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ABSTRACT

Visual odometry estimation (VOE) is important in building navigation and path-
finding systems. It helps entities find their way and estimate paths in the en-
vironment. Most of the computer vision (CV)-based VOE models are usually
evaluated and compared on the KITTI dataset. Multi-layer fusion framework
(MLF-VO-F) has had good VOE results from red, green, and blue (RGB) im-
age sequence in Jiang et al. study, using the DeepNet to extract the low-level
textures, edges, and deeper high-level semantic features for estimating motion
between consecutive frames. This paper proposed a combined model of MLF-
VO-F as a backbone and loss functions (LFs) (LMSE , LMSE−L2, LCE , and
Lcombi) to optimize and supervise the training process of the VOE model. We
evaluated and compared the effectiveness of LFs for VOE based on the KITTI
and TQU-SLAM datasets with the original MLF-VO-F. From there, choose the
appropriate LF combined with the backbone for VOE. The evaluation results
on the KITTI dataset show that LCE(RTE is 0.075m, 0.06m on the Seq. #9,
Seq. #10, respectively), and Lcombi (trel is 2.21%, 2.67%, 3.59%, 1.01%, and
4.62% on the Seq. #4, Seq. #5, Seq. #6, Seq. #7, Seq. #10, respectively) have
the lowest errors and LMSE has the highest errors (ATE is 133.36m on the
Seq. #9).
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1. INTRODUCTION
Visual odometry estimation (VOE) is one of the two important problems of Visual SLAM and is an

important problem of computer vision (CV) and robotics technology that has been studied for a long time.
VOE focuses mainly on local consistency and aims to incrementally estimate the camera pose path after each
pose and can perform local optimization. Visual SLAM estimates the entire scene/map and the camera trajec-
tory/VOE. This means that visual SLAM includes the VOE problem for robots, which helps robots or software
that supports visually impaired people to estimate the direction and path of movement in the environment.
Especially in new environments. The data used to build the VOE can be collected from IMU [1], [2], LiDar
[3]–[5], or image sensors. The data obtained from the image sensor (RGB, depth, and stereo) can be used to
build VOE at a reasonable cost.

Previously, with the traditional method, VOE [6] could be implemented based on a geometry-based
method. These methods use a keypoint detector to identify the salient points (keypoints) in the image, and
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feature vectors or descriptors are computed by considering the local region around each keypoint. Tracking
of keypoints to establish correspondence between different views (or image frames) is done through descriptor
matching. As PTAM [7] used a FAST corner detector to detect keypoints in the image. ORB-SLAM [8] used
oriented FAST and rotated BRIEF descriptors to perform the VOE model’s tracking, mapping, and loop closure
steps. The VOE model of the geometry-based method usually includes modules such as feature extraction,
feature matching, pose estimation, and local optimization [9].

While deep learning (DL) [6] uses recurrent convolutional neural networks (CNN) to extract motion
features, representative points, or the relative pose between consecutive frames. In this model, deep neural
networks [9] can perform instead of modules feature extraction, feature matching, and pose estimation instead
of the traditional approach. With the DL-based approach, VOE can be implemented based on the follow-
ing network architectures show in Figure 1. CNN-based framework show in Figure 1(a), CNN-based frame-
work with two fully connected networks in Figure 1(b), recurrent neural networks (RNN)-based framework in
Figure 1(c), stereo-based framework in Figure 1(d), and generative adversarial networks (GAN)-based frame-
work in Figure 1(e).

Figure 1. Illustration of DL architectures for VOE from consecutive frames: (a) CNN-based framework, (b)
CNN-based framework with two fully connected networks, (c) RNN-based framework, (d) stereo-based

framework, and (e) GAN-based framework

In the survey study, Chen et al. [10] presented the advantages and disadvantages of DL for VOE as
follows. A CNN-based framework has the advantage of being able to learn features such as edges, corners, and
textures well to estimate representative points between consecutive frames and can eliminate irrelevant features,
especially with end-to-end DL for VOE. However, the CNN-based framework often processes independent
frames without taking advantage of temporal features on consecutive frames. RNN-based framework with
the prominent long short-term memory (LSTM) model has the advantage of exploiting temporal features on
the frame sequence obtained from the environment, so predicting the VOE of the current state is as good as
considering previous states. However, this model also has the disadvantage of requiring a very large amount of
memory to store the states of the frame sequence.

Stereo-based framework is often used to estimate depth from RGB images, with good performance in
low-complexity environments. However, this approach has a large dependence on stereo data collected from
stereo cameras. GAN-based framework is often applied to build a real-world context dataset when labeled data
of the environment is limited, so this approach can learn a self-supervised VOE model, which can fine-tune the
predicted depth/optical flow results. However, this approach requires a large memory cost and is difficult to
train. VOE is important in building navigation and path-finding systems for robots, autonomous vehicles, and
blind people in the environment [11], [12], nowadays with the very convincing results of DL in solving CV
problems and modules or end-to-end DL for VOE systems [12]–[15].
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With the DL approach for VOE, the features extracted for the VOE process can be extracted through
DL networks [14], [16] or traditional features such as AKAZE, ORB, SIFT, and SURF [17], then apply a
DL network for VOE. In addition, the VOE process can be performed based on the transformer [18], and
reinforcement learning [19] methods. However, to optimize DL networks for VOE, LFs [20] are often used for
supervised, semi-supervised, and self-supervised training of features for VOE.

Jiang et al. [21] proposed the multi-layer fusion framework (MLF-VO-F) for VOE to fine-tune the
VOE model with the RGB image as the input. MLF-VO-F used DepthNet to estimate the depth image and
exploited some LFs such as geometry consistency loss (Lgc), smoothness loss (Lsmoo), and photometric LF
(Lpm) to supervise the training process and improve the depth image estimation result corresponding to the
input RGB image. And use regularization loss (Lregu) to synthesize LFs to control the scaling factors process
for channel exchange between the RGB image and estimated depth image when combining the features of these
two types of data for VOE.

Recently, there have also been studies by [22], [23] that used the mean squared error function (LMSE)
to optimize the training process of VOE models. In the study of Hwang et al. [24], the aggregate LF (LF2F )
was proposed to be synthesized from the forward loss (Lfl) function and bi-directional LF (Lbd), correction
LF (Lco). MLF-VO-F [21] is currently evaluated only on the Seq. #9 and Seq. #10 frame sequences of the
KITTI dataset. Recent improvements to VOE models have also focused on a few frame sequences of the
KITTI dataset, such as frame-to-frame (F2F) [24], which also evaluates on the Seq. #8, Seq. #9, and Seq.
#10. Therefore, evaluating these models on other frame sequences of the KITTI dataset and other datasets is
necessary to confirm the robustness of the VOE model. At the same time, choose a suitable LF to supervise
and optimize the training process of the VOE model.

In this paper, we exploit the advantages of MLF-VO-F as a backbone for VOE and combine it with
LFs: LMSE , LMSE +L2, cross entropy loss (LCE = Lvis +Ldyn), and Lcombi based on the component LFs
the forward loss (Lfl) function and bi-directional LF (Lbd), correction LF (Lco), and aggregate LF (LF2F ).
The combined model is trained and evaluated on the KITTI and TQU-SLAM [25] datasets. From there, we
select the best LF for optimizing the training process of the VOE system construction model.

Our paper includes the following main contributions: (i) proposing and testing the combination of
LFs (LMSE , LMSE + L2, LCE , and Lcombi) with the MLF-VO-F as a backbone for VOE. (ii) evaluating and
comparing the combination of LFs with MLF-VO-F as a backbone and the original MLF-VO-F for VOE on
KITTI (Seq. #4, Seq. #5, Seq. #6, Seq. #7, Seq. #9, and Seq. #10) and TQU-SLAM datasets.

The structure of the paper is organized as follows. Section 1 introduces the VOE issue and related
issues. The combined model of MLF-VO-F and LFs is presented in section 2. The dataset and experimental
results, discussion, and challenges will be presented in section 3. We finally conclude and give some ideas for
future work presented in section 4.

2. METHOD
Based on the advantages and results of MLE-VO-F for VOE [21], in this paper, we propose the

combination of MLF-VO-F as a backbone with LFs to fine-tune the VOE model. The details of the LFs
background and MLF-VO-F are presented in detail below.

2.1. Loss functions
VOE from image data is a regression problem in the CV that outputs the future position of the camera

in the environment based on the positions learned by the model trained in previous frames. DL networks use
LFs to supervise the learning process to calculate the prediction error and the ground truth (GT). The LF is a
function that allows determining the difference between the predicted results and the GT data. It is a method
of measuring the quality of the prediction model on the observed dataset. If the model predicts many mistakes,
the value of the LF is large, and vice versa, if it predicts almost correctly, the value of the LF will be lower. LFs
can be used unsupervised, supervised, semi-supervised, or self-supervised to optimize the VOE model during
training. The mean squared error loss (LMSE) function [22] is a common function for calculating the square
of the error as the formula (1). LMSE measures the average magnitude of the squared error between the GT of
camera motion Pi and predicted camera motion P̂i. This means that it will pay attention to larger errors since
the squared error will add a large error value to the total value of LMSE .

LMSE = ||Pi − P̂i||2 (1)
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Additionally, Liu et al. [26] used L1 loss to calculate the error between the warped stereo image and reference
image for self-supervised stereo matching loss on features on stereo data, and the error between the warped
temporal image and reference image according to the temporal model of stereo data.

The Huber LF [27] describes the penalty imposed by an estimate f by the formula (2).

Lδ(a) =

{
1
2a

2 for |a| ≤ δ,

δ ·
(
|a| − 1

2δ
)
, otherwise.

(2)

Where a is the difference between the ground truth data y and the predicted value f(x), meaning a = y−f(x).
Lδ(a) is quadratic for small values of a and linear for large values, with equal values and slopes of the different
parts at two points where |a| = δ|a| = δ.

The smooth-L1 LF (Lsm−L1) [28] is also used to calculate the error between the ground truth data x
and the prediction y as in the formula (3).

Lsm−L1 =

{
0.5 (xn − yn)

2
/beta, if |xn − yn| < beta

|xn − yn| − 0.5 ∗ beta, otherwise
(3)

The Lsm−L1 can be viewed as exactly L1 Loss, but with the part |x−y| < beta replaced by a quadratic
function such that its slope is 1 at |x− y| = beta. The quadratic part smooths the L1 loss near |x− y| = 0. If
beta approaches 0, then smooth L1 loss converges to the form of L1 Loss, while Lδ(a) converges to 0. When
beta is 0, smooth L1 loss is equivalent to L1 loss. If beta approaches infinity, then Lsm−L1 converges to 0,
while Lδ(a) converges to LMSE . When Lsm−L1 has beta changing, the L1 segment of the loss has slope 1,
then the Lδ(a) has a slope of L1 segment is beta.

In research by Francani and Maximo [23], calculate the mean squared error LF of L2 (LL∈MSE) to
optimize the VOE model training process. It is the mean squared error between all predicted motions and their
GT motions, as formula (4).

LMSE−L2 =
1

Nf−1

Nf−1∑
w=1

∥∥yk
w − ŷk

w

∥∥2
2

(4)

Where ||.||22 is the squared L2 norm. yk
w is the flattened 6-DoF (six degrees of freedom) of the relative pose in

space, ŷk
w is its estimate predicted by the network.
Chen et al. [15] proposed the LEAP-VO and cross entropy LF. Cross entropy (LCE = Lvis +Ldyn):

Lvis is used to supervise the visibility label, is calculated as formula (5), where V is the estimated visibility
and V∗ is the GT visibility. Ldyn is used to supervise the dynamic track label, is calculated as formula (6),
where md is the estimated dynamic track label, m∗

d is the GT of dynamic track label.

Lvis = (1−V∗) log(1−V) +V∗ logV (5)

Ldyn = (1−m∗
d) log (1−md) +m∗

d logmd (6)

Hwang et al. [24] proposed a F2F method to reduce noise when estimating camera pose on the KITIT
dataset, as shown in Figure 2. F2F consists of two stages: the initial estimation based on the combination of
several encoder networks, visual geometry group (VGG), ResNet, and DenseNet, and the forward loss (Lfl)
function and error relaxation network. In this first stage, geometric features are used to approximate camera
pose prediction and are fine-tuned. The second stage is the errors of rotation and translation are reduced by
using rotation and translation networks during the training of geometric features by using the skip method in
the frame sequence. In the first stage, F2F used the errors of three Euler angles θ and translation vectors P to
calculate the LF for fine-tuning the model as a formula (7).

Lfl = λθ

∑
||θ − θ̂||2 +

∑
||P − P̂ ||2 (7)

Where θ, θ̂ are the Euler angles in the 3D space of label and estimated label, respectively. P, P̂ are the transla-
tion vector in the 3D space of between two spaces and λ is the balance scale between two spaces.
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When training on the KITIT database, only training in the positive direction is performed, so the
reverse direction has a large error. Therefore, F2F proposed a bi-directional LF (Lbd) in the second stage
according to the formula (8).

Lbd =
∑

||G− Ĝi,i+1Ĝi+1,i||2 (8)

where G is the identity matrix, Ĝi,i+1 is the result when using F2F with input image Gi, Gi+1 and Ĝi+1,i is
the result when using F2F with input image Gi+1, Gi.

Figure 2. Illustration of the architecture of the two independent CNN models underlying ego-motion
estimation [24]

In addition, F2F also proposed a method to reduce noise when estimating camera pose, the neighboring
pixels of the current prediction need to be used for calculation. F2F proposed a corrective LF, assuming Gi,i+1

has an error ϕe as in Figure 3, then the camera pose estimation at the neighboring position can be used to reduce
the error as in Gi− 1, i and Gi+1,i+2, the correction LF is calculated as formula (9).

Lco =
∑

||Gi−1,i+1 − Ĝi−1,iĜi,i+1||2 (9)

Thus, the aggregate LF in F2F is calculated as a formula (10).

LF2F = Lbd + Lco (10)

Figure 3. Illustration of the calculation of the error between a pair of frames Gi,i+1 [24]

Jiang et al., [21] proposed the MLF-VO-F for VOE. To optimize the training process of DepthNet
depth estimation. Bian et al., [29] used the smoothness LF (Lsmoo) on the RGB image to increase the difference
between color pixels and increase the scene heterogeneity, Lsmoo is calculated according to the following
formula (11).

Lsmoo =
∑
p

(e−▽Ia(p) ∗ ▽Da(p))
2 (11)
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Where ▽ is the first derivative concerning the image’s spatial directions, and the image’s edge guides the
smoothness.

To reduce the warping of frames during depth estimation of a frame sequence, specifically the warp-
ing of consecutive color image frames in a frame sequence. The photometric LF (Lpm) is computed during
unsupervised learning of the network. Lpm is computed using the following formula (12).

Lpm =
1

|V |
∑
p∈V

(λi||Ia(p)− I
′

a(p)||1 + λs
1− SSIMaa′ (p)

2
) (12)

Where the SSIM function is used to calculate the element-by-element compatibility between Ia and I
′

a, λi, λs

are set to fixed values [30].
MLF-VO-F uses a smoothness loss (Lsmoo) to ensure they do not change abruptly. The output is

the loss computed between adjacent color pixels at each scale (4 scales). Calculating the regularization loss
(Lregu)) channel exchange according to the formula (13) is presented.

Lregu =
∑

m∈self.slim.params

(||m||1 − 0.01||m−m||1) (13)

Where ||m||1 is the L1 regularization for parameter m, i.e. the sum of the absolute values of the elements in m.
m is the average value of parameter m. m is the regularization polorize, that is, the sum of the absolute values
of the differences between the elements in m and the mean value m. The factor 0.01 adjusts the correlation of
the polorize regularization with the L1 regularization. During training, optimize the LF (Ltotal) as in formula
(14).

Ltotal = Lpm + e−2Lgc + e−3Lsmoo + e−5Lregu (14)

In this paper, we propose a combination LF (Lcombi) to optimize the self-supervised training model based on
the MLF-VO-F. Lcombi is calculated as the formula (15).

Lcombi = Ltotal + e−6LF2F (15)

2.2. MLF-VO-F backbone for VOE
Many visual SLAM and VOE construction models have recently been based on the DL method. This

paper exploits an MLF-VO-F [21] as a backbone and combines with LFs to fine-tune the VOE model on the
KITTI, TQU-SLAM datasets. MLF-VO-F was proposed by Jiang et al. [21] with a combination of different
fusion strategies to estimate ego-motion from RGB images and depth images obtained from depth estimation.
MLF-VO-F uses DepthNet to estimate the depth image corresponding to each color image/frame as shown on
the left side of Figure 4. Given the input of consecutive frames of video It, It+1, the network first estimates the
depth images corresponding to each input frame: Dt = θdepth(It), Dt+1 = θdepth(It+1). DepthNet is built on
the structure of U-Net.

Figure 4. Illustration of the architecture of the two independent CNN models underlying ego-motion
estimation [21]
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To smooth out the color pixels between consecutive frames in the input frame sequence, MLF-VO-F
uses a smoothness loss (Lsmoo) to ensure they do not change abruptly. Given a pair of consecutive RGB images
and a disparity map as input [31]–[33]. The output is the loss computed between adjacent color pixels at each
scale (4 scales). To ensure consistency between frames, which helps transfer consistency to the entire frame
sequence. This creates scale-consistency for the entire frame sequence [31], [32]. To do this, the geometry
consistency loss (Lgc) is used to calculate the loss between the depth frame and the next depth frame. The
input is the pixels at the current depth and the pixels at the next depth image. The output is the loss calculated
at each different scale (4 scales). To reduce the impact of outliers, the photometric LF (Lpm) is calculated
based on L1. The L1 loss calculates the total absolute difference between the predicted results and original
data, making it less sensitive to outliers than the L2 loss [31]–[33]. This function is used to calculate the loss
between the current RGB frame and the next RGB frame. The input is the pixels in the current RGB image
and the pixels in the next RGB image. The output is the loss calculated at each scale (4 scales). To reduce and
control the number of parameters m of the model training process, with the input being the weight parameters
initialized before the training process. To smooth out the color pixels between consecutive frames in the input
frame sequence, MLF-VO-F uses a smoothness loss (Lsmoo) to ensure they do not change abruptly. Given a pair
of consecutive RGB images and a disparity map as input [31]–[33]. The output is the loss computed between
adjacent color pixels at each scale (4 scales). Calculating the regularization loss (Lregu) channel exchange
according to the formula (13) is presented. The channel exchange (CE) process when training MLF-VO-F is
performed has the exchange and synthesis of the LF Ltotal as formula (14), thereby helping to overcome the
problems of missing data, noisy data, and inconsistent data. From there, the entire learning data is promoted
and makes the learning set predict VOE more accurately.

In particular, MLF-VO-F includes two main tasks with two stages, the first stage is to use the base-
line framework to estimate ego-motion using two independent CNN models for depth prediction and pose
estimation, as illustrated in Figure 4. At this stage, MLF-VO-F uses the fully convolutional U-Net to obtain
architectural depths at four scales. The second stage is relative pose estimation based on MLF-VO-F with the
combination of a multi-layer fusion strategy according to several features appearing in intermediate layers of
the encoder. To encode features from color and depth images, MLF-VO-F includes two structural streams.
The CE strategy is used to swap the positions of components and their importance for combining features at
multiple levels.

In both streams, ResNet-18 [34] is used as the encoder. To build an end-to-end automatic learning
DL network, MLF-VO-F has built a self-learning mechanism with a LF (Ltotal) combined with the process of
depth prediction and relative pose estimation, as illustrated in Figure 5. In this paper, we are only interested in
fine-tuning the VOE model and fine-tuning using backbones like Resnet-18. We use ResNet-18 as the backbone
to encode the extracted features from color images because these two backbones have enough layers to create
accuracy and fast computation time. We conduct experiments and compare with some backbones to encode
features as follows: VGG-16 has faster computation time but lower accuracy than ResNet-18 and ResNet-34
[35], ResNet-50, ResNet-101, ResNet-152 have slightly better accuracy than ResNet-18 and ResNet-34 but
increased computation time, ResNet-18 has higher accuracy than Dense121 [36].

Figure 5. LF of MLF-VO-F for self-learning process [21]
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MLF-VO-F [21] combines features at the early, middle, and late stages of the depth estimation process
to detect keypoints between consecutive frames. The extracted features are based on DeepNet with low-level
textures, edges, and deeper high-level semantic features. MLF-VO-F is tested on the KITTI dataset and shows
good performance on data with complex scenes and sudden lighting changes. The KITTI dataset is collected in
an outdoor environment, so the scene and lighting are very complex. In MLF-VO-F, a self-supervised learning
mechanism is used to self-monitor the training process of the VOE model by using LFs to calculate the error
value between GT and the current VOE. This mechanism reduces the impact of external parameters on the
operation of the model, thus increasing the adaptability to practical applications. However, MLF-VO-F also
has limitations such as requiring large and parallel computing space, and low processing results with small data
sets.

2.3. Comparative study based on loss functions
In this paper, we see the impact of the LF on the training process of the VOE model. We propose a

combination model and evaluation between MLF-VO-F backbone and LFs, as shown in Figure 6. The combina-
tion includes the MLF-VO-F backbone and the LFs: ( LMSE , LMSE−L2, LCE , and Lcombi). The parameters
of the MLF-VO-F backbone model are kept the same as in the original MLF-VO-F.

Figure 6. Combined model of MLF-VO-F as a backbone and LF for VOE

3. RESULTS AND DISCUSSION
3.1. Data collection

KITTI dataset: the KITTI dataset [37] is the most popular database for evaluating visual SLAM
and VOE models and algorithms. The KITTI dataset is collected from two high-resolution camera systems,
a Velodyne HDL-64E laser scanner (grayscale and color), and a state-of-the-art OXTS RT 3003 localization
system (a combination of devices such as GPS, GLONASS, security IMU, and RTK correction signals). These
devices are mounted on a car and collect data over a distance of 39.2 km. The resolution of the image is
1240 × 376 pixels. The GT data for evaluating visual SLAM models and VOE, including three-dimensional
(3D) pose annotation data of the scene. The GT data to evaluate object detection models and 3D orientation
estimation, including accurate 3D bounding boxes for object classes. 3D object’s point cloud data is marked by
manually labeled. In the improved dataset of the KITTI dataset ([37]), additional data was developed to evaluate
the optical flow algorithm. The authors used the 3D CAD model in the Google 3D Warehouse database to build
3D scenes with static elements and insert moving objects. In this paper, we only use the frame sequences: 0th

sequence (Seq. #0), 1st sequence (Seq. #1), 2nd sequence (Seq. #2), 3rd sequence (Seq. #3), 4th sequence
(Seq. #4), 5th sequence (Seq. #5), 6th sequence (Seq. #6), 7th sequence (Seq. #7), 8th sequence (Seq. #8), 9th

sequence (Seq. #9), 10th sequence (Seq. #10) with ground truth trajectories.
TQU-SLAM dataset: From the collected data, the data collection was performed 4 times (1ST, 2ND,

3RD, 4TH), each time, the direction of movement according to the blue arrow was in the forward direction
(FO-D), and the direction of movement according to the red arrow was in the opposite direction (OP-D). We
cross-divide the TQU-SLAM [25] into 8 subsets, is done as follows: we split the training and testing data in a
cross-split form such as 1ST-FO-D (21,333 frames), 2ND-FO-D (19,992 frames), 3RD-FO-D (17,995 frames)
for training, and 4TH-FO-D (17,885 frames) for testing, called the subset 1st (Sub #1); 1ST-OP-D(22,948
frames), 2ND-OP-D (21,116 frames), 3RD-OP-D (20,814 frames) for training, and 4TH-OP-D (18,548 frames)
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for testing, called the subset 2nd (Sub #2); 1ST-FO-D, 2ND-FO-D, 4TH-FO-D for training, and 3RD-FO-D for
testing, called the subset 3rd (Sub #3); 1ST-OP-D, 2ND-OP-D,4TH-OP-D for training, and 3RD-OP-D for
testing, called the subset 4th (Sub #4); 1ST-FO-D, 3RD-FO-D, 4TH-FO-D for training, and 2ND-FO-D for
testing, called the subset 5th (Sub #5); 1ST-OP-D, 3RD-OP-D, 4TH-OP-D for training, and 2ND-OP-D for
testing, called the subset 6th (Sub #6); 2ND-FO-D, 3RD-FOD, 4TH-FO-D for training, and 1ST-FO-D for
testing, called the subset 7th (Sub #7); 2ND-OP-D, 3RD-OP-D, 4TH-OP-D for training, and 1ST-OP-D for
testing, called the subset 8th (Sub #8). Based on statistical theory and machine learning, all subsets of the data
are trained for the VOE model and all are tested. Based on statistics, about 75% of the data is for training
the model and 25% of the data is for testing the model. This ratio is reasonable statistically and for machine
learning problems. Since the MLF-VO-F accepts the input image data with the size 640×192 pixels, we resize
the RGB-D images of the TQU-SLAM to the size 640× 192 pixels.

In this paper, we use the MLF-VO-F as a backbone and combine it with the LFs to fine-tune the VOE
model on the TQU-SLAM. MLF-VO-F source code is developed in Python v3. x language and programmed on
Ubuntu 18.04, Pytorch 1.7.1, and CUDA 10.1. We used the code in the link (https://github.com/Beniko95J/MLF-
VO) on computers with the following configuration: CPU i5 12400f, 16 GB DDR4, GPU RTX 3060 12 GB.
We fine-tune the VOE model with 20 epochs, and the parameters are default in the MLF-VO-F.

3.2. Evaluation metrics
To evaluate the results of VOE, we calculate trajectory error (Errd), being the distance error between

the GT ÂT i and the estimated motion ATi trajectory. Errd is calculated according to formula (16).

Errd =
1

N

√
||ATi − ÂT i||2 (16)

Where N is the frame number of the frame sequence used to estimate the camera’s motion trajectory. We also
calculate the absolute trajectory error (ATE) [38] is the distance error between the GT ÂT i and the estimated
motion ATi trajectory, aligned with an optimal SE(3) pose T. ATE is calculated according to formula (17).

ATE = min
T∈SE(3)

1

N

√∑
i∈Igt

||TATi − ÂT i||2 (17)

Where N is the number of frames in the evaluation frame sequence.
Trel is the average transnational RMSE drift (%) on a length of 10 0m-800 m [21]. Rrel is the

average rotational RMSE drift (◦/100 m) on a length of 100 m-800 m [21]. In addition, we also evaluate the
VOE results using the RMSE measure. RMSE is the standard deviation of the residuals (prediction error)
between the GT motion trajectory and the estimated motion trajectory. We also evaluate the VOE results on the
relative translation error (RTE(m)), and relative rotation error (RPE(deg)) metrics, as presented in [15].

3.3. Results and discussions
VOE evaluation results of the original MLF-VO-F, the MLF-VO-F backbone and LMSE (MLF-VO-F

+ LMSE), the MLF-VO-F backbone and LCE (MLF-VO-F + LCE), the MLF-VO-F backbone and LMSE−L2

(MLF-VO-F + LMSE−L2), the MLF-VO-F backbone and LMSE−L2 (MLF-VO-F + Lcombi) on the Seq. #4,
Seq. #5, Seq. #6, Seq. #7, Seq. #9, Seq. #10 of the KITTI dataset are presented in Table 1. The best results in
each method and with the metrics we highlight. The results also show that the original MLF-VO-F has the best
results at Seq. #9, and Seq. #10 on the Rerr measure. The evaluation results are best when evaluated on Seq.
#4, Seq. #5, Seq. #6, Seq. #7, Seq. #10 based on MLF-VO-F + Lcombi method with Terr and Rerr measures.
In Table 1, the evaluation results of MLF-VO-F + LMSE and MLF-VO-F + LMSE−L2 have the largest error,
as MLF-VO-F + LMSE method has ATE = 133.36(m), Terr = 17.41(%) on the Seq. #9, this is a very large
error compared to the best method (MLF-VO-F) when evaluating on the ATE measure.

The results of the VOE comparison of the motion trajectories of MLF-VO-F + LMSE , MLF-VO-F +
LMSE−L2, MLF-VO-F + LCE on Seq. #7, Seq. #9, Seq. #10 of the KITTI dataset are shown in Figure 7.
The LCE = Lvis + Ldyn LF (as formulas (5), (6)) is an important a LF to optimize the training process of
[15] model for VOE on the MPI Sintel [39], Replica [40] datasets, this model is the best when compared with
some models DROID-SLAM [41], DytanVO [16]. The results also show that the LCE LF has a large impact
on MLF-VO-F for training the VOE model on KITTI dataset.
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The Lcombi LF (as formula (15)) is a combination of the advantages of the Ltotal LF (as formula (14))
of the original MLF-VO-F and the LF2F LF (as formula (10)) of F2F, which are both the best LFs in MLF-VO-
F and F2F for VOE. Therefore, the combination of the Lcombi LFs gives the best results on the KITTi dataset.

Table 1. VOE evaluation results of the original MLF-VO-F

Methods/
datasets
/metrics

MLF-VO-F
MLF-VO-F

+ LCE

MLF-VO-F
+LMSE

MLF-VO-F
+ LMSE−L2

MLF-VO-F
+ LConbi

Seq.
#9

Seq.
#10

Seq.
#9

Seq.
#10

Seq.
#9

Seq.
#10

Seq.
#9

Seq.
#10

Seq.
#4

Seq.
#5

Seq.
#6

Seq.
#7

Seq.
#10

Terr (%) 3.9 4.88 5.88 6.73 17.41 12.99 8.99 8.99 2.21 2.67 3.59 1.01 4.62
Rerr

(deg/100 m)
1.41 1.38 2.127 2.124 6.66 5.957 2.91 3.03 0.97 1.18 1.65 0.67 1.89

ATE (m) 9.86 7.36 15.22 9.34 133.36 32.27 35.18 9.744 - - - - -
RTE (m) - - 0.075 0.06 0.09 0.08 0.08 0.07 - - - - -
RPE (deg) - - 0.07 0.09 0.10 0.11 0.09 0.1 - - - - -

In research by Francani and Maximo [23] evaluated the error function on the 11 sequences of KITTI
dataset, the best results were terr = 3.105%, rerr = 1.063(deg/100m), ATE = 37.431m on the Seq. #02,
and terr = 9.867%, rerr = 4.295(deg/100m), ATE = 8.696m with the Seq. #03, on other frame sequences,
LMSE had lower results when combined with LMC LF. Therefore, it can be seen that LMSE still has a large
error in optimizing the training process of the DL-based model. Therefore, LMSE combined with MLF-VO-
F has the highest error compared to other LFs. The VOE result on Seq. #9 in Figure 7 has the largest
error when estimating on MLF-VO-F + LMSE method, which is similar to the result in Table 1, with error
ATE = 133.36m.

Figure 7. The comparison results of VOE based on the combination of MLF-VO-F backbone and LMSE LF
(MLF-VO-F + LMSE)(Ours), LMSE−L2 LF (MLF-VO-F + LMSE−L2)(Ours), LCE LF (MLF-VO-F +

LCE)(Ours) and GT VO (blue) on Seq. #7, Seq. #9, and Seq. #10 of the KITTI dataset
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The estimated trajectory results of the original MLF-VO-F (orange), (MLF-VO-F + Lcombi) (green),
and GT on Seq. #9 are shown in Figure 8. The results showed that the MLF-VO-F backbone and Lcombi LF
were better than the original MLF-VO-F. Table 2 shows the VOE results on the TQU-SLAM with 8 subsets
for evaluating the estimation model based on the combination of MLF-VO-F + Lcombi and comparing it with
the original MLF-VO-F. The results are evaluated on the metrics Errd, RMSE, and ATE, the results show
that MLF-VO-F + Lcombi method has much better accuracy than MLF-VO-F in all metrics and 8 evaluation
subsets. As in Sub #5, the error of MLF-VO-F with Errd measure is 19.97m but has decreased to 0.68m on
our proposed method, or the error on RMSE measure has decreased from 20.62m to 0.81m, or the error on
ATE measure has decreased from 29.76m to 1.055m. And the error also drops sharply on Sub #7 and Sub
#8. This shows that the LF Lcombi greatly affects the training process of VOE. Based on the results in Table 1,
the results are slightly improved on Seq. #10, Terr = 4.88% of the original MLF-VO-F, Terr = 4.62% of the
MLF-VO-F + Lcombi method. Based on the results in Table 2, the results are much improved at all measures
(Errd, RMSE, and ATE) and all subsets (Sub #1, Sub #2, Sub #3, Sub #4, Sub #5, Sub #6, Sub #7, and
Sub #8).

Figure 8. The comparison results of VOE of the original MLF-VO-F (blue), the combination of MLF-VO-F
backbone and Lcombi LF (MLF-VO-F + Lcombi) (green), and GT VO (orange) on Seq. #9 of the KITTI

dataset

Table 2. VOE results on the TQU-SLAM-B-D with 8 subsets of evaluation data when evaluating the
MLF-VO-F and the combination of MLF-VO-F + Lcombi

Dataset/
methods

Measure
Evaluation subsets of TQU-SLAM

Sub #1 Sub #2 Sub #3 Sub #4 Sub #5 Sub #6 Sub #7 Sub #8
MLF-VO-F

Errd(m)
19.95 38.53 39.33 28.8 18.97 33.07 23.77 39.7

MLF-VO-F
+ Lcombi

7.87 14.51 4.79 6.95 0.68 10.81 0.59 1.35

MLF-VO-F
RMSE(m)

21.67 49.77 42.9 37.28 20.62 34.82 26.26 42.16
MLF-VO-F
+ Lcombi

9.54 19.32 6.21 9.75 0.81 11.27 0.64 1.22

MLF-VO-F
ATE(m)

28.95 41.64 38.39 37.84 29.76 34.56 37.11 30.05
MLF-VO-F
+ Lcombi

11.271 15.461 4.575 9.125 1.055 11.241 0.907 0.94

Figure 9 shows the VOE results based on MLF-VO-F compared with original VOE on evaluation sub-
sets Sub #1, Sub #2, Sub #3, and Sub #4. The results show that when using the MLF-VO-F for VOE, there is a
very large error in Sub #1, Sub #2, Sub #3, and Sub #4, which is based on the distance between the blue points
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(GT) and the red points (estimated) being very far apart, especially at the end of the FO-D. Figure 10 shows
the results of VOE based on the MLF-VO-F compared with the GT VOE on the evaluation subsets Sub #5, Sub
#6, Sub #7, Sub #8. The results also show a large error gap between the GT VO (blue) and the estimated VO
(red) based on the MLF-VO-F.

Figure 9. VOE results on TQU-SLAM using MLF-VO-F with evaluation subsets Sub #1, Sub #2, Sub #3, Sub
#4. With GT, VOE is in blue points and VOE is estimated using MLF-VO-F in red points

Figure 10. VOE results on TQU-SLAM dataset using MLF-VO-F with evaluation subsets Sub #5, Sub #6,
Sub #7, Sub #8. With GT VO in blue points and VO estimated using MLF-VO-F is red points
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Figure 11 shows the VOE results based on the combination of MLF-VO-F + Lcombi with the GT cam-
era motion trajectory. Based on Figure 11, it can be seen that Sub #5 has the smallest error, the estimated VO is
close to the GT VO. At the same time, the results also visually show that the estimation error of the outbound
direction is smaller than the estimation error of the return direction, which is also accurately reflected by the
statistical results in Table 2. However, the VOE error has been improved compared to VOE in Table 2, this
error is still large. It needs further research to improve the accuracy of VOE on the VOE dataset (TQU-SLAM)
we built. The code of MLF-VO-F + Lcombi method and results are shown in the link (https://drive.google.com/
drive/folders/146S32EDervoMNqgZoeyxPaQJkWMn7 0V). In this paper, we also calculate the computation
speed of our proposed method on KITTI and TQU-SLAM datasets; the computation speeds are 19.17fps, and
14.36fps, respectively.

Figure 11. The results of MLF-VO-F + Lcombi method (orange), and GT VO (blue) on the TQU-SLAM

4. CONCLUSION
Visual SLAM is a very important research problem in robotics, autonomous vehicles, and building

support systems for the visually impaired in the past decades. Visual SLAM usually includes two main prob-
lems: VOE and 3D reconstruction. In which, the VOE problem is the process of estimating the dynamic motion
trajectory of the camera mounted on the entity, which can help find the way and orient the movement of the
entity in the environment. Nowadays, with the advent of image sensors, the cost of purchasing sensors to
collect data is reduced. Especially with the convincing results of DL for solving computer vision problems.
In 2022, MLF-VO-F proposed for VOE with convincing results on the KITIT database, the input data of the
system is only low-quality color images. The system performed scene depth estimation from color images
and performed VOE. In this paper, we proposed a combined model of MLF-VO-F backbone and LFs (LMSE ,
LMSE−L2, LCE , and Lcombi) to optimize and supervise the training process of the VOE model. From there,
we evaluated and compared the effectiveness of LFs based on the KITTI and TQU-SLAM datasets with the
original MLF-VO-F. The evaluation results on the the KITTI dataset show that LCE(RTE is 0.075m, 0.06m
on the Seq. #9, Seq. #10, respectively), and Lcombi (Trel is 2.21%, 2.67%, 3.59%, 1.01%, and 4.62% on the
Seq. #4, Seq. #5, Seq. #6, Seq. #7, Seq. #10, respectively) have the lowest errors and LMSE has the highest
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errors (ATE is 133.36m on the Seq. #9). In future research, we will use the VOE results to integrate into the
Visual SLAM system and build a database of 3D reconstruction, especially 3D point cloud data, and conduct
research on 3D reconstruction using 3D point cloud data. Synchronize and integrate VOE and 3D reconstruc-
tion into a complete Visual SLAM system for building systems for robots, autonomous vehicles, and support
systems for the visually impaired to build environmental maps, find paths, and 3D scenes understanding.

FUNDING INFORMATION
This research is supported by Hung Vuong University under grant number HV23.2023.

AUTHOR CONTRIBUTIONS STATEMENT
Authors Van-Hung Le, Tat-Hung Do performed the method, experimented, visualization, and writing

original draft, and revised the article. Authors Huu-Son Do, Thi-Ha-phuong Nguyen, and Van-Thuan Nguyen
performed programming, data processing, and revision of the article.

Name of Author C M So Va Fo I R D O E Vi Su P Fu
Van-Hung Le ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Huu-Son Do ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Thi-Ha-Phuong Nguyen ✓ ✓ ✓ ✓ ✓ ✓
Van-Thuan Nguyen ✓ ✓
Tat-Hung Do ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization I : Investigation Vi : Visualization
M : Methodology R : Resources Su : Supervision
So : Software D : Data Curation P : Project Administration
Va : Validation O : Writing - Original Draft Fu : Funding Acquisition
Fo : Formal Analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
Our articles are not affiliated with any organization or individual. There is no conflict of interest

between the authors.

DATA AVAILABILITY
The article does not publish, share data, and has no conflict of interest regarding data.

REFERENCES
[1] J. Niu, S. Zhong, and Y. Zhou, “IMU-aided event-based stereo visual odometry,” in 2024 IEEE International Conference on Robotics

and Automation (ICRA), 2024, doi: 10.1109/ICRA57147.2024.10611439.
[2] Z. Wang, K. Yang, H. Shi, P. Li, F. Gao, and K. Wang, “LF-VIO: a visual-inertial-odometry framework for large field-of-view

cameras with negative plane,” IEEE International Conference on Intelligent Robots and Systems, vol. 2022-October, pp. 4423–4430,
2022, doi: 10.1109/IROS47612.2022.9981217.

[3] C. Zheng et al., “FAST-LIVO2: fast, direct LiDAR-inertial-visual odometry,” IEEE Transactions on Robotics, vol. 41, pp. 326–346,
2024, doi: 10.1109/TRO.2024.3502198.

[4] X. Cai, Y. Wang, Z. Huang, Y. Shao, and D. Li, “VOLoc: visual place recognition by querying compressed LiDAR Map,”
in Proceedings - IEEE International Conference on Robotics and Automation, 2024, no. 12071478, pp. 10192–10199, doi:
10.1109/ICRA57147.2024.10610530.

[5] Z. Yuan, J. Deng, R. Ming, F. Lang, and X. Yang, “SR-LIVO: LiDAR-inertial-visual odometry and mapping with sweep reconstruc-
tion,” IEEE Robotics and Automation Letters, vol. 9, no. 6, pp. 5110–5117, 2024, doi: 10.1109/LRA.2024.3389415.

[6] M. Bilal, M. S. Hanif, K. Munawar, and U. M. Al-Saggaf, “Enhancing conventional geometry-based visual odometry pipeline
through integration of deep descriptors,” IEEE Access, vol. 11, pp. 58294–58307, 2023, doi: 10.1109/ACCESS.2023.3284463.

[7] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, ISMAR, 2007, pp. 225–234, doi: 10.1109/ISMAR.2007.4538852.

[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and accurate monocular SLAM system,” IEEE Trans-
actions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015, doi: 10.1109/TRO.2015.2463671.

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 3, September 2025: 1571–1586



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1585

[9] K. Wang, S. Ma, J. Chen, F. Ren, and J. Lu, “Approaches, challenges, and applications for deep visual odometry: toward com-
plicated and emerging areas,” IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 1, pp. 35–49, 2022, doi:
10.1109/TCDS.2020.3038898.

[10] W. Chen et al., “An overview on visual SLAM: from tradition to semantic,” Remote Sensing, vol. 14, no. 13, pp. 1–47, 2022, doi:
10.3390/rs14133010.

[11] “Overview of visual odometry and visual SLAM in mobile robotics,” Mobile Robot Vision Expert (MRDVS), 2024.
https://mrdvs.com/visual-odometry-and-visual-slam-in-mobile-robotics/ (accessed Oct. 05, 2024).

[12] E. P. Herrera-Granda, J. C. Torres-Cantero, and D. H. Peluffo-Ordóñez, “Monocular visual SLAM, visual odometry, and struc-
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