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Abstract 
The main challenge in MIMO systems is how to design the MIMO detection algorithms with lowest 

computational complexity and high performance that capable of accurately detecting the transmitted 
signals. In last valuable research results, it had been proved the Maximum Likelihood Detection (MLD) as 
the optimum one, but this algorithm has an exponential complexity especially with increasing of a number 
of transmit antennas and constellation size making it an impractical for implementation. However, there are 
alternative algorithms such as the K-best sphere detection (KSD) and Improved K-best sphere detection 
(IKSD) which can achieve a close to Maximum Likelihood (ML) performance and less computational 
complexity. In this paper, we have proposed an enhancing IKSD algorithm by adding the combining of 
column norm ordering (channel ordering) with Manhattan metric to enhance the performance and reduce 
the computational complexity. The simulation results show us that the channel ordering approach 
enhances the performance and reduces the complexity, and Manhattan metricalonecan reduce the 
complexity. Therefore, the combined channel ordering approach with Manhattan metric enhances the 
performance and much reduces the complexity more than if we used the channel ordering approach alone. 
So our proposed algorithm can be considered a feasible complexity reduction scheme and suitable for 
practical implementation. 
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1. Introduction 
In recent years, two main research activities have dominated the design of power and 

bandwidth efficientwireless communication systems: First, multiple inputs, multiple outputs 
(MIMO) [1] that embody the meaning of communication through multiple antennas. MIMO 
technique permits simultaneous transmit of multiple symbols from multiple transmit antennas. 
This results in a linear increase in the channel capacity commensurate to the number of transmit 
antennas when there are a suitable number of receive antennas [2]. Second, the Iterative 
detection, it is a practical method to improve the symbol-error-rate (SER) performance for 
communication systems. So the study of combining the Iterative detection and MIMO 
techniques to approaching from the capacity of MIMO channels [3]. 

MIMO detection is a challenging and important topic for researchers and 
communication system designers, massive research efforts were done in the last years giving 
the birth to a variety of detection techniques that differ in strategy adapted, computational 
complexity, and performance. In order to solve the detection problem in MIMO systems, the 
researchers have been focused on suboptimal detection techniques which are efficient in terms 
of both performance and computational complexity, and powerful in terms of error performance 
and are practical for implementation purposes [4].  

A novel and efficient MIMO detection algorithm for any wireless communication systems 
must include some important features such as low-complexity, near-optimal performance and 
robust scheme. The MLD [2] can present outstanding performance; but, it suffers from high 
computational complexity in practical implementation especially when increasing the number of 
transmit antennas to achieve a good transmission capacity in MIMO systems. Different near-
optimal MIMO detection techniques have been proposed in previous literatures some of them 
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based on zero-forcing (ZF) [3], minimum mean-squared-error (MMSE) [3], successive 
interference cancellation (SIC) [5], parallel interference cancellation (PIC) [6] and ordered SIC 
(OSIC) [7]. Unfortunately, all of them cannot achieve the performance of an MLD. Sphere 
detection /decoder (SD) [8-12] was investigated to achieve the ML performance by using 
reliable radius. The idea of SD was introduced in [13] and it has been furthermore debated in 
various researches [14,15]. The K-best sphere decoder (KSD) [12] for MIMO detection appears 
in the area of detection techniques because of its fixed throughput and parallel implementation. 
In the other side, the use of the depth-first tree search in conventional SD giving non-constant 
throughput, which limits the detection efficiency. So instead of using a depth-first to traverse the 
tree, the KSD executes a breadth-first search and keeps only K-best nodes in each layer. In 
KSD algorithm to achieve close- ML performance [12], the KSD especially needs for very large 
values of K, which in turn leads to a higher complexity than that who in the conventional SD. 
Nonetheless, due to advantages of the KSD algorithm, some variants have been proposed to 
improve its performance and/or reducing its complexity [16-19].  

The computational complexity of an MIMO detection algorithms depends on the number 
of spatially multiplexed data streams (number of transmit antennas) and the symbol 
constellation size, but frequently on the instantaneous MIMO channel realization and the signal-
to-noise ratio (SNR) [20]. The computational complexity of tree search algorithms is determined 
by two norms: Firstly, the number of nodes that have to be examined and Secondly, the 
operational cost per node. In SD, the number of visited nodes depends on the choice of initial 
sphere radius and on the decreasing of the radius constraints due to a radius update [21]. The 
complexity of K-best SD algorithms depends critically on the preprocessing stage (QR 
decomposition), the ordering (back-substitution) in which the components of information signals 
are considered, and the initial choice of the radius of the sphere. 

In this work, we propose enhancing IKSD algorithm, this can be achieved by divided the 
K-best SD algorithm work into two parts. The first part is known as the “preprocess par”t, the 
preprocess can be achieved by execution the column norm ordering [22] (channel ordering) for 
channel matrix due to that the computation complexity is so sensitive to the order of the 
columns of the channel matrix. The second part is known as the “search part”, it is computed 
the ML solution of transmitted vector from the received vector, in this part we propose using the 
Manhattan norm to calculate the ML solution in order to reduce the complexity of this part. 

The rest of this paper is organized as follows: Section 2 presents the model of the 
MIMO system and K-Best SD algorithm. The enhanced IKSD algorithm is present in Section 3. 
The column norm ordering (channel ordering approach) preprocessing is described in Sub-
section 3.1. Manhattan metric propose to use in search part in Sub-section 3.2. Simulation 
results presented in Section 4. Finally, in Section 5, we present the conclusions. 
 
 
2. System Model and K-Best SD Algorithm 

We consider an uncoded M-QAM 4×4 MIMO system having transmit and  receive 
antennas where	 	 	 . Under the assumption of a flat-fading channel, the received vector 
can be expressed as 

 
̅  (1) 

 
where ̅ ̅ , ̅ , … . . , ̅  denotes 1  transmitted vector, and the entries of ̅ are selected 
from a complex constellation, , , … . . ,  denotes 1   complex-valued received 
vector,  denotes the  complex-valued channel matrix with elements are assumed to 
be independent and identically distributed (i.i.d.) complex Gaussian variables with zero mean 
and unit variance, and is the complex-valued of additive white Gaussian noise (AWGN) with 
zero mean and variance.  

For simplifying the system, the complex-valued received vector is transformed into an 
equivalent real-valued received vector by representing the real part and the imaginary part of  
as 

 
 (2) 
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where the dimension is doubled such that m = 2 , n = 2 , i.e., 
 

	 				
̅
̅  (3) 

 

where and  denote the real and imaginary parts of [·] respectively, 
̅
̅  denotes 

1  real-valued transmitted vector,   denotes 1  real-valued received vector, 

	
 denotes 1  real-valued noise vector, and 

	 				
 denotes 

  real-valued channel matrix [14], [23]. Assume that the receiver has a perfect channel 
knowledge, so the MLD problem can be formulated as 
 

argmin
∈

∥ ∥  (4) 
 
where   , D is real-valued signal constellation set, for 16-QAM, D = [-3,-1,1,3]. 
In SD algorithms the search includes only the lattice points (Hs) inside the hypersphere 
centered at the received vector(y) with radius (d) instead of comprehensive search for all lattice 
points as in MLD, and can be written as 
 

argmin
∈

∥ ∥  (5) 
 

By decomposed the channel matrix  using the standard QR decomposition, we can get 
 

 (6) 
 
where  , , ⋅ denotes Hermitian matrix transposition, R is an   upper 
triangular matrix, and   is an orthogonal matrix.Utilizing the triangular nature of R, the 
left-hand side of (6) can be rewritten as 
 

∥ , ∥  (7) 

 
From (7) we can see the detection problem as a tree that has its root just above the m-

th layer and leaves on the 1st layer, and each survived candidate of i-th layer is defined as	
, …… , . The Euclidean distance in (7) can be computed iteratively by defining 

 with the partial Euclidean distances (PEDs)[24]. 
 

∥ ∥ ,					 , … . . ,1 (8) 
 
The initialization 0 , and the distance increments are 
 

∥ ∥ ∥ , ∥  (9) 

 
The PED, , depend on the symbol vector (s) through the partial symbol vector	 , the 

SD problem has been changed into a weighted tree-search problem. The SD algorithm with 
depth-first tree search suffers from non-constant throughput and non-efficiency decoding [25]. 
To overcome these problems, the K-best SD algorithm is used, with applying the breath-first 
tree search strategy. The K-best algorithm simplifies the complexity of SD algorithm by 
shortening the paths in each detection layer from the m-th layer to the 1st layer and only the 
smallest K nodes are kept in each layer (except the 1st layer), which will be extended into 
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 nodes in the next layer. We can describe the K-best algorithm through the following 
steps: 
a) Apply QR decomposition according to H = QR. 
b) Compute the PEDs  according to Eq. (6) to (9) (path extension). 
c) Prune the paths that greater than the radius based on the PEDs of step (b). 
d) Do sorting to K nodes and choose the smallest one. 
e) Do path update by updating  by 1, If 1	, go back to step (b). 
f) If 1, go to step (b) and (c), then select the path with minimum PED as a decision. 
If K is not large enough, the K-best SD algorithm not able to guarantee the same performance 
as SD and ML algorithm. Thus, there is a pressing need to find efficient K-best algorithms that 
can do the best trade-off between performance and complexity. 
 
 
3. The Enhancing IKSD Algorithm 

As noted earlier, we can enhance the performance of the IKSD algorithm by adding 
channel ordering approach to the preprocessing part, and also adding the Manhattan metric to 
the search part. Where the channel ordering approach is working to improve SER performance 
and reducing the complexity, the Manhattan metric is working to reduce the complexity more. As 
it will be clarified in the next two sub-sections. The enhancing IKSD algorithm is described in 
Algorithm-I. 

 
Algorithm-I:  The enhancing IKSD algorithm 
Input: , H, K, A, ∆, d 
Output:  
Initialization 0 (the branch metric) and  is the root node (level	 ); 

Π  ; 
, _ ; 

; 
0	; and start from level  

while i ≥ 1  do 
ℓ 1; 
                   for  j=1to length ( ) do 

, , 	, ∀ ∈ 		; 
ℓ ℓ 1		; 

end 
sort all the components of  in an ascending order ; 
if length 	 Then 
Keep all the candidates in tree; 
else 
                     Only keep the elements whose cost indexes satisfy 	 ∆ in tree ; 
end 
                  Replace the 	← 	 	 ; 
	 1 ; 
           end 
Return  ← the 1st element in the tree 
 
3.1. The Channel Ordering Approach (Preprocess Part) 

The computation complexity of K-best SD is quite sensitive to the order of the columns 
of the channel matrix, which rely on both the channel matrix and the received signal. So, the 
random detection order is not the best detection order, particularly for low SNR or high order 
modulation. Usually, re-arranging the columns of the matrix appropriately is to get a good 
detection process (low complexity).  

The QR decomposition performance can be improved if the channel matrix is pre-
processed before QR decomposition. So, we suggest using the preprocess of column norm 
ordering(channel ordering approach) [22] before QR decomposition. The columns of channel 
matrix can be reordered in accordance with the norm of each column, so the signals with higher 
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signal-to-noise ratio (SNR) are detected first. This can be achieved by multiplying channel 
matrix H by a permutation matrixΠ, i.e., ΠH QR. 

The column norm ordering method includes the following procedure, arranging the 
columns  of the channel matrix , … . . , ,  in accordance with their Euclidean 
distance ∥ ∥ in an ascending manner. The arranging of is processed by the permutation  
so that 

 
∥ ∥ ∥ ∥ 		 		 ˂  (10) 
 

Then, the arranging channel matrix is represented as  
 

Π  (11) 
 
where Π is permutation matrix such as Π , , …… ,  , where  is the 
column vector of which entries are one i-thposition only and are zero in every other positions. 
One advantage of channel ordering of the generator matrix H is that the column norm ordering 
does not distort or disturb the boundaries of the finite lattice can be easily determined and 
exploited. This can be understood as the column arranging of H simply leads to a re-arranging 
of the components of transmit signal vectors. 
 
3.2. The Manhattan Metric (Search Part) 

In this section, we propose to use Manhattan metric (MM) to calculate ML solution 
instead of using the Euclidean metric (EM), in order to reduce the complexity in search part. The 
purpose of using MM or EM is to calculate the weights of each candidate node [26]. In EM, the 
brute-force MLD can be converted into a full tree structure search by using EM such as 

 

argmin
∈

|| || argmin
∈ ,  (12) 

 
From (12) the MIMO-MLD searches a candidate  that minimizes the squared EM 

between  and  that is referred to as , and we can see that the operations 
performed depend on summation and multiplication due to square term.The hardware 
implementation is infeasible due to a logic resource limitation of the target device because there 
are 4 = 1,048,576 real multiplications (for 16-QAM) are required to compute all the EM. 
According to (12) this type of detection algorithm is practically impossible to implement in MIMO 
systems that utilize high order modulation such as (16-QAM, 64-QAM). So we adopted a 
practical metric like MM to avoid the use of arithmetic multiplications, the MM is computed by 
adding absolute values of  and , as in (13). 

 

argmin
∈

| | argmin
∈ ,  (13) 

 
As shown in (13), the operations performed depend only on summation and didn’t have 

a square termand therefore it does not need for arithmetic multiplicationsas in (12). 
 
 
4. Simulation Results 

In this section, we discuss and compare the performance (the symbol error rate, SER) 
and computational complexity (the number of nodes visited) for both traditional KSD and IKSD 
algorithms, with cases of no ordering, ordering, and combine ordering with MM. To make a fair 
comparison for all cases, suppose the initial radius for all cases is the same.  

Firstly we discuss the effect of column norm ordering and MM on SER performance in 
both algorithms traditional KSD and IKSD. An uncoded 4x4 MIMO system with 16-QAM and 64-
QAM are simulated over a flat Rayleigh fading channel. From figure (1) and figure (2), can show 
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the same SER performance in the case of no ordering for 16-QAM and 64-QAM just the 
performance of the IKSD needs for (K=2), while the traditional KSD needs for (K=16), and we 
can see improved the SER performance when using ordering and combine ordering with MM. 

From figure (1) we have observed that for 16-QAM and at an SER=10-2, the 
performance gain about 2.5dB when using  the channel ordering and combine channel ordering 
with MM compared to using of no ordering. From figure (2) can conclude that the performance 
enhances by 3.9dB at an SER=10-1. 

Secondly, we discuss the effect of column norm ordering and MM on computational 
complexity in both algorithms traditional KSD and IKSD. Figure (3) and figure (4) shows the 
comparison of the complexity (visited nodes) in traditional KSD and IKSD algorithms with no 
ordering, ordering, and combine ordering with MM. And it also shows that the complexity of the 
IKSD algorithm with combined ordering and MM are lower than that of IKSD with ordering and 
with no ordering, and the complexity of the IKSD algorithm with ordering is less than the 
complexity of the IKSD algorithm with no ordering. In other words, for example (case of Figure 
3), while the IKSD algorithm with ordering visit on average 44 nodes to obtain a performance 
comparable to IKSD algorithm with no ordering, and the IKSD algorithm with combined ordering 
and MM is able to achieve the same performance visiting on average 30 nodes while IKSD 
algorithm with no ordering visits 61 nodes. From figure (3) we can compare the complexity 
between the curves of no ordering case and combine ordering with MMof IKSD algorithm at a 
minimum (SNR=0 dB) and maximum (SNR=25 dB) difference between these two curves. In no 
ordering IKSD algorithm searches about (61 and 181) nodes, and in combine ordering and MM 
needs (30 and 42) nodes visited respectively. So the proposed IKSD with combine ordering and 
MM needs 51% to 77% fewer complexities than IKSD with no ordering. Also, can compare the 
computations between no ordering and ordering of IKSD algorithm, at a minimum (SNR=0 dB) 
and the maximum (SNR=25 dB) difference between these two curves, the no ordering IKSD 
algorithm searches about (61 and 181) nodes, and in ordering needs (44 and 48) nodes visited 
respectively. So the IKSD algorithm with ordering needs 28% to 73% fewer complexities than 
IKSD with no ordering. From figure (4) we can do the same calculation as in figure (3), for 
compare between two curves of no ordering and combine ordering with MM at SNR=0dB and 
SNR=25, it’s need (1179 and 9323) nodes and (87and 87) respectively. So the combine 
ordering with MM needs 92% to 99% fewer complexities than no ordering, and the comparison 
between no ordering and ordering needs (1179 and 9323) and (599and 1123) nodes 
respectively. So the ordering needs 49% to 88% fewer complexities than no ordering. 

In figure (3) and figure (4) can see that the complexity of traditional KSD algorithm in the 
cases of no ordering and ordering is the same and it's different compared with IKSD algorithm, 
this is due to the way of account the visited nodes in each algorithm, to clarify that, the visited 
nodes in the traditional KSD algorithm are calculated from all child nodes that extend in every 
layer and also the value of K. But in IKSD algorithm the visited nodes calculated from all child 
nodes that extend in every layer and restricted with the value of K and fixed threshold [27]. As 
depicted in figures (1)and(2), we can note that as it has happened in other works [28], [29], 
when using MM the performance suffer from a slight degradation, but in our proposed work, with 
using of channel ordering approach the SER performance does not suffer any degradation until 
with using MM.  

In figure (5) note that the visited nodes of IKSD with 64-QAM is much larger than the 
visited nodes in 16-QAM, this is due to the different in constellation size between 16-QAM and 
64-QAM, and also the visited nodes is directly proportional to increasing the size of the 
constellation.The 16-QAM and 64-QAM modulation schemes achieve different performing in the 
presence of noise. In particular, 64-QAM (higher order) modulation scheme is able to achieve 
higher data rates but it's not robust in the presence of noise. 16-QAM (Lower order) modulation 
scheme give fewer data rates but it is more robust in the presence of noise. So, figure (6) show 
us the variation in the performance of the IKSD algorithm between two types of modulation 16-
QAM and 64-QAM, we can see that the performance of 16-QAM better than the performance of 
64-QAM. 
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Figure 1. Performance of KSD and IKSD with No ordering, ordering, and combine ordering with 

MM for uncoded 4x4 MIMO 16-QAM system 
 
 

 
 

Figure 2. Performance of KSD and IKSD with No ordering, ordering, and combine ordering with 
MM for uncoded 4x4 MIMO 64-QAM system 
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Figure 3. Complexity of KSD and IKSD with No ordering, ordering, and combine ordering with 

MM for uncoded 4x4 MIMO 16-QAM system 
 
 

 
 

Figure 4. Complexity of KSD and IKSD with No ordering, ordering, and combine ordering with 
MM for uncoded 4x4 MIMO 64-QAM system 
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Figure 5. Compare the complexity of IKSD with No ordering, ordering, and combine ordering 
with MM for uncoded 4x4 MIMO 16-QAM and 64-QAM system 

 

 
 

Figure 6. Compare the SER performance of IKSD with No ordering, ordering, and combine 
ordering with MM for uncoded 4x4 MIMO 16-QAM and 64-QAM system 
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implementation.From the simulation results that appear in this work, we can see that the column 
norm ordering method is simple to implement but very effective in term of enhancing the 
performance and reduce the complexity. And we can also see the effect of combining the 
column norm ordering and Manhattan metric in term of enhancing the performance and more 
reducing of complexity than the column norm ordering method alone. 
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