they replace the alpha when alpha wolves are 

dead or would be weak (very old). The beta wolves should obey the orders of alphas, but the beta ones 

command the delta ones and omegas (the lowest level of the hierarchy). Delta wolves must respect alphas 

and betas. However, they make orders to the omegas. 

Omega wolves represent the lowest ranking of the pack. On the other hand, omega should respect 

the orders of other controlling wolves. It could appear that omega wolves aren’t important members of the 

pack, but it seems that the pack has trouble, such as fighting between members, when we lose the omega 
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wolves. That reflects the role of the omegas to maintain peace between the other members. Also, the omega 

ones may be the baby sisters of the pack. 

In the following, we explain mathematically all the steps taken by wolves before attacking their 

prey. Briefly, we summarize those steps to encircling, hunting and attacking the prey that are described as 

follows: 

 

4.2.1. Encircling the prey 

After the initialization step, the wolves encircle the prey. We illustrate the mathematical model of 

the encircling operation by the following equations: 
 

D = |C*Xp(t) - X(t)| (9) 
 

X(t+1) = Xp(t) –A*D (10) 
 

where: A and C are controlling parameters, Xp indicates the prey location, X is the grey wolf's coordinates. 

We calculate A and C on the basis of the following equations: 
 

A = 2*a*r1 – a (11) 
 

C = 2*r2 (12) 
 

where: A decrease in a linear manner from 2 to 0 , We assume that r1 , r2 are values between 0 and 1. 

 

4.2.2. Hunting the prey 

We suppose that alpha, beta, delta individuals know the prey coordinates. However, the omega 

wolves update the positions according to the positions of alpha, beta, delta. We illustrate the mathematical 

model of hunting operations by the following equations: 
 

Dα = | C1*Xα - X| (13) 
 

Dβ = | C2*Xβ - X| (14) 
 

Dδ = | C3*Xδ - X| (15) 
 

X1 = Xα – A1*Dα (16) 
 

X2 = Xβ – A2*Dβ (17) 
 

X3 = Xδ – A3*Dδ (18) 
 

X(t+1) = (X1 + X2 + X3)/3 (19) 

 

4.2.3. Exploitation/attacking 

When we execute encircling and hunting prey, we pass to attacking the prey. This behavior is 

mathematically formulated by the linear decrease of the value of a from 2 to 0. Also, we note that the position 

of the wolf in this step is taken randomly throughout the position of the prey. It’s worth mentioning that 

during this stage, the value of |A| is kept less than 1. 

 

4.2.4. Summarize 

The search operation begins by creating a population of individuals (chosen randomly). During the 

iterations of the algorithm, the different wolves try to know the position of prey. That’s to say, each of the 

categorized individuals mentioned makes a change to its distance from the prey in order to create an 

equilibrium between the diversification and test phases. It’s noted that the termination of the method is 

conditioned by the specified number of iterations. Algorithm 1 describes the different steps of GWO. 

 

Algorithm 1: Algorithm of GWO 
Initialize the grey wolf population Xi=(i=1,……,n) 

Initialize a, A and C 

Calculate the fitness of different agents 

Xα, Xβ, Xδ are the solutions 

while ( t < Max_nbre_iterations) 

 for each agent 
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 make a change to the current position by using (19) 

 end for 

 modification of a, A and C 

 find fitness of the agents 

 update Xα, Xβ, Xδ 

 t=t+1 

end while 

return Xα 

 

In the beginning, we generate hop-size and the distance targets and anchors using the first two steps 

of DVHOP. Then we select a population of wolves generated randomly and presented in the search space. 

Also, we use the cost function to evaluate the wolves’s position. Then we repeat the following steps until we 

reach the specified number of iterations (max_iter). Indeed, in each step, we consider just leader wolves 

because their positions minimize the cost function. Then, each individual makes a change to its location on 

the basis of the attacking steps followed by wolves. Finally, we repeat those steps until we reach the α 

position that presents the best position and denotes the best coordinates of the target node. Figure 1 shows in 

detail the different steps of the GWO-DVHOP algorithm,  
 

 

 
 

Figure 1. Flowchart of GWO-DVHOP algorithm 

 

 

4.3.  DVHOP algorithm based DLH-GWO 

In fact, the traditional GWO doesn't have diversity in the population and has an imbalance between 

diversification and test steps. As a consequence, GWO makes optimization with trapping in the local 

minimum. In order to overcome those issues, a new DLH-GWO is presented. The improved algorithm 

enhances the hunting strategy of search agents by using DLH. This method serves to enlarge the search space 

of individuals by using DLH learning. Furthermore, DLH-GWO creates two wolves through DLH learning 
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and the strategy adopted by GWO for updating the position. Additionally, DLH-GWO adds an updating step 

for selecting the best wolf. This process is repeated at each iteration. Briefly, we summarize the DLH-GWO 

into two steps: the initializing phase and the updating phase. 

Initializing phase: In this step, we consider N individuals that are chosen randomly throughout the space of 

searching. Also, we consider the search space equal to [lp uj]. The initial position of the wolf is described by 

the (20). 
 

Xi,j = lj + randj[0,1] * (uj – lj) , i ∈ [1,N], j ∈ [1,D] (20) 
 

where D denotes the dimension of the problem.  

DLH-GWO add DLH learning that consists of the following idea: each wolf calculates its position 

according to its learning by its neighbors, then we calculate the position taken by the wolf using a canonical 

GWO search strategy and adopting the (21). 
 

𝑋𝑖𝐺𝑊𝑂(t+1) =
𝑋𝑖1(t)+𝑋𝑖2(t)+𝑋𝑖3(t)

3
 (21) 

 

DLH search strategy makes the calculation of another wolf’s new position named Xi-DLH. To accomplish that, 

another radius calculation is made. In detail, the radius Ri(t) is the distance presented between the positions 

Xi(t) and Xi-GWO(t+1). Mathematically, Ri(t) is calculated by using equation (22),  
 

Ri(t) = || Xi(t) – Xi-GWO(t+1)|| (22) 
 

then, we calculate mathematically the neighbors of Xi(t) by using the (23), 
 

Ni(t) = {Xj(t) | Di( Xi(t) , Xj(t) ) ≤ Ri(t) , Xj(t) ∈ Pop} (23) 
 

where Di is the distance that separates the position Xi(t) and the position Xj(t). 

After calculating all the possible neighbors of Xi(t), we execute multi-neighbor learning using the (24): 
 

Xi-DLH,d(t+1) = Xi,d(t) + rand * ( Xn,d(t) – Xr,d(t)) (24) 
 

where Xi_DLH is calculated according to the neighbor Xn,d(t) chosen from Ni(t) and a random individual Xr,d(t). 

Updating phase: In this step, we make a comparison between the fitness of Xi-GWO(t+1) and Xi-

DLH(t+1) aiming to select the good solution. The (25) describes the updating step. 
 

Xi(t+1) = {
𝑋𝑖−𝐺𝑊𝑂(𝑡 + 1) , 𝑖𝑓 𝑓(𝑋𝑖−𝐷𝐿𝐻) > 𝑓(𝑋𝑖−𝐺𝑊𝑂)

𝑋𝑖−𝐷𝐿𝐻(𝑡 + 1), 𝑖𝑓 𝑓(𝑋𝑖−𝐷𝐿𝐻) ≤  𝑓(𝑋𝑖−𝐺𝑊𝑂)
 (25) 

 

After executing this process for all individuals, we increase the number of iterations by one. That’s 

to say, we stop the search operation when the condition of ternination is satisfied. Figure 2 illustrates the 

functioning of DLH-GWO.  

We prepare a surface of capting, where we properly set the number of nodes, and we also designate 

the nodes that denote the anchors. Then, we serve by DLH-DVHOP algorithm to locate precisely the 

unknown nodes. Algorithm 2 describes the process of DLH-GWO-DVHOP. 

 

Algorithm 2: pseudo-code of DLH-GWO-DVHOP 
Initialization:  

number of nodes =NB, 

number of anchors=NA, 

area surface =1000×1000m2 , 

radio radius=500m 

1.calculation of hopcounti,j by using the shortest path  

2.calculate the size of hop by using (1) 

3.target positions calculation 

for i=NA to NB  

4. calculate required distance  

unknown_to_anchrs_dist=hopsize(i) × shortest_path(i,1 to NA); 

5.calculate fitness function f by using (8) 

6.execute DLH-GWO algorithm 

initializing parameters: A, C, a , t=0 , max_iter =500 and population size N = 30 , 

for t=1 to max_iter 

select Xα, Xβ, Xδ 

for i=1 to N 

Xi,1 = Xα(t) – Ai,1* Dα(t) 

Xi,2 = Xβ (t) – Ai,2* Dβ (t) 

Xi,3 = Xδ (t) – Ai,3* Dδ (t) 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 2, February 2026: 515-531 

522 

X (t+1) = (Xi,1(t)+ Xi,2(t)+ Xi,3(t))/3 

Ri(t) = || Xi(t) – Xi-GWO(t+1)|| 

calculate the neighbors of Xi(t) 

NLi (t) = {Xi(t)| Di(Xi(t), Xj(t)) ≤ Ri(t), Xj(t) ∈ pop} 
for d =1 to D 

Xi_DLH (t) = X(i,d)(t) + rand( X(n,d)(t) - X(r,d)(t)) 

end for 

if(fitness (Xi_GWO(t+1) < fitness(Xi_DLH(t+1)) 

Xi(t+1) = Xi_GWO(t+1) 

else  

Xi(t+1) = Xi_DLH(t+1) 

update population 

end for 

end for  

return global solution 

6.assign the result of DLH-GWO to target node 

node.estimated(i,1to 2)= global solution; 

 

 

 
 

Figure 2. Flowchart of DLH-GWO algorithm 

 

 

4.4.  SO-GWO- DVHOP algorithm 

In our improved version of GWO, the new integrated parameters help us to realize an equilibrium 

between exploration and exploitation. In detail, we develop a decent method of calculation in order to 

enhance the exploration phase adopted by the algorithm, and we reach that by using opposition-based 

learning (OBL). However, OBL helps GWO converge faster to the global optimum. The process is as 

follows: In each iteration, we select candidate solutions using Spearmn’s rank Correlation Coefficient in 

order to avoid unnecessary exploration, which will also serve to ensure fast convergence. On the other hand, 
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if ω wolves in the inverse direction, then d has a negative correlation. This relation will serve us to determine 

the dimensions and the bounds of search of α, where d denotes the threshold, and it will vary linearly as we 

advance in iterations. The disparity between positions X and Xα is calculated by (26): 
 

diff(j) = | X(j) - Xα(j) | (26) 
 

where: j denotes the dimension, g is determined on the basis of the value of diff(j). Indeed, if diff(j) > 

threshold, then gn0 =gn0 -1. Also, it’s noted that if (n – gn0) < gn0 and diff(j) > threshold, then X’(i) is 

calculated by (27),  
 

X’(i) = ub(i) + lb(i) - X(i) (27) 
 

where: i∈ {j: diff(j) ≤ threshold} and X’(i) denotes the inversed vector. ub(i) and lb(i) denote the upper and 

lower bounds. 

In the traditional GWO, we aim to calculate the positions of individuals according to the locations of 

α, β, and δ individuals. Indeed, if the leaders get trapped at the local minimum, the rest of the population also 

has the vulnerability to be trapped in local extremes. To address this issue. The new configuration adopted in 

GWO tackles this problem by combining OBL with GWO. Indeed, spearman’s rank correlation coefficient is 

exploited to decide the omega wolves on which to apply OBL. This helps us avoid useless exploration and 

expands the search space. Hence, by adopting SO-GWO we realize an equilibrium between exploration and 

exploitation. Additionally, SO-GWO reduces the time of calculation without causing any mistakes in finding 

the global solution. Figure 3 shows in detail the steps of SO-GWO. 

 

 

 
 

Figure 3. Flowchart of SO-GWO algorithm 
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SO-GWO-DVHOP consists of the following descriptions: We make selective opposition to the pack 

of wolves inside the browsing of unknown nodes. That’s to say, in each iteration, we assign to an unknown 

node the value returned by SO-GWO according to the number of search agents, the maximal number of 

iterations, the value of control parameter a, the upper and lower bounds, and the distance that separates 

anchors and the unknown node generated by the second step of DVHOP. It's noted that the population vector 

is initialized randomly. Algorithm 3 describes in detail the steps followed by SO-GWO-DVHOP. 

 

Algorithm 3: pseudo-code of SO-GWO-DVHOP 
1.Assign for each unknown node the value returnd by SO-GWO 

for i=1 to total number of unknown nodes 

2.Generate the distance between unknown node and anchors according the two first steps of 

DVHOP 

3.Execute SO-GWO algorithm  

Initialize n search agent positions, α, β and δ positions, t 

while (t < max_iterations) 

for i=1 to n 

reinitialize the wolf dimensions  

for each search agent, we calculate fitness function 

end for 

sort the search agents and update α, β and δ positions  

a=2- [iter* (2/max_iterations)] 

threshold=a 

for i=1 to number_ω_search_agents 

for j=1 to nbre_dimensions 

diff(j)=|X(j) – X_α(j)|  

if diff(j)> thresh 

g_no=g_no+1 

end if 

end for 

src = 1 - ∑j(diff(j))2/[dim*(dim2-1)] 

if src < = 0 

if(dim-g_n0<g_n0) 

for k ∈ {j : diff(j) > thresh} 
X(k) = lb(k) + ub(k) - X(k) 

end for 

end if 

end if 

end for 

make change to the position of each agent by using equation (19) 

t=t+1 

end while 

return position of α 

4.Assign the result of SO-GWO to a target node 

node.estimated(i,1to 2)=position of α ; 

end for 

 

 

5. SIMULATIONS AND RESULTS 

In this part, we make a performance comparison of SO-GWO-DVHOP, DLH-GWO-DVHOP, 

GWO-DVHOP and DVHOP in terms of precision. It's noted that we can judge the quality of the localization 

on the basis of several metrics, such as energy consumption and coverage of localization. In reality, DVHOP 

has a significant success in locating the whole nodes of the network with a minimum of anchors, and we 

confirmed that in several scenarios of simulation by varying other metrics such as radio radius, percentage of 

anchors. Consequently, we don’t consider assessment in terms of coverage, and we evaluate our methods just 

on the basis of their precision of localization in a network with regular and random distribution of sensor 

nodes. The metric of comparison is average localization error (ALE). Obviously, we make such simulations 

in order to choose the most performant algorithm with a specified configuration. The work that has already 

been done in the field of localization presented in WSN did not give a high accuracy of localization [21]–

[25]. It’s worth mentioning that the works that have already been done in the field of positioning did not give 

a high accuracy of localization [22]-[25]. The parameter settings of SO-GWO-DVHOP, DLH-GWO-

DVHOP, GWO-DVHOP are listed in Table 1, summarizing the pertinent variables used in our assessment.  

We use ALE in order to assess the quality of each cited algorithm in terms of precision. ALE 

denotes the ratio of localization error to the total number of nodes. However, ALE is used to determine the 

accuracy of each positioning technique according to the total number of nodes, the anchor ratio, and the 

topology of the nodes's distribution. Indeed, we say that a technique is less precise if it has high ALE. We 

calculate ALE using (28): 
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 𝐴𝐿𝐸 =  
√(𝑥𝑡−𝑥𝑒)2+(𝑦𝑡−𝑦𝑒)2

(𝑛𝑡−𝑛ℎ)𝑟
 (28) 

 

Where (𝑥𝑡 , 𝑦𝑡) represents the true location of nodes 

Where (𝑥𝑒 , 𝑦𝑒) represents the estimated location of nodes 

nt is the number of nodes 

nh is the non-positioned nodes 

r denotes the radio radius of a sensor node 
 
 

Table 1. Parameter’s settings of GWO-DVHOP, DLH-GWO-DVHAP and SO-GWO-DVHOP 
Parameter Value 

Dimension 2 
Lower bound 0 

Upper bound 100 in uniform deployment of nodes 

20 in random deployment of nodes 

Number of iterations 500 

a Linearly decrease from 2 to 0 

Number of population 30 
Cost function Cost function of DVHOP 

 

 

5.1.  Simulation results 

To compare our algorithms in terms of accuracy, we split the simulation scenario into two phases. 

We first compare GWO-DVHOP, DLH-GWO-DVHAP, and SO-GWO-DVHOP in a WSN with a uniform 

distribution of nodes, and we vary the anchor ratio and the total number of nodes. Secondly, another 

comparison is made by keeping the same set of algorithms and the same metrics. The only difference is that 

we change the distribution of nodes to a non-regular distribution. The parameter settings used in our 

simulation are summarized in Table 2. We assume that we use an area whose surface equals 100×100m2.  

The strategy followed in our simulation consists of two phases. Firstly, we keep the total number of 

nodes at a value of 36 and the radio radius at 34 m. Then, we change the anchor ratio between the values of 

5% and 30%. In the second phase, we vary the number of nodes by keeping the beacon ratio at 20% and the 

radio radius at 34m. Figure 4 illustrates the initial field of sensing. Indeed, the number of nodes is 16 nodes 

(3 anchors and 13 unknown nodes). In Figure 4(a), we use a regular topology. In Figure 4(b), we change the 

network topology to a random distribution. Also, we change the surface area from the value of 100×100 m2 to 

20×20 m2 on purpose to decrease the search space of GWO algorithm and its variants. 
 

 

Table 2. Parameter settings of simulations 
Parameter  Value 

Area 100×100 m2 in grid topology 

20×20 in random topology 

Total number of nodes 16, 25, 36, 49, 64, 81 
Distribution of nodes Uniform 

Random 
Anchor rachio (%) 5 - 10 - 15 - 20 - 25 - 30 

radio radius 34 m, [100/(number_of_nodes_by_side-1)]*2 (29) 

Model of communication Regular 

 

 

5.2.  Discussions 

5.2.1. The comparison under a regular distribution  

In this part, we compare the algorithms SO-GWO-DVHOP, DLH-GWO-DVHOP, GWO-DVHOP 

and DVHOP in terms of precision by changing the anchor ratio. It’s worth mentioning that the total number 

of nodes is 36 and the radio radius is set to 34 m. Figure 5 shows the variation of ALE according to the 

anchor ratio. According to Figure 5, it’s clear that DVHOP gives the worst results because there’s an 

accumulation of errors during its last step, which leads to huge errors in estimating the position of each node 

by that algorithm. Also, it’s noted that the precision of each method augments when we augment the anchor 

ratio. However, SO-GWO-DVHOP, DLH-GWO-DVHOP show better performance due to the efficiency of 

both SO-GWO and DLH-GWO for optimization purposes. Indeed, the two meta-heuristics aim to diversify 

the population of wolves. Hence, they could improve the precision of DVHOP better than the traditional 

GWO. Also, it can be seen that GWO has successfully enhanced the precision of DVHOP because GWO is 

based on the hunting hierarchy of individuals. Also, it's shown its ability to minimize our cost function 

despite its complexity and multi-modality. However, the results offered by GWO-DVHOP are still less 

precise than those offered by DLH-GWO-DVHOP and SO-DLH-DVHOP.  
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(a) (b) 

 

Figure 4. Initial distribution (a) uniform and (b) random 

 

 

 
 

Figure 5. Variation of average location error of algorithms with communication range =34m 

 

 

In Figure 6, we vary the total number of nodes between 16 nodes and 81 nodes. Also, we vary the 

communication range according to (29), and we keep the percentage of anchors at the value of 20%. 

According to the results, we can observe that the performance of SO-GWO-DVHOP is outstanding compared 

to other algorithms, and the accuracy offered by that algorithm is less than the others. We first explain the 

high precision of SO-GWO-DVHOP, DLH-GWO-DVHOP by the efficiency of the resolution methods 

adopted and their suitability to our cost function. Secondly, when we increase the total number of nodes, we 

also increase the connectivity between nodes because we keep the same area size. That contributes positively 

to generating input parameters for our meta-heuristics. Hence, SO-GWO-DVHOP and DLH-GWO-DVHOP 

could locate more precisely the unknown nodes and give a high level of precision compared to GWO-

DVHOP and DVHOP. We also observe that GWO-DVHOP has shown good outcomes, and its results are 

close to those of the improved version of GWO-DVHOP. Finally, DVHOP takes the worst rank, and its 

results are far from the results of the mentioned algorithms. We also note the non-stability of its results when 

we augment the total number of nodes.  

In Tables 3 and 4, we show maximum and minimum ALE of our algorithms. It's shown that SO-

GWO-DVHOP has the best performance in comparison to other localization methods in a network with 

regular deployment of nodes. 
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Figure 6. Variation of average location error of algorithms 
 

 

Table 3. Localization error comparison in uniform distribution of nodes (variation of the ratio of anchors) 
Localization algorithm Max. average localization 

error (M) 
Min. average localization 

error (M) 
Mean. average localization 

error (M) 

DVHOP 0.500 0.470 0.485 

GWO-DVHOP 0.382 0.350 0.366 
DLH-GWO-DVHOP 0.370 0.340 0.355 

SO-GWO-DVHOP 0.360 0.335 0.347 

 

 

Table 4. Localization error comparison in uniform distribution of nodes (variation of the number of nodes) 
Localization algorithm Max. average localization 

error (M) 

Min. average localization 

error (M) 

Avg. average localization 

error (M) 

DVHOP 0.365 0.350 0.358 

GWO-DVHOP 0.248 0.175 0.211 
DLH-GWO-DVHOP 0.246 0.170 0.208 

SO-GWO-DVHOP 0.240 0.152 0.196 

 

 

5.2.2. Performance comparison with random distribution 

In this part, we compare SO-GWO-DVHOP, DLH-GWO-DVHOP, GWO-DVHOP, DVHOP by 

changing the anchor ratio. Also, we note that the value of the radio radius is fixed at 34m and the number of 

nodes is set at 36. Figure 7 shows the variation of ALE of our algorithms according to the anchor ratio.  

According to the results, we observe that SO-GWO-DVHOP gives the best result that reflects the 

efficiency of SOBL to create a diversity of population and expands positively the search space aiming to 

avoid local. Also, it’s observed that when we augment the anchor ratio, the ALE of the improved method still 

decreases because, when we increase the total number of anchors, we also augment the precision of the 

distance between anchors and target nodes. Hence, that serves the algorithm to estimate precisely the target. 

Additionally, it’s clear that DLH-GWO-DVHOP and GWO-DVHOP give approximately the same result, but 

their performances are still less than those offered by SO-GWO-DVHOP. However, OBL consists of 

selecting some individuals in the opposite direction in order to avoid that omega wolves follow their leaders 

mistakenly, so SO-GWO has succeeded in diversifying the population more efficiently than GWO and its 

variant DLH-GWO. Consequently, the performance of SO-GWO-DVHOP is greater than that done by DLH-

GWO-DVHOP and GWO-DVHOP. Finally, we remark that DVHOP shows the worst outcomes, and it's 

sensitive enough to add more anchors to offer a slight increase in its accuracy. 

In the configuration shown below, we change the total number of nodes between 16 and 81. Also, 

we change the value of communication range according to (29) and keep the percentage of anchors at 20%. 

The results of the experiments are shown in Figure 8. 

According to Figure 8, a non-stability in DVHOP calculation is observed. That reflects the non-

stability of the resolution method adopted by DVHOP. Indeed, in non-uniform deployment of nodes, we are 

facing the huge imprecision of averaging hop-size made by the algorithm that leads DVHOP to locate the 

whole nodes of the network imprecisely. Also, we observe that the error ratio of DVHOP is superior to the 

ratio of other improved algorithms. On the other hand, it’s noted that SO-GWO-DVHOP is the most precise 
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algorithm, indicating that Selective-OBL has significantly enhanced the quality of searching made by GWO. 

Hence, the resulting algorithm has successfully optimized the cost function of localization. Although DLH 

learning is devoted to enhancing GWO and the performance of DLH-GWO-DVHOP is greater than that of 

GWO-DVHOP as shown in Figure 8. Nevertheless, this offered performance is still less than that of SO-

GWO-DVHOP. We can conclude that in our case of localization and the form of our cost function, SO-OBL 

is the most appropriate solution to optimize GWO. Consequently, SO-GWO still the most convenient choice 

to optimize DVHOP. 

In Table 5 and Table 6, we show maximum, minimum average localization error of our algorithms. 

It's shown that SO-GWO-DVHOP has the best performance in comparison to other localization algorithms 

when we vary the total number of nodes and the percentage of anchors in network with non-regular 

distribution of nodes. In Table 7 we present the relevant work that has already been done to optimize 

DVHOP in terms of precision.  

 

 

 
 

Figure 7. Variation of average location error of algorithms with communication range =34m 
 

 

 
 

Figure 8. Variation of average location error of algorithms 
 

 

Table 5. Localization error comparison in random distribution of nodes (variation of the ratio of anchors) 
Localization algorithm Max. average localization 

error (M) 
Min. average localization 

error (M) 
Avg. average localization 

error (M) 

DVHOP 0.640 0.600 0.620 

GWO-DVHOP 0.460 0.400 0.430 
DLH-GWO-DVHOP 0.450 0.390 0.420 

SO-GWO-DVHOP 0.400 0.300 0.350 
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Table 6. Localization error comparison in random distribution of nodes (variation of the number of nodes) 
Localization algorithm  Max. average localization 

error (M) 
Max. average localization 

error (M) 
Max. average localization 

error (M) 

DVHOP 0.520 0.450 0.485 

GWO-DVHOP 0.280 0.240 0.260 

DLH-GWO-DVHOP 0.270 0.230 0.250 
SO-GWO-DVHOP 0.260 0.210 0.235 

 

 

Table 7. Summarizes the relevant works 
Researchers Algorithm Network settings Metric Value 

Sharma and 
Kumar [23] 

DVHOP with Genetic 
Algorithm 

Random deployment of nodes with 
variation of percentage of anchors 

Average Localization 
error (m) 

2.48 

  Random deployment of nodes by 

varying the number of nodes 

Average Localization 

error (m) 

2.86 

Messous et al. 

[24] 

DVHOP with polynomial 

approximation 

Random deployment of nodes by 

varying the percentage of anchors 

Average Localization 

error (m) 

2.58 

  Random deployment of nodes by 
varying the communication range 

Average Localization 
error (m) 

2.83 

Cheng et al. [25] DVHOP with 

Archimedes algorithm 

Random deployment of nodes by 

varying the number of nodes 

Average Localization 

error (m) 

0.30 

  Random deployment by varying 

the percentage of anchors 

Average Localization 

error (m) 

0.37 

Xue 2019 [19] DVHOP with PSO Random deployment by varying 

the percentage of anchors 

Average Localization 

error (m) 

0.39 

  Random deployment of nodes by 
varying the communication range 

Average Localization 
error (m) 

0.39 

Zhang et al. [21] DVHOP with Quantum-

Behaved Particle Swarm 
Optimization 

Uniform distribution of nodes by 

varying the communication range 

Average Localization 

error (m) 

0.21 

  Uniform distribution of nodes by 

varying the number of anchors 

Average Localization 

error (m) 

3.68 

  Uniform distribution of nodes by 

varying the node density 

Average Localization 

error (m) 

0.18 

 

 

6. CONCLUSION 

DVHOP is our target for improvement, to reach that we present a combined SO-GWO-DVHOP. 

The main idea of SO is to enhance the opposite learning process by using Spearmn’s rank Correlation 

Coefficient. This strategy serves to expand the search space of wolves. Also, it creates a variety of 

populations and can create an equilibrium between exploration and exploitation. Additionally, we use the 

first two steps of DVHOP for generating the distance that separate the target node from anchors which will 

denote input parameters for our improved GWO algorithm. On the other hand, the coordinates of nodes in 

WSN will be calculated iteratively by adopting the resultant algorithm SO-GWO-DVHOP. Our simulation 

consists of comparing DVHOP with its enhanced versions. The results obtained confirm that SO-GWO-

DVHOP gives the best precision of localization in a network with both regular and non-random distribution 

of nodes compared to DVHOP and their other variants GWO-DVHOP and DLH-GWO-DVHOP. 

Although SO-GWO-DVHOP has shown superior efficiency against other algorithms. However, 

there are some obstacles, such as noise and multipath, that occur in communication between nodes, and those 

phenomena reduce the localization accuracy of algorithms. As a consequence, we suggest making another 

deep study aiming to enhance SO-GWO-DVHOP in a network with regular and non-regular deployment of 

nodes by taking the presence of noise effect into account. 
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