
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 40, No. 3, December 2025, pp. 1567~1575 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v40.i3.pp1567-1575      1567 

 

Journal homepage: http://ijeecs.iaescore.com 

Optimizing YOLOv8: OpenVINO standard quantization vs 

accuracy-controlled for edge deployment 
 

 

Chandrakala G. Raju1, Ajaykumar Devarapalli2, Rakshitha Mahendran1,  

Sathwik Madhusudan1, Omkar Prasad1 
1Department of Information Science and Engineering, BMS College of Engineering (BMSCE), Bangalore, India 

2Department of Electronics and Instrumentation Engineering, BMS College of Engineering (BMSCE), Bangalore, India  

 

 

Article Info  ABSTRACT 

Article history: 

Received Mar 4, 2025 

Revised Oct 24, 2025 

Accepted Nov 16, 2025 

 

 Object detection models, such as you only look once (YOLO), are widely 
utilized for real-time applications; however, their computational complexity 
often restricts deployment on edge devices. This research investigates the 
optimization of YOLO models using OpenVINO, both with and without 
accuracy control, to enable efficient inference while preserving model 
accuracy. A two-step pipeline is proposed: first, YOLO models are 
converted into OpenVINO’s intermediate representation (IR) format, 
followed by the application of post-training quantization (PTQ) to reduce 

model size and enhance latency. Additionally, an accuracy-aware 
quantization approach is introduced, which maintains model performance by 
calibrating with a validation dataset. Experimental results illustrate the trade-
offs between standard and accuracy-controlled quantization, demonstrating 
improvements in inference speed while ensuring minimal accuracy 
degradation. This study provides a practical framework for deploying 
lightweight object detection models on edge devices, particularly in real-
world scenarios such as autonomous systems, smart surveillance, and smart 

queue management systems. 
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1. INTRODUCTION 
In the era of high-performance computing and artificial intelligence (AI), Intel’s oneAPI [1] has 

emerged as a unified, open-standard programming model designed to maximize hardware efficiency across 

central processing units (CPUs), graphics processing units (GPUs), field-programmable gate arrays (FPGAs), 

and other accelerators. Unlike solutions that limit flexibility, oneAPI enables developers to write optimized, 

cross-architecture code without rewriting algorithms. It serves industries such as autonomous driving, 

healthcare, and financial services powering workloads from data processing to deep learning (DL). 

One key component of the oneAPI toolkit is open visual inference and neural network optimization 

(OpenVINO™), designed to accelerate DL models for edge devices and heterogeneous computing 

environments [2]. OpenVINO optimizes inference tasks by converting models from frameworks like 

TensorFlow, PyTorch, and ONNX into an optimized format that runs efficiently on various Intel hardware. 

DL models often face challenges due to large size and high computational cost. Full-precision 
(FP32) models consume heavy memory and power, making them unsuitable for real-time use. Quantization 

addresses this by reducing numerical precision (e.g., FP32 → INT8), boosting speed and lowering power 

https://creativecommons.org/licenses/by-sa/4.0/
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consumption [3]. However, traditional quantization methods often struggle to retain accuracy, motivating 

research into advanced optimization methods. 

Han et al. [4] introduced deep compression (pruning, quantization, and Huffman coding) to reduce 

the memory footprint of neural networks greatly reducing size but requiring retraining which limits its real-

time deployment. Choi et al. [5] proposed reinforcement learning-based quantization this approach is 

computationally expensive, requiring a complex training pipeline. Rastegari et al. [6] proposed XNOR-Net, 

using bitwise operations for speed but losing accuracy on complex datasets. Kulkarni et al. [7] surveyed 
quantization strategies, identifying post-training quantization (PTQ) as practical though prone to accuracy loss. 

Several researchers have explored hardware-aware optimizations for quantization. Mishra et al. [8] 

proposed wide reduced-precision networks (WRPN), which increase the number of channels while using 

low-bit precision. Wu et al. [9] analyzed integer quantization techniques, comparing their efficiency across 

different hardware platforms. They concluded that integer quantization provides significant speedup with 

minimal accuracy loss, though certain activation functions remain difficult to quantize. Future work includes 

designing activation functions that are more quantization-friendly. He et al. [10] introduced an AutoML-

based quantization approach to optimize DL models on mobile devices, showing notable improvements in 

performance. However, their approach required a significant amount of computational resources during 

optimization, indicating a need for more efficient AutoML-based quantization methods. 

In object detection, Chen et al. [11] improved you only look once (YOLOv5) using pruning and 

quantization, achieving faster inference but with hardware-dependent gains. Chebtha et al. [12] used 
OpenVINO-based quantization for drone detection, showing speed benefits yet limited testing. Future 

research should focus on hybrid and adaptive precision methods to balance speed and accuracy. 

Lastly, quantization techniques have been integrated into industry applications such as smart queue 

management and edge computing. Demidovskij et al. [13] presented OpenVINO DL Workbench, which 

optimizes neural network inference through model compression and quantization. The tool significantly 

improves execution speed, yet its reliance on Intel hardware limits its general applicability. Dagli and Eken 

[14] deployed a smart queuing system on edge devices using OpenVINO, demonstrating efficient inference 

capabilities for real-time applications. However, their study primarily focused on Intel-based edge hardware, 

necessitating further evaluations on heterogeneous computing environments. Schaefer et al. [15] explored 

mixed-precision quantization to accelerate edge AI applications, showing that dynamic precision selection 

enhances efficiency while minimizing accuracy degradation. However, further studies are required to 
standardize quantization strategies for diverse AI workloads. Kummer et al. [16] introduced adaptive 

precision control in quantization-aware training, mitigating accuracy loss without retraining. Future work 

involves extending these techniques to support a wider range of neural architectures. 

 

 

2. METHOD 

The quantization process is built on OpenVINO, a toolkit that enables efficient deployment of DL 

models across diverse hardware platforms. In this research, the YOLOv8 model [17] undergoes two key 

stages: (i) conversion from its original PyTorch format to OpenVINO’s intermediate representation (IR) for 

compatibility and optimized execution on Intel hardware, and (ii) optimization through quantization. The 

neural network compression framework (NNCF), part of OpenVINO, provides multiple quantization 
techniques such as large language model (LLM) weight compression, training-time optimization, and PTQ. 

While weight compression benefits LLMs, it is less suitable for object detection, and training-time methods 

like quantization aware training and pruning require retraining in the original framework. Figure 1 illustrates 

the fundamental impact of quantization on a deep neural network [18]. 
 
 

 
 

Figure 1. Quantization process 
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PTQ [19] converts a high-precision (FP32) model into a lower precision (INT8) format, reducing 

memory usage and accelerating inference without any retraining. Using the COCO dataset as a calibration 

set, the NNCF framework analyzes activation ranges to determine optimal scaling factors (FP32 → INT8), 

aided by preprocessing transformations on the dataset to meet the quantization requirements. A mixed-

precision [20] approach ensures performance critical layers remain in higher precision, and the resulting 

quantized model is saved for inference and benchmarking, as illustrated in Figure 2. 
 

 

 
 

Figure 2. YOLO quantization 

 

 

Quantization can lead to a drop in accuracy [21], which is why the accuracy control mechanism is 

added to the NNCF’s quantization. The PTQ (INT8) with accuracy control is used to achieve an optimal 

balance between performance and precision. The COCO dataset is used again to extract and format the 

images and labels before it is split into two subsets: the calibration dataset, used for model quantization, and 
the validation dataset, used to evaluate model accuracy. Figure 3 shows a high level view of quantization 

with accuracy control. 

 

 

 
 

Figure 3. YOLO quantization with accuracy control 

 

 

To ensure accuracy is maintained after optimization, model validation is performed by running 

batches of images through the compiled OpenVINO model after every iteration. Detection of confidence 

scores, specifically for the “person” class, are extracted and compared against ground-truth annotations from 
COCO. The performance of the model is then assessed using the mean average precision (mAP) metric. 

Confidence score calculation: 
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person_scores = conf_scores × (class_scores > 0.5) (1) 

 

 conf_scores: the raw confidence score for each detected object. 

 class_scores: the probability that the detected object belongs to the “person” category. 

 (class_scores >0.5): a Boolean mask (1 if the object is a person, 0 otherwise) 

Before quantization, a baseline measurement is established by evaluating the original floating point 
32 bit YOLO model on the validation dataset, computing its mAP score. This serves as a reference to 

compare accuracy after quantization. Since accuracy control is enabled during quantization, the model 

undergoes an iterative process where the mAP score is recalculated after each iteration. If the accuracy drop 

exceeds the acceptable threshold of 1% which has been manually set using the max_drop hyperparameter 

(0.01); adjustments, such as mixed-precision quantization are applied to maintain accuracy. 

In (2) shows how the validation function will be calculating the mAP from the validation dataset 

after each iteration. 

 mAP calculation 

mAP is computed using the precision-recall curve: 

Precision (P) 

 

𝑃 =
True Positives (TP)

True Positives (TP)+False Positives (FP)
 (2) 

 

Measures how many detected “person” objects are actually correct 

After quantization, the final model is tested on the validation dataset, and its mAP score is compared 

against the original FP32 model. The quantization process stops when the accuracy drop remains within the 

1% threshold, ensuring minimal accuracy loss. 

 Average precision (AP) 

AP measures the area under the precision-recall curve for a specific class (in this case, the “person” 

category). It provides a single metric summarizing the precision-recall tradeoff. 

 

𝐴𝑃 = ∫ 𝑃(𝑅) 𝑑𝑅
1

0
 (3) 

 

Where, 
P(R): precision as a function of recall. It shows how precision changes with recall. 

R: recall, ranging from 0 to 1. 

∫
1

0
: the integral from 0 to 1 calculates the total area under the precision-recall curve, representing the 

overall performance for the class. 

 mAP 

mAP computes the mean of the AP scores across all object classes in the dataset. 

 

 𝑚𝐴𝑃 =
1

𝐶
∑ 𝐴𝑃𝑐

𝐶
𝑐=1  (4) 

 

Since this function only deals with person detection, 𝐶 = 1, making mAP equivalent to AP 

Where: 

𝐶: the total number of object classes. 

𝐴𝑃𝑐: the average precision for class 𝑐. 
∑𝐶

𝑐=1 : summation of the AP scores for all classes from 𝑐 = 1 to 𝑐 = 𝐶. 
1

𝐶
 : averages the AP scores by dividing the total by the number of classes. 

To assess performance improvements, the models undergo benchmarking using OpenVINO’s 
benchmarking tools [22]. The benchmarking process systematically measures performance metrics, such as 

latency, throughput, and inference speed across different hardware devices, such as CPUs and GPUs, to 

optimize real-world applications. Three versions of the model are evaluated: the full-precision FP32 model, 

the INT8 quantized model, and an INT8 model with accuracy control. This allows for assessing the trade-off 

between speed and accuracy of various models. 

The benchmarking process evaluates the model’s inference performance on randomly generated 

input data batches for 60 seconds using a CPU. As illustrated in Figure 4, the process follows 11 essential 

steps to ensure accurate performance measurement. The process begins by parsing user-defined parameters 

(model path, device type, precision, and batch size) and initializing OpenVINO’s runtime to configure the 

chosen inference device with optimized settings, load the model, validate inputs, and compile it for 
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execution. Performance is then measured through multiple inference iterations using parallel requests 

evaluating key metrics such as latency (average time per inference) and throughput (frames processed per 

second). 
 
 

 
 

Figure 4. Benchmarking steps 
 
 

These values are computed using the following equations: 
 

𝐿 =
𝐷

𝑁
 (5) 

 

where,  

𝐿: is the average inference latency per frame 

D: is the total inference duration (ms) 

N: is the total number of inferences completed 
For batch processing, the batch latency is computed as: 

 

𝐿𝐵 =
𝐿

𝐵
 (6) 

 

where B is the batch size. 
 

𝑇 =
𝑁

𝐷
× 1000 (7) 

 

Where T represents throughput in FPS 

This methodology ensures an accurate evaluation of the model’s efficiency across various execution 
conditions, with results such as inference count, duration, and latency compiled into performance reports for 

hardware comparison. A trade-off between latency and throughput guides performance tuning, reducing 

parallel streams minimizes latency while increasing them maximizes throughput. The optimized model is 

then integrated into an intelligent queue management system [23] for real-time crowd monitoring and 

resource optimization [24], achieving a balance between speed, memory efficiency, and accuracy suitable for 

real-world deployment [25]. Using OpenVINO runtime with AUTO device selection, the model 

automatically utilizes the best available hardware for optimal performance, as illustrated in Figure 5. 

Incoming video frames are preprocessed to meet YOLOv8 input requirements through letterbox resizing 

(maintaining aspect ratio with padding), normalization (scaling pixel values to 0–1), format conversion 

(HWC to CHW), and batch dimension expansion to align with model specifications. 

Each preprocessed frame is fed into the OpenVINO optimized YOLOv8 model for real-time object 
detection, where raw predictions are refined using non-maximum suppression (NMS), box rescaling, and 

class filtering to extract people-related detections for queue analysis. These detections are mapped onto 

predefined zones from a JSON configuration, enabling the system to count individuals per zone, track crowd 

fluctuations over time, and trigger alerts when queue thresholds are exceeded. Annotated frames displaying 

bounding boxes, queue statistics, alerts, and performance metrics are rendered in real time, ensuring efficient, 

optimized queue management that enhances customer experience and operational efficiency. 
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Figure 5. Queue management system 

 

 

3. RESULTS AND DISCUSSION 

The benchmarking results provide an analysis of the impact of model precision, device type, and 

dataset split on inference performance. Key observations from Table 1 are: 
 

 

Table 1. Benchmarking for CPU 
Dataset 

split 

Precision Count 

(CPU/GPU) 

Duration (ms) 

(CPU/GPU) 

Median latency (ms) 

(CPU/GPU) 

Average latency 

(ms) (CPU/GPU) 

Throughput (FPS) 

(CPU/GPU) 

70-30 FP32 89 / 821 30370.29 / 

30048.85 

389.25 / 36.41 341.14 / 36.47 2.93 / 27.32 

70-30 INT8 323 / 1416 30144.20 / 

30038.45 

99.24 / 20.96 93.23 / 21.08 10.72 / 47.14 

70-30 INT8_AC 293 / 1456 30098.76 / 

30018.94 

99.12 / 20.45 102.63 / 20.50 9.73 / 48.50 

75-25 FP32 88 / 749 30400.25 / 

30070.31 

386.03 / 38.50 345.36 / 39.93 2.89 / 24.91 

75-25 INT8 334 / 1405 30148.58 / 

30030.22 

99.61 / 20.97 90.16 / 21.24 11.08 / 46.79 

75-25 INT8_AC 296 / 1456 30125.39 / 

30024.52 

99.99 / 20.43 101.64 / 20.51 9.83 / 48.49 

80-20 FP32 90 / 822 30385.87 / 

30063.85 

331.52 / 36.38 337.52 / 36.45 2.96 / 27.34 

80-20 INT8 313 / 1422 30109.74 / 

30015.86 

97.27 / 20.90 96.10 / 20.98 10.40 / 47.37 

80-20 INT8_AC 305 / 1316 30136.64 / 

30032.92 

97.68 / 21.96 98.71 / 22.64 10.12 / 43.82 

85-15 FP32 96 / 821 30675.89 / 

30066.39 

340.82 / 36.42 319.43 / 36.49 3.13 / 27.31 

85-15 INT8 296 / 1417 30168.85 / 

30042.41 

99.45 / 20.93 101.82 / 21.07 9.81 / 47.17 

85-15 INT8_AC 300 / 1450 30152.14 / 

30036.58 

100.20 / 20.51 100.40 / 20.59 9.95 / 48.27 

 

 

3.1.  Impact of precision on performance 

 INT8 models significantly outperformed FP32 models in terms of latency and throughput across both 

CPU and GPU. 

 The reduction in model precision (from FP32 to INT8) led to an increase in throughput, with INT8 
models achieving 3x–4x the FPS compared to FP32 on CPUs while ~2x on GPUs. 

 INT8 (accuracy control) models exhibited slightly higher latency than standard INT8 models but 

maintained accuracy while still achieving ~3x speedup over FP32 on CPUs. 

 For FP32 models, CPU achieved only ~3 FPS, while the GPU reached ~25 FPS, making GPU more 

suitable for real-time applications. 

 

3.2.  Dataset split and model efficiency 

The dataset split had minimal impact on inference performance, as throughput and latency remained 

consistent across different training/testing distributions. This suggests that model conversion and precision 

tuning had a greater influence on performance than the dataset split. 
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3.3.  Inference speed vs accuracy trade-off 

 While INT8 models offer superior performance, their accuracy needs validation against application-

specific requirements. 

 The optimal balance for real-time queue management would be INT8 (accuracy control) on GPU, 

offering a 48+ FPS inference speed with minimal latency. 
 

 

4. CONCLUSION 

Future work could explore further optimizations, such as PTQ on additional hardware platforms and 

edge-device deployment to enhance accessibility in real-world applications. Additionally, adaptive 

quantization techniques could help balance accuracy loss while maximizing throughput. By leveraging 

OpenVINO optimizations, this work establishes a foundation for deploying AI-driven queue management 

systems in real time environments, ensuring efficiency and improved customer experience. 
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