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 Malaria remains a significant global health challenge, necessitating accurate 
and efficient diagnostic tools. Deep learning models have emerged as 
promising solutions for automated malaria detection using microscopic 

blood smear images. This study evaluates the performance of various 
convolutional neural network (CNN) architectures, including VGG16, 
ResNet50, MobileNetV2, and EfficientNet, in classifying infected and 
uninfected cells. Individual model performances were assessed based on 
accuracy, precision, recall, and F1-score, with EfficientNet achieving the 
highest standalone accuracy of 88.0%. To enhance classification 
performance, a stacking ensemble approach was implemented, using a 
logistic regression meta-classifier to integrate outputs from multiple models 
for improved decision-making. The stacking model outperformed individual 

networks, achieving an accuracy of 89.4%, with precision, recall, and F1-
scores surpassing those of standalone models. Challenges in malaria parasite 
classification—such as high inter-class similarity, variations in staining 
quality, and class imbalance were addressed through data augmentation and 
model tuning. These findings highlight the potential of ensemble learning in 
medical image analysis, paving the way for more accurate and scalable 
malaria detection systems. 
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1. INTRODUCTION 

Malaria continues to pose a serious global health threat, particularly in tropical and subtropical 

regions, with approximately 247 million cases and 619,000 deaths reported annually [1]. The disease is 

caused by Plasmodium parasites and transmitted through the bites of infected female Anopheles mosquitoes. 

Early and accurate diagnosis is critical to prevent severe complications and fatalities [2]. Traditionally, 
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malaria is diagnosed by microscopic examination of Giemsa-stained blood smears, a process performed by 

trained pathologists. While considered the gold standard due to its accuracy, this manual method is often 

time-consuming, labor-intensive, and prone to human error, especially in under-resourced areas [3]. 

To overcome these limitations, the development of automated and intelligent diagnostic tools has 

become a research priority [4]. Advances in artificial intelligence (AI) [5], particularly deep learning, have 

revolutionized medical image analysis, enabling rapid and accurate disease detection. Convolutional neural 
networks (CNNs), known for their ability to learn hierarchical image features, have been widely applied in 

medical diagnostics, including malaria detection [6]. Models such as VGG16, ResNet50, InceptionV3, 

MobileNetV2, and DenseNet121 have shown promising results [7], often achieving high accuracy. However, 

depending on a single CNN model has drawbacks, including overfitting and sensitivity to variations in image 

quality and staining techniques, which may reduce generalization across datasets [8]. 

To address these challenges [9], ensemble learning approaches have been introduced, where 

multiple models are combined to improve predictive accuracy. Among various techniques, stacking [10] also 

referred to as meta-learning, has shown great potential. Unlike traditional methods such as bagging and 

boosting [11], stacking combines the outputs of base models using a meta-learner, which improves decision-

making by learning from the strengths of each model [12]. Despite its success in other medical imaging 

domains, stacking remains underutilized in malaria detection. 

This study proposes a robust stacking ensemble model that integrates five well-known CNN 
architectures CNN, VGG16, ResNet50, MobileNetV2, and EfficientNet. Each network contributes unique 

feature extraction capabilities. The extracted features [13] are then fused and passed to an XGBoost classifier 

serving as the meta-learner [14]. This architecture not only enhances accuracy and generalization but also 

improves interpretability by analyzing the contribution of each model. Furthermore, the approach is designed 

to be computationally efficient and suitable for deployment in real-world clinical settings, particularly in 

resource-limited environments [15]. Through comprehensive evaluation, the study highlights the superiority 

of stacking ensembles over individual CNNs and demonstrates their potential in delivering reliable, scalable, 

and accurate malaria diagnostics. 

 

 

2. RELATED WORK 
AI and machine learning (ML) have significantly advanced medical imaging, especially in 

automating malaria diagnosis using deep learning. Traditional microscopic examination is labor-intensive 

and error-prone, prompting researchers to explore AI solutions [16]. CNNs have proven effective by 

accurately extracting and classifying features from medical images [17].  

Various deep learning models such as ResNet [18], InceptionNet [19], and EfficientNet [20] have 

been widely adopted to enhance malaria detection accuracy, often matching or surpassing expert-level 

performance [21]. Transfer learning, by utilizing pre-trained CNNs, reduces the reliance [22] on extensive 

labeled data, improving the practicality of AI-driven diagnostics. Furthermore, ensemble learning especially 

stacking has proven highly effective in combining diverse classifiers, boosting overall performance, and 

overcoming individual model limitations to ensure more consistent and accurate results [23].  

Despite progress in deep learning for malaria detection [24], generalization remains a key challenge 
due to variations in image quality, staining protocols [25], and equipment, which can cause inconsistent 

model performance across real-world settings. To address this, hybrid methods combining deep learning with 

traditional ML algorithms like support vector machines and random forests have been explored, improving 

adaptability and robustness across diverse datasets. However, interpretability continues to be a concern in 

clinical deployment, as many deep models function as "black boxes," making their decision-making 

processes opaque. To build clinician trust and ensure transparency, explainable AI (XAI) techniques [26] are 

being developed, allowing for clearer insights into model predictions and fostering greater acceptance in 

medical practice. 

Enhancing AI-based malaria diagnosis also depends heavily on expanding and diversifying training 

data [27]. Given the scarcity of large medical datasets, data augmentation methods particularly those using 

generative adversarial networks (GANs) are employed to synthesize realistic training samples, boosting 

model generalization. Additionally, lightweight deep learning models [28] are being developed for real-time 
malaria detection on mobile or edge devices, making diagnostic tools more accessible in low-resource 

settings. To further improve adaptability, domain adaptation techniques help correct class imbalances and 

reduce dataset bias, enabling models to perform reliably across varied data sources [29]. Moreover, federated 

learning addresses data privacy concerns by allowing decentralized model training across institutions without 

sharing sensitive information, promoting secure collaboration and broader application of AI in healthcare [30]. 

To further optimize malaria detection models, researchers have integrated advanced optimization 

techniques such as differential evolution and particle swarm optimization, which help in fine-tuning 

hyperparameters and improving computational efficiency [31], [32]. These optimization strategies play a 
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crucial role in enhancing the performance of deep learning models, particularly in low-resource environments 

where computational power is limited. However, despite these technological advancements, the real-world 

deployment of AI-based malaria diagnostic tools continues to face regulatory challenges. Factors such as 

model bias, the need for extensive validation studies, and compliance with medical regulations pose 

significant hurdles in the widespread adoption of AI-driven solutions [33]. As AI in healthcare continues to 

evolve, it is crucial for researchers and regulatory bodies to work together to develop standardized 

frameworks for evaluating and validating AI models before clinical implementation [34], [35]. 
This study introduces a stacking ensemble model combining EfficientNet, ResNet50, VGG16, and 

MobileNetV2 with a logistic regression meta-classifier to enhance malaria detection. By addressing 

limitations like class imbalance, limited evaluation metrics, and morphological variability, it offers a more 

robust, generalizable, and scalable solution compared to individual CNN models. 

 

 

3. METHOD 

The proposed methodology for malaria detection using deep learning follows a structured workflow, 

beginning with dataset acquisition and moving through preprocessing, feature extraction, ensemble learning, 

and final prediction, as depicted in Figure 1. The dataset used originates from the National Institutes of 

Health (NIH), containing 27,558 labeled cell images—13,779 parasitized and 13,779 uninfected red blood 

cells—each in RGB format with a resolution of 128×128 pixels. Preprocessing steps involved resizing 
images for uniformity, normalizing pixel values between 0 and 1, and applying data augmentation methods 

such as rotation, flipping, and zooming to enhance model generalization. Despite its balance and quality, the 

dataset may exhibit bias, as it mainly features Plasmodium falciparum under controlled lab settings, 

potentially limiting its real-world applicability [36]. 

Training and evaluation were performed on an NVIDIA RTX 3080 GPU with an Intel Core i7 

processor and 32 GB RAM, using Python 3.8, TensorFlow 2.16.1, and Keras. The training was done using a 

batch size of 32, a learning rate of 0.0001, the Adam optimizer, and binary cross-entropy loss across 30 

epochs with early stopping. A stratified 5-fold cross-validation ensured balanced training and validation. 

Deep learning models, including CNN, VGG16, ResNet50, MobileNetV2, and EfficientNet were used to 

extract features from the preprocessed images.  

 
 

 
 

Figure 1. Methodology of stacking ensemble learning 
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This research addresses major challenges in malaria parasite detection by employing a robust 

methodology that integrates advanced model selection, effective data processing, and ensemble learning. To 

handle the variability in parasite appearance and cellular morphology, a range of deep learning 

architectures—VGG16, ResNet50, MobileNetV2, and EfficientNet—were utilized for their capacity to 

extract meaningful and discriminative features from microscopic images. Data artifacts and visual noise were 

minimized through preprocessing techniques such as normalization and augmentation strategies like rotation 
and flipping, thereby improving model resilience to distortion and irregularities. High-capacity models like 

EfficientNet and ResNet50 were particularly effective in differentiating between morphologically similar 

infected and uninfected cells, addressing a core challenge in visual classification. 

A balanced dataset was achieved through resampling techniques, ensuring equal representation of 

classes during training and minimizing bias. The core innovation lies in the adoption of a stacking ensemble 

learning approach, where base models generate predictions that are passed to a logistic regression or 

XGBoost meta-classifier. This model fusion improves overall performance by reducing overfitting and 

capturing complementary strengths from each network. Evaluation metrics—including accuracy, precision, 

recall, and F1-score—were used to comprehensively assess the model’s diagnostic reliability. The final 

deployment classifies unseen blood smear images with high precision, offering an efficient, scalable solution 

for automated malaria detection. 

 
 

4. RESULT ANALYSIS 

This section presents the performance evaluation of the proposed stacking ensemble approach for 

the detection of malaria using deep learning models. The dataset used for training and testing is obtained 

from the Cell Images for Detecting Malaria dataset, which consists of 27,558 microscopic images categorized 

into parasitized and uninfected classes. To ensure optimal model training, the dataset undergoes 

preprocessing, including resizing, train-test splitting (80:20), and normalization before being fed into the 

deep learning models. 

The efficiency of the deep learning models and the stacking ensemble approach is assessed using 

multiple statistical evaluation metrics, including accuracy, precision, recall, and F1-score. These evaluation 

measures are computed using the fundamental classification terminology:  
­ False Positive (FP): Incorrect positive prediction (uninfected cell misclassified as parasitized). 

­ True Positive (TP): Correct positive prediction (parasitized cell correctly classified). 

­ False Negative (FN): Incorrect negative prediction (parasitized cell misclassified as uninfected). 

­ True Negative (TN): Correct negative prediction (uninfected cell correctly classified). 

­ True Positive Rate (TPR): The proportion of actual positive cases (e.g., parasitized cells) that are 

correctly identified by the model 

­ False Positive Rate (FPR): The proportion of actual negative cases (e.g., uninfected cells) that are 

incorrectly classified as positive by the model. 

The performance metrics are defined as follows: 

Accuracy: Measures the proportion of correctly classified images over the total number of test images. It is 

calculated as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (1) 

 

Precision: Represents the proportion of correctly identified malaria-positive images among all images 

predicted as malaria-positive: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (2) 

 

Recall: Also known as sensitivity or the true positive rate, it evaluates the model’s ability to correctly detect 
malaria-positive cases among all actual malaria-positive cases: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (3) 

 

F1-score: A harmonic mean of precision and recall, ensuring a balanced assessment of both. It is given by: 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
 (4) 

 

True Positive Rate (TPR) can be calculated by: 
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𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  

 

False Positive Rate (FPR) can be calculated by: 
 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =  
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
  

 

The AUC represents the area under the ROC curve and quantifies the overall ability of the model to 

distinguish between classes. 

Figure 2 presents the confusion matrices for six deep learning models CNN, VGG16, ResNet50, 
MobileNetV2, EfficientNet, and Stacking—used for malaria parasite classification. Each matrix displays the 

number of true positives, true negatives, false positives, and false negatives for uninfected and parasitized red 

blood cells. The stacking ensemble model demonstrates the highest classification accuracy, with the lowest 

number of misclassifications among all models. EfficientNet and ResNet50 also show strong performance. 

These visualizations highlight the advantages of ensemble learning and deep architectures in improving detection 

reliability, particularly for parasitized cells, which are critical for timely and accurate malaria diagnosis.  

 

 

 
 

Figure 2. Confusion matrices for malaria classification using different CNN models 

 

 

Table 1 shows the comparitive analysis of performance metrics. The Stacking Model outperforms all 

individual architectures, achieving the highest accuracy (89.4%), precision (90.2%), recall (88.7%), and F1-

score (89.4%), demonstrating the advantage of combining multiple feature extractors for improved 

generalization. Among standalone models, EfficientNet (88.0% accuracy, 89.1% precision) performs best, 

followed by ResNet50 (87.3% accuracy, 88.0% precision) and VGG16 (86.1% accuracy, 87.3% precision), 
highlighting the impact of deeper architectures. MobileNetV2 (84.8%) lags behind, emphasizing its focus on 

efficiency over accuracy. The stacking model enhances feature representation, reducing individual model 

weaknesses, making it the most robust and reliable choice for classification. If computational efficiency is a 

priority, EfficientNet is the best alternative, while ResNet50 offers a balance between depth and performance. 

Table 2 represents the classification report for stacking model. The classification report for the 

stacking model demonstrates its strong performance in malaria detection, achieving an overall accuracy of 

89.4%. It exhibits a precision of 89.2% for uninfected cells and 90.9% for parasitized cells, indicating that the 

model is highly reliable in correctly identifying both classes. The recall scores of 87.5% for uninfected and 

91.2% for parasitized suggest that the model effectively captures most positive cases, with slightly better 

sensitivity towards parasitized samples. Additionally, the F1-scores of 88.3% (uninfected) and 91.0% 

(parasitized) show a balanced trade-off between precision and recall. These results confirm that the stacking 

approach outperforms individual models, making it a robust solution for malaria detection. 
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Table 1. Comparison of performance metrics 
Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

CNN 85.2 86.5 84.9 85.7 

VGG16 86.1 87.3 85.8 86.5 

ResNet50 87.3 88 86.7 87.3 

MobileNetV2 84.8 85.9 83.7 84.8 

EfficientNet 88 89.1 87.5 88.3 

Stacking 89.4 90.2 88.7 89.4 

 

 

Table 2. Classification report for stacking model 
Class Precision (%) Recall (%) F1-Score (%) Support 

Uninfected 89.2 87.5 88.3 2755 

Parasitized 90.9 91.2 91.0 3156 

Overall Accuracy 89.4    

 

 

The stacking ensemble approach significantly improves classification performance by leveraging the 

complementary strengths of CNN, VGG16, ResNet50, MobileNet, and EfficientNet as base learners. The 
final meta-learner, which integrates predictions from these models, enhances robustness and generalization, 

leading to improved performance in malaria detection. The results demonstrate that ensemble learning 

outperforms individual deep learning models in terms of accuracy, precision, recall, and F1-score. This 

approach ensures a reliable and automated diagnostic system that can assist medical professionals in malaria 

screening, reducing the dependency on manual microscopic analysis. 

Figure 3 presents a graphical analysis comparing the precision, recall, and F1-score of the stacking 

model. The ROC plot in Figure 4 compares the classification performance of six models—CNN, VGG16, 

ResNet50, MobileNetV2, EfficientNet, and Stacking—based on estimated false positive and true positive 

rates. The stacking model demonstrates the highest discriminative ability with an approximate AUC of 0.89, 

followed by EfficientNet and ResNet50. 

 
 

  
 

Figure 3. Classification report for stacking model 

 

Figure 4. Estimated ROC Curves for all models 
 

 

Table 3 reviews traditional and automated malaria diagnosis methods, highlighting the current 

study’s evaluation of deep learning models including CNNs and a stacking ensemble. While recent studies 

show higher accuracy with customized methods, this study offers a robust, comparative analysis of standard 

architectures, validating stacking as a reliable diagnostic strategy. 

The stacking ensemble model proposed in this study enhances accuracy, reliability, and robustness 

over individual CNN models. By integrating EfficientNet, ResNet50, VGG16, and MobileNetV2 using a 

logistic regression meta-classifier, it effectively combines each model’s strengths while offsetting their 

limitations. Achieving 89.4% accuracy—surpassing EfficientNet’s 88%—the ensemble also delivers 

improved recall and F1-score, which are vital for reducing false negatives in clinical diagnosis. Additionally, 
it handles image artifacts and morphological variations more effectively, offering consistent and dependable 

classification. Despite increased training complexity, the approach proves to be a practical and scalable 

solution for automated malaria detection. 
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Table 3. Review of existing malaria diagnosis techniques, including both traditional and automated methods 

in recent years 
Reference Classifier Input Features Accuracy (%) 

Mujahid et al. [37] EfficientNet-B2 Red blood cell images 97.57 

Goni et al. [38] Customized Lightweight CNN Red blood cell images 99.45 

Goni et al. [39] Contrastive Domain Adaptation 

(CodaMal) 

Images from low-cost microscopes Improved mAP 

Ali et al. [40] M2ANET Blood cell images Outperforms 

SoTA 

Taye et al. [41] Deep CNNs (VGG19, 

InceptionV3, Xception) 

Blood smear images Up to 97 

Liang et al. [42] Deep Neural Network Preprocessed images (RGB), cell 

segmentation 

97.4 

Thakur and Juneja [43] ANN Shape, texture, statistical features from blood 

smear images 

94.1 

 

 

5. CONCLUSION AND FUTURE DIRECTIONS 

A stacking ensemble approach for classifying malarial images is described in this paper. This study 

highlights the effectiveness of deep learning models for malaria detection using microscopic images, with 

various CNN architectures evaluated, including VGG16, ResNet50, MobileNetV2, and EfficientNet. Among 

them, EfficientNet achieved the highest standalone accuracy of 88.0%, but a stacking ensemble approach 

integrating multiple models outperformed individual architectures, achieving an accuracy of 89.4%, precision 

of 90.2%, recall of 88.7%, and an F1-score of 89.4%. The stacking model demonstrated superior 

performance in distinguishing uninfected and parasitized cells, emphasizing the importance of ensemble 

learning and meta-learning techniques in medical image classification. Traditional methods like microscopy 
offer high accuracy but require skilled personnel, limiting scalability. RDTs are cost-effective and scalable 

but less accurate in low parasitemia cases.  

Deep learning models (CNNs, ResNet50, EfficientNet) provide high accuracy and automation, with 

EfficientNet and Stacking models achieving superior results. However, they demand computational resources 

and quality datasets. Lightweight models like MobileNetV2 offer mobile compatibility with slightly reduced 

accuracy. Advanced models (e.g., YOLOv5, M2ANET) balance speed and precision but may be complex to 

implement. Overall, automated methods enhance scalability and accuracy but must be tailored to resource 

availability for practical deployment in real-world settings. Future research should explore meta-learning for 

enhanced adaptability, hybrid feature extraction combining traditional image processing with deep learning, 

and advanced architectures like Vision Transformers for improved pattern recognition. 
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