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 Parkinson's disease (PD) is a progressive neurodegenerative disorder that 

significantly impacts quality of life and healthcare systems. Early detection 

is crucial for timely interventions that can mitigate disease progression and 

improve patient outcomes. This study leverages advanced machine learning 

(ML) techniques to detect PD using speech features as non-invasive 

biomarkers. A dataset containing 754 features derived from sustained vowel 

phonations of 252 individuals (188 PD patients, 64 healthy controls) was 

analyzed. The dataset, originally collected by Istanbul University and 

publicly hosted via the UCI ML repository, was accessed through Kaggle for 

preprocessing and analysis. To identify the most predictive features, we 

employed recursive feature elimination (RFE), random forest importance, 

lasso regression, and the Boruta algorithm—ensuring robust feature 

selection while reducing dimensionality. The XGBoost model, optimised 

using the synthetic minority oversampling technique (SMOTE) for class 

balancing, achieved an accuracy of 96.69%, a recall of 96%, and an F1-score 

of 98%. Model robustness was validated through 5-fold cross-validation, 

yielding an average accuracy of 89.54%. These findings establish a scalable, 

cost-effective, and non-invasive framework for early PD detection, 

demonstrating the potential of speech analysis and ML in neurodegenerative 

disease management. 
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1. INTRODUCTION 

Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting approximately 10 

million individuals worldwide [1]. It primarily impairs the central nervous system, leading to motor 

dysfunctions such as tremors, stiffness, bradykinesia, and postural instability [2]-[4]. Additionally, non-motor 

symptoms, including cognitive decline, speech impairments, sleep disturbances, and depression, significantly 

impact patients' quality of life and pose challenges for caregivers and healthcare systems [5]-[7]. 

Early diagnosis of PD is crucial to initiate timely therapeutic interventions, mitigate symptom 

progression, and prolong functional independence [8]-[9]. However, traditional diagnostic methods rely 

heavily on subjective clinical assessments, leading to inter-observer variability and late-stage detection  

[10]-[12]. This underscores the need for objective, scalable, and early diagnostic methodologies. Speech 

analysis has emerged as a promising non-invasive biomarker for PD diagnosis [13]-[16]. The disease affects 

phonatory and motor control systems, leading to subtle alterations in jitter, shimmer, and harmonicity, which 

often precede overt motor symptoms [17], [18]. Recent advancements in machine learning (ML) and deep 
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learning (DL) enable automated analysis and interpretability of these speech features, offering a pathway for 

robust and consistent PD prediction [19]-[21]. 

This paper proposes an ML-based PD detection framework utilizing the full “Parkinson’s disease 

speech features” dataset, originally collected by the Department of Neurology at Istanbul University and 

hosted via the UCI ML repository [22]. The dataset includes 754 extracted features from sustained vowel 

phonation recordings of 252 individuals (188 PD patients and 64 healthy controls), covering diverse 

demographic backgrounds. By addressing challenges like high-dimensionality, class imbalance, and model 

interpretability, this work integrates multi-method feature selection, ensemble learning techniques, and 

interpretable AI to deliver a robust, scalable, and clinically relevant solution for early PD detection. 

 

 

2. RELATED WORK 

Govindu and Palwe [23] applied SVM, KNN, logistic regression (LR), and random forest (RF) to 

the MDVP audio dataset for PD classification. Their RF model achieved 91.83% accuracy, but the small 

dataset (30 patients) increased susceptibility to overfitting, limiting generalisability.  

Makarious et al. [24] developed a multi-modality ML model integrating PPMI and PDBP datasets, 

utilising RF, SVM, and DL techniques. Their model initially achieved an AUC of 89.72%, later optimised to 

85.03%. However, while their approach incorporated genetic, transcriptomic, and clinical markers, its reliance 

on omics-based testing and imaging data reduces accessibility for real-world clinical use. 

Zhang et al. [25] compared decision tree (DT), KNN, Naïve Bayes, RF, SVM, and XGBoost on the 

PPMI dataset. Their penalised LR model reached an AUC of 0.94, while XGBoost achieved 0.92. Although 

their study categorised PD risk factors based on cost and accessibility, it lacked explicit class balancing and 

external validation beyond the dataset constraints.  

Wang et al. [20] developed a deep learning (DNN) and ML-based PD classification system using the 

PPMI dataset (584 individuals: 401 early PD, 183 healthy controls). Their DNN model achieved 96.68% 

accuracy. However, the lack of explicit feature selection made the model prone to overfitting and less 

interpretable for clinical applications.  

Alshammri et al. [26] applied KNN, SVM, DT, RF, and multi-layer perceptron (MLP) to the UCI 

voice dataset (195 speech samples). Their MLP model outperformed SVM (95%) with an accuracy of 

98.31%. However, as their study relied solely on speech features, it failed to consider non-motor PD 

symptoms, limiting its real-world applicability.  

Saeed et al. [27] applied KNN, SVM, Naïve Bayes, RF, and MLP on a UCI voice dataset (240 

recordings, 46 features), using filter-based (PCA, IG) and wrapper-based (PSO, Greedy Stepwise) feature 

selection. Their best model (KNN with wrapper selection) achieved 88.33% accuracy. However, their smaller 

dataset and feature set limited generalizability.  

Nahar et al. [28] investigated feature selection-based classification for early PD detection, applying 

Boruta, RFE, RF, XGBoost, Bagging, and Extra Trees Classifier on the UCI dataset. Their best model 

(Bagging) achieved 82.35% accuracy, but the small dataset (80 participants) and focus on speech-only 

features reduced its broader clinical utility.  

Ali et al. [29] proposed an ensemble learning model (EOFSC) integrating deep neural networks 

(DNN) with feature selection. Their approach, focused on multiple vowel phonations, achieved 95% 

accuracy. However, their reliance on phonation-specific features and majority voting limited interpretability 

and feature generalization.  

Varghese et al. [30] applied SVM, DTs, linear regression, and support vector regression (SVR) on 

the UCI Parkinson’s Telemonitoring dataset to predict motor and total UPDRS scores. Their model achieved 

an RMSE of 7.49 for Total UPDRS and 6.06 for Motor UPDRS, demonstrating effective severity prediction 

rather than direct PD classification.  

Srinivasan et al. [31] proposed a multiclass classification approach for PD detection using voice 

signals, comparing KNN, KSVM, DT, RF, and feed-forward neural network (FNN) on the UCI dataset (31 

patients, 195 voice samples). Their FNN model achieved 99.11% accuracy but relied entirely on DL, making 

it computationally expensive and harder to interpret for clinical deployment. 

 

 

3. PROPOSED METHOD 

Our proposed model integrates advanced feature selection techniques, data balancing methods, and 

optimised ML algorithms to achieve robust PD detection. The UCI Parkinson’s Speech Dataset, which 

includes 252 participants (188 PD, 64 healthy controls), is used to train the model. Unlike previous studies 

(Table 1) that rely solely on speech features, our approach incorporates a combination of speech and 

symptom-based features to improve accuracy and real-world applicability. XGBoost, optimised via 
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Randomised Search CV, is employed as the primary classification model, achieving 96.69% accuracy. The 

flowchart of the proposed model is as in Figure 1. 

 

 

Table 1. Summary of related work 
Authors Best method Type of modallity Performance Volume of dataset 

Govindu and Palwe [23] Random Forest (RF) MDVP audio 

Data 

91.83% 31 people 

Makarious et al. [24] Deep Learning (DL) PPMI, PDBP 83.95% 756 people 

Zhang et al. [25] Penalized LR 

 

PPMI AUC of 0.94 747 people (missing 

values greater than 10 
excluded) 

Wang et al. [20] Deep Neural 

Network 

PPMI 96.68% 584 individuals 

Alshammri et al. [26] Multi-Layer 
Perceptron (MLP) 

UCI dataset  98.31% 195 records of voice signal 
features 

Saeed et al. [27] KNN + Feature 

Selection 

Kaggle 88.33% 240 recordings from 80 PD 

patients 

Nahar et al. [28] Bagging Classifier UCI dataset 82.35% 80 participants 
Ali et al. [29] Deep Learning + 

FScore 

Multi-type 

vowel 

phonations 
dataset 

95% 160 subjects 

Varghese et al. [30] Support Vector 

Regression 

UCI ML 

repository 

RMSE 7.49 

(UPDRS) 
 

42 candidates 

Srinivasan et al. [31] Feed-Forward 

Neural Network 

UCI ML 

Repository 

99.11% 31 people 

 

 

 
 

Figure 1. Flowchart of the proposed model 
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3.1.  Dataset collection 

The dataset used in this study comprises 756 samples and 754 extracted features, sourced from 

sustained phonation recordings of the vowel sound “/a/.” It contains data from 252 individuals: 188 PD 

patients (107 males, 81 females) and 64 healthy controls (23 males, 41 females). Participants ranged in age 

from 33 to 87 years (mean age: 65.1 ± 10.9 for PD, 61.1 ± 8.9 for controls). The dataset was originally 

collected by the Department of Neurology, Cerrahpaşa Faculty of Medicine, Istanbul University, under 

physician supervision, and made publicly available via the UCI ML repository [22]. For analysis purposes, it 

was accessed through Kaggle, which mirrors the original dataset. During data collection, participants were 

instructed to sustain the phonation of the vowel “a” in three repetitions, recorded using a standard 

microphone at a sampling rate of 44.1 kHz. All data participants in Table 2 is de-identified and ethically 

cleared for research use. 

 

 

Table 2. Dataset summary 
Dataset attribute Description 

Total Participants 252 

PD Patients 188 (107 males, 81 females) 

Healthy Controls 64 (23 males, 41 females) 

Total Features 754 

Sampling Rate 44.1 kHz 

Data Collection Sustained phonation of vowel /a/ 

 

 

3.2.  Pre-processing 

The Parkinson’s Speech Dataset contains 754 features extracted from sustained phonation 

recordings, presenting a high-dimensional and potentially redundant feature space. To address this, we 

applied five feature selection techniques: RF Importance, recursive feature elimination (RFE), LASSO 

Regression, Boruta, and principal component analysis (PCA). Our final feature set was derived using a 

consensus-based strategy, where features consistently identified by at least two out of the four primary 

techniques (RF, RFE, LASSO, Boruta) were retained. This approach balances dimensionality reduction and 

interpretability while reducing method-specific bias. PCA was used solely for comparison and not for final 

feature selection due to its lack of interpretability. 

 

3.2.1. Feature selection techniques 

To improve model efficiency and accuracy, several feature selection techniques were applied to 

identify the most relevant features for PD classification. 

RF Feature Importance was used to rank features based on their contribution to classification, 

determined through Gini impurity reduction. A RF model with 30 estimators was trained, identifying energy 

and frequency-based speech markers as key indicators of Parkinsonian speech impairments. These high-

ranking features played a crucial role in refining the dataset for classification as shown in Table 3. 

 

 

Table 3. Top features selected by RF 
Feature Importance score 

std_delta_delta_log_energy 0.0285 

tqwt_entropy_log_dec_12 0.0160 

tqwt_energy_dec_27 0.0136 

tqwt_entropy_shannon_dec_12 0.0130 

std_6th_delta_delta 0.0127 

 

 

RFE, with LR as the base estimator, iteratively removed less significant features to retain the most 

discriminative ones. The top five selected features were: tqwt_entropy_log_dec_18, 

tqwt_entropy_log_dec_20, tqwt_entropy_log_dec_24, tqwt_entropy_log_dec_25, tqwt_entropy_log_dec_28. 

Lasso Regression (L1 Regularization) further reduced dimensionality by shrinking irrelevant feature 

weights to zero while preserving crucial predictors. A LassoCV model with five-fold cross-validation was 

used to identify the most significant features. Notably, the top 10 selected features showed strong overlap 

with those identified by RF and RFE, reinforcing their predictive strength. These features included 

std_delta_delta_log_energy, tqwt_kurtosisValue_dec_31, tqwt_entropy_log_dec_28, std_7th_delta_delta, 

std_6th_delta_delta, tqwt_entropy_log_dec_26, tqwt_kurtosisValue_dec_27, tqwt_kurtosisValue_dec_33, 

tqwt_maxValue_dec_25, tqwt_entropy_log_dec_33. 
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Boruta Feature Selection, a wrapper-based technique using RF, validated the importance of jitter, 

shimmer, and period-based features, which are widely recognized in Parkinson’s speech pathology. These 

features, commonly linked to phonatory and acoustic changes, included meanPeriodPulses, locPctJitter, 

locAbsJitter, rapJitter, ppq5Jitter, ddpJitter, apq11Shimmer. 

Additionally, PCA was explored to transform the dataset into 50 principal components, enabling 

faster computation. However, PCA was not used in the final selection, as direct feature selection methods 

(RF, RFE, Lasso, and Boruta) provided better classification performance and interpretability. By combining 

these feature selection techniques, we made sure that only the most relevant features were kept in the dataset, 

increasing model accuracy while lowering computational cost and redundancy. Table 4 highlights the 

comparative results of feature selection techniques. 

The final feature subset was derived through a consensus-based approach, selecting features 

identified by at least two of the four techniques: RF, RFE, LASSO, and Boruta. This method ensured that 

only the most consistently ranked and biologically relevant features were retained, improving model 

robustness and interpretability. Table 4 explicitly highlights these selected features, which include key 

biomarkers like std_delta_delta_log_energy, std_6th_delta_delta, and tqwt_entropy_log_dec_28, commonly 

associated with Parkinsonian vocal impairments. 

 

 

Table 4. Comparative feature selection results 
Feature Random 

forest rank 
RFE 

selected 
Lasso 

coefficient 
Boruta 
selected 

Selected in final 
subset 

std_delta_delta_log_energy 1 Yes 0.0285 Yes Yes 

tqwt_entropy_log_dec_12 2 No 0.0160 No No 

tqwt_energy_dec_27 3 No 0.0136 No No 

tqwt_entropy_shannon_dec_12 4 No 0.0130 No No 

std_6th_delta_delta 5 Yes 0.0127 Yes Yes 

 

 

3.2.2. Model training and optimization 

After selecting the most relevant features, the next step involves training and optimizing the ML 

model for PD classification. We employed XGBoost as the primary classification algorithm due to its high 

accuracy, robustness against imbalanced datasets, and efficiency in handling high-dimensional data. To 

optimize the XGBoost model, Randomized Search Cross-Validation (CV) was used to fine-tune key 

hyperparameters, improving generalization and reducing overfitting. After 50 iterations, the best 

hyperparameters were determined and were then used in the final XGBoost model training. Table 5 contains 

the best hyperparameters after 50 iterations. 

Once the best hyperparameters were selected, the final XGBoost model was trained on the balanced 

dataset (after SMOTE was applied). To ensure the robustness and reliability of the proposed model, 5-fold 

stratified cross-validation was performed, allowing for an unbiased evaluation across different data splits. 

The model achieved a mean accuracy of 89.54%, demonstrating consistent performance and generalizability 

in distinguishing PD from healthy controls. By integrating Randomized Search CV for hyperparameter 

tuning, SMOTE for class balancing, and a refined feature selection process, the final XGBoost model 

achieved an overall accuracy of 96.69%, reinforcing its effectiveness as a highly reliable and interpretable 

solution for PD classification. 

 

 

Table 5. Final optimized model parameters 
Hyperparameter Optimised values 

n_estimators 300 

max_depth 7 

learning_rate 0.1 

subsample 0.8 

colsample_bytree 0.8 

min_child_weight 1 

gamma 0.1 

 

 

4. RESULTS AND DISCUSSION 

To evaluate the effectiveness of the proposed XGBoost model, its performance was compared with 

RF, LightGBM (LGBM), and a Voting Classifier. RF was used as a baseline for feature selection but 

struggled with overfitting and inefficiency in high-dimensional data. LGBM, a gradient-boosting model, was 
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optimized for speed and memory efficiency, making it suitable for large datasets. To enhance robustness, a 

Voting classifier combining XGBoost and LGBM was implemented to improve predictive accuracy. Table 6 

shows the models performance comparison. 

 

 

Table 6. Model performance comparison 
Model Accuracy Precision Recall (PD - 1) Recall (Healthy - 0) F1 Score 

Random Forest 84.1% 82% 96% 52% 83% 
LightGBM 88.9% 85% 97% 67% 88% 

Voting Classifier 90.7% 95% 99% 69% 90% 

XG Boost (Optimised) 96.69% 99% 96% 97% 98% 

 

 

The results clearly demonstrate that the XGBoost model achieves superior performance across all 

evaluation metrics, with an accuracy of 96.69%, precision of 99%, and an F1-score of 98%. Unlike the 

baseline models, XGBoost maintains high recall across both classes (PD: 96%, Healthy: 97%), indicating 

excellent sensitivity and specificity. In contrast, RF exhibited significant class imbalance bias, as reflected in 

its recall disparity (96% vs. 52%). LightGBM and the Voting Classifier showed improved balance but failed 

to match the overall discriminative power of XGBoost. These metrics (Figure 2) underscore XGBoost’s 

robustness, particularly in handling high-dimensional, imbalanced data scenarios common in clinical 

applications. 

 

 

 
 

Figure 2. Top-ranked features by XGBoost’s built-in importance metric, highlighting the key acoustic 

markers used in Parkinson’s classification 

 

 

SHapley Additive exPlanations (SHAP) analysis was conducted to enhance model transparency and 

interpretability. Figure 3 illustrates how individual features contribute to classification outcomes, quantifying 

each feature’s impact on the final prediction. Notably, std_delta_log_energy and tqwt_entropy_log_dec_12 

exhibited the highest SHAP values, reinforcing their status as dominant predictors. These features correspond 

to variability and entropy in frequency-modulated speech patterns, which are known to deteriorate early in 

PD patients due to phonatory muscle control loss. By elucidating the model’s decision process, SHAP 

enables clinicians to trace predictions back to explainable acoustic biomarkers, thereby bridging the gap 

between AI output and clinical intuition. This interpretability is essential for clinical trust and regulatory 

validation of AI-assisted diagnostic systems. systems. 
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Figure 3. SHAP summary plot showing the marginal contribution of each feature toward model predictions. 

Features with higher SHAP values contribute more significantly to classification decisions 

 

 

5. CONCLUSION 

This study presents a ML-based approach for PD detection, utilizing speech biomarkers extracted 

from the UCI Parkinson’s Speech Dataset. By integrating feature selection techniques, data balancing using 

SMOTE, and hyperparameter optimization through Randomized Search CV, an XGBoost-based 

classification model was developed, achieving 96.69% accuracy with high recall and precision across both 

PD and healthy classes. A comparative analysis against RF, LightGBM, and an ensemble Voting Classifier 

demonstrated that XGBoost outperforms traditional classifiers, making it the most effective model for PD 

classification. The feature importance analysis emphasized the significance of energy-based and time-

frequency speech features, reinforcing the role of acoustic biomarkers in PD screening. The application of 

SHAP explainability techniques further enhanced the model’s interpretability, increasing its potential for 

clinical deployment and integration into decision-support systems. Despite the promising results, there are 

several areas for future improvement. One key limitation is the dataset size, which, while sufficient for initial 

validation, requires further expansion and external validation on larger, more diverse, and multi-center 

datasets. Future studies should focus on integrating multimodal biomarkers, incorporating motor-based 

features (e.g., handwriting patterns, gait analysis), clinical symptoms, and wearable sensor data to develop a 

more comprehensive diagnostic model. Additionally, deep learning architectures, such as convolutional 

neural networks (CNNs) or Transformer-based models, could be explored to capture complex patterns in 

voice data more effectively. To facilitate real-world clinical deployment, future research should focus on 

developing real-time Parkinson’s detection systems, integrating the model into mobile applications or 

telemedicine platforms. Such advancements could enable remote patient monitoring, early intervention, and 

continuous disease progression tracking, enhancing the management of PD. Furthermore, improving model 

generalization and robustness through federated learning could allow secure collaboration across different 

healthcare institutions while preserving patient privacy. 

Overall, this study demonstrates the potential of AI-driven, non-invasive PD screening tools, paving 

the way for future advancements in ML-based neurodegenerative disease diagnostics. By expanding dataset 

diversity, integrating multimodal features, and deploying real-time detection systems, AI-based Parkinson’s 

detection can become a more reliable, accessible, and clinically useful tool for early diagnosis and improved 

patient. 
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