Indonesian Journal of Electrical Engineering and Computer Science
Vol. 40, No. 2, November 2025, pp. 871~882
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v40.i2.pp871-882 a 871

Fuzzy multi-objective energy optimization of workflow

scheduling

Ayoub Chehlafi, Mohammed Gabli

Department of Computer Science, Faculty of science (FSO), University Mohammed First (UMF), Oujda, Morocco

Article Info

ABSTRACT

Article history:

Received Feb 2, 2025
Revised Jul 18, 2025
Accepted Oct 14, 2025

Keywords:

Dynamic multi-objective
Energy efficiency

Fuzzy logic
Metaheuristic algorithms
Optimization

Workflow scheduling

Task scheduling is a key and challenging problem in cloud computing systems,
requiring decisions regarding resource allocation to tasks to optimize a perfor-
mance criterion. This problem has required researchers and developers to over-
come significant challenges. Our goal in this study aims to minimize both the
makespan and energy consumption in cloud computing systems by efficiently
scheduling workflows. To achieve this, we first proposed a dynamic multi-
objective model, which was then simplified into a single-objective problem using
dynamic weights. Then, we proposed a dynamic genetic algorithm (DGA) and
a dynamic particle swarm optimization algorithm (DPSO) to address the prob-
lem. To deal with the situation where the makespan is uncertain and not exact,
we present a fuzzy model, treating each value as a fuzzy number and we utilize
both possibility and necessity metrics. The results are contrasted with the Het-
erogeneous earliest finish time (HEFT) algorithm and Considerably lowered the
total energy consumption, especially for DGA.

Corresponding Author:

[elolel
Chehlafi Ayoub

Department of Computer Science, Faculty of science (FSO), University Mohammed First (UMF)
Oujda, Morocco
Email: ayoub.chehlafi@ump.ac.ma

1. INTRODUCTION

Task scheduling in cloud computing settings has become a subject of significant academic interest
owing to the exponential growth in data volumes and the increasing demand for reduced execution times. This
explosive growth of data traffic has forced researchers and developers to propose numerous approaches aimed
at handling the complexities of task scheduling. These methods aim to optimize objectives including makespan,
energy consumption, or cost. Nonetheless, the essential complexity and fluctuating dynamic nature of cloud
environments present substantial obstacles to traditional scheduling algorithms. In cloud computing, one of
the primary challenges is scheduling workflows efficiently while preserving the task dependencies within the
workflow structure. Task scheduling in cloud refers to the process of assigning tasks to available resources and
managing their execution to achieve optimal performance. This process guarantees the allocation of tasks to the
most suitable virtual machines (VMs) or servers, depending on factors like resource availability, computational
capabilities, and task requirements. The second challenge is minimizing metrics such as makespan and energy
consumption. Figure 1 concisely illustrates the generation and processing steps involved in scientific workflow
applications. Indeed, multiple applications, originating from users, submit complex requests requiring multi-
tasking. These requests are modeled as workflows. Once generated, the workflow is sent to the cloud, where
it is processed in a distributed manner. Processing is handled by different service centers (SCs), each hosting
multiple VMs.

Journal homepage: http://ijeecs.iaescore.com

872 a ISSN: 2502-4752

n O 2o

application 1 application 2 application 3

Workflow generation

Cloud
Tﬁkj Tﬁkj Tasks
Ccs1 Ccs2 Ccs3
Workflow processing v
VM1 VM1
VM2 VM2 VM2

Figure 1. The scheduling of workflows in cloud computing

Cloud computing denotes the use of computing resources distributed across cloud servers. Each cloud
server (CS) hosts a set of m VMs, then, CS = {Vi,V5,...,V,,}. The VMs operating on a server can be
heterogeneous, varying in processing power, memory capacity, and storage space. Additionally, each cloud
server includes a resource manager responsible for storing information about the available VMs, and creating,
allocating, and deleting VMs as needed.

To represent the workflow model we adopt a directed acyclic graph (DAG) denoted as G =< T, E >,
where T = {T7,...,T,} signifies the collection of n tasks in the workflow. The set £ = {¢; ;|1 < i <
n,1 < j < n} describes the communication requirements between task 7; and T'j, and if task T; precedes
task T, then, task T); cannot start execution until task 7; has completed its execution. A communication cost
is associated with data transfer between tasks. However if two tasks T; and T are affected to the identical
machine, the communication cost becomes zero because the data remains on the same machine.

In the considered architecture, the time execution of a task primarily relies on runtime and commu-
nication time (CT). The runtime (RT) containing the execution times of different tasks on various VMs, and
depends on the size of a specific task T;. The RT between task T; and VM V}; can be expressed by (1). Accord-
ingly, the CT is determined by the data size and the bandwidth of the communication channel, as represented

by (1).

tqize
RT 5 = = (1)
(1,9) V]
0 ifVv, =V
CTy 5 = {Dm 1 / ()
B UV # Vi,

where D, ;) specifies the volume of data exchanged from task 7; to 7T}, and B indicates the communication
channel bandwidth between two cloud servers.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 871-882

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 873

Let EST(T;, V;) be the starting time and EFT'(T;, V;) be finishing time where T; is task assigned to
V;. We defined EST (T}, V;) as follows [1]:

» Vi

EST(T;,V;) = max {avail[j], max (EFT(T,,V;)+ C’Tm7i)} 3)
Ty €prd(T;)
where avail [j] indicates the moment when VM V; become available. If another task is still running on this
machine, T’; will need to wait until V; is free before starting. This factor ensures that 7T} does not begin until the
machine is ready. And, prd (T;) represents the collection of predecessor tasks (Tasks that must be completed
before launching 7;). If T; has multiple dependencies, the EFT of the predecessor task that finishes last is
taken.
On the other hand, EFT'(T;,V;) can be defined by [1]:

EFT (T,,V;) = w; ; + EST (T}, V) 4)

where w; ; Corresponds to the workload (execution time) for task T; on VM V.
MAKESPAN. In workflow the makespan is defined as the finish time of the last task (7.). It is indicated by

(5).
M = max{EFT (Texit, V) } (5

ENERGY. The system saves energy via dynamic voltage and frequency scaling. Complementary metal oxide
semiconductor (CMOS) use dynamic and static energy. The latter is ignored since dynamic power dissipation
is the most expensive and time-consuming [[1]. The total energy consumption is defined as follows (6).

m
Elotal =K x (Z ‘/}2 X .f X tj + Vi%westj X flowestj X tidle) (6)
j=1

where K is a dynamic power constant. V; is the voltage provided for the j;;, VM and f is the frequency at the
V; of same VM. ¢; is the time for which task is running on VM v;. Vzowestj and flm,,estj are, respectively, the
lowest voltage and lowest frequency of the VM v;. Finally, t;4;. represents the idle time of v;.

Several studies have addressed this issue, and researchers have developed various techniques to opti-
mize task execution by parallelizing sub-tasks while maintaining their dependencies. A review of the literature
on workflow scheduling highlights two main categories of approaches based on the number of objectives they
address: mono-objective and multi-objective workflow scheduling.

Mono-objective workflow scheduling focuses on optimizing one metric, such as makespan, energy
consumption, or cost. For instance, Ding et al. [2] the authors optimize energy consumption in cloud computing
using dynamic task scheduling based on Q-learning. Wang and Zuo [3] to reduce the total time needed for
completing tasks in workflow scheduling, integrated PSO with idle time slot-aware rules. Another notable
contribution, in [4] Faragardi et al. proposes an algorithm called Greedy Resource Provisioning and modified
HEFT, which is designed to reduce the makespan of a specific workflow subject to a budget constraint. Wu et al.
[5l], minimized makespan by accounting for both computational and communication resources. Additionally,
Lu et al. [6] utilized a method multi-hierarchy PSO to reduce total monetary cost by applying an on-demand
pricing structure for heterogeneous cloud resources.

Moving to multi-objective workflow scheduling, researchers have focused on optimizing two or three
metrics simultaneously, like cost and makespan. For instance, Zhu et al. [[7] a multi-objective evolutionary opti-
mization method was developed aimed at reducing both makespan and cost. Tang [8] introduced a new method
known as fault-tolerant, cost-efficient workflow scheduling, which reduces the costs of executing applications
and makespan while maintaining reliability. Chen et al. [9] introduced a new method called multiobjective
ant colony system approach , which focuses on minimizing the workflow execution time and cost by utilizing
co-evolutionary multiple populations for multiple objectives. Furthermore, Iranmanesh and Naji [10] presents
a hybrid GA to reduce both the cost and makespan, integrating enhanced genetic operators, adaptive fitness
functions, and a load balancing routine. Additional research, such as Jena [11]], applied nested PSO to decrease
two main objectives like the makespan and energy consumption, though it overlooked resource utilization.
Similarly, Kumar et al. [12]] the authors proposed a new approach to minimize the makespan and energy con-
sumption systems using PSO. Verma and Kaushal [[13] presented a hybrid multi-objective PSO approach for

Fuzzy multi-objective workflow scheduling optimization (Chehlafi Ayoub)

874 a ISSN: 2502-4752

the efficient scheduling of scientific workflows, maximizing resource utilization while minimizing execution
time and costs. Zhou et al. [14] used fuzzy dominance sort with HEFT algorithm to explore the collaborative
optimization of makespan and cost. Durillo and Prodan [15]], researchers combined HEFT with other meta-
heuristic techniques like PSO to improve results. Hao ef al. [16] proposed a three-objective DAG problem
to minimize makespan, energy cost, and maximize revenue for cloud scheduling systems. Similarly, Yuan et
al. [17] introduced the IMEAD algorithm to balance revenue and energy costs effectively. Another study,
detailed in [18]], presented a multi-objective GA (MOGA) that considers conflicting stakeholder interests while
optimizing makespan, budget, and energy efficiency. To optimize resource utilization, energy consumption,
and cost while enhancing security, thus benefiting both users and service providers [19]]. Furthermore in [20],
Adhikari et al. introduced a strategy based on the Firefly Algorithm aimed at tackling several competing goals,
such as workload allocation, total completion time, resource usage, and dependability. Behera and Sobhanayak
[21] presented a novel hybrid algorithm that merges GA and grey wolf optimization to reduce three key perfor-
mance indicators like makespan, energy consumption, and computational cost. Wu et al. [22] authors propose
a multi-objective optimization model for collaborative task scheduling across cloud, edge, and end devices.
It focuses on reducing task delay and improving load balancing by optimizing server allocation, service de-
ployment, caching, and resource allocation. Abualigah et al. [23], introduced an improved synergistic swarm
optimization algorithm, enhanced with the Jaya approach to minimize makespan and improve load balancing.
Although in [24], Zade et al. introduced an modified beluga whale optimization algorithm that incorporates
a ring topology to improve task scheduling in cloud computing. This approach aims to reduce both makespan
and cost by boosting solution diversity and preventing early convergence.

Our goal in this paper is to identify the best solution to the task scheduling problem to decrease two
main objectives: the makespan and energy consumption in the cloud. Our problem is then multi-objective. In
order to contribute to the improvement of existing literature, we addressed two challenges: (i) The first is to find
a way to fairly optimize each criterion of the objective function, i.e., not to minimize one criterion (makespan
or energy) at the expense of the other. (ii) The second is to consider the real situation where the makespan
varies dynamically due to several factors and remains not exact but uncertain, see for instance [25]-[27].

To meet the first challenge, we introduced a dynamic multi-objective modeling of the problem, by
using dynamic and automating the weight selection process, see the next section. Then we developed two
metaheuristics to solve it. Concerning the second challenge, and to make our model more realistic compared to
other studies, we improved it by introducing a fuzzy model which in each makespan value is defined as a fuzzy
number. To achieve this, we used both possibility and necessity metrics. Finally, we compared our results to
those of other algorithms, such as the HEFT algorithm used in [[1]]. The results found are promising and show
the robustness of our approach. The primary contributions of this paper are summarized below.

— A dynamic multi-objective model was proposed of the problem focusing on reducing both makespan and
energy consumption.

— We improved our model by using dynamic weights to ensure that all objectives are treated equitably and to
automate the choice of weights.

— We introduced a fuzzy model considering the uncertain aspect of the makespan. This makes our model
more realistic.

— We proposed two dynamic meta-heuristic algorithms to identify a solution to the proposed problem and we
compared its by HEFT algorithm.

The paper is organized into the following sections. In section 2, we introduced a new model by
reformulating the existing one and considering the dynamic and uncertain aspect of our problem.
In section 3, we presented our method and described the two algorithms developed to address this challenge.
In section 4, we presented and discussed the obtained numerical results and compared them with the HEFT
algorithm. Section 5 concludes this paper.

2. THE PROPOSED MODEL

Based on the above analyses, this research aims to identify a compromise solution that simultaneously
minimizes both the makespan and energy consumption. So, we introduce a binary decision variable X ;
between the task T; and the VM V; as follows.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 871-882

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 875

X, = 1 ifT; is.assigned to V; 7
0 otherwise.
In result, we have two objectives to achieve, and hence we obtain a multi-objective problem as follows.
Minimize f;(X;;) = min M)
Minimize f5(X;;) = min Eoa

It is unreasonable to view CT as precise but uncertain because it varies due to several factors, see for
instance [25]]-[27]]. To address this issue, we present a fuzzy model,which in each communication time CT}; is
defined as fuzzy numbers CT;; with the subsequent membership function:

CTy—t\ -
max(0,1 — =—2—) ift <= CTj;
pet, (t) = { : ’ ©)

ij
maz(0,1 — t_g%) ift > C'Ty;

where the constants c;; and 3;; represent the left-side and right-side spreads of fuzzy numbers, with both being
positive values. The corresponding membership function Bed,, presented in Figure 2.

Kery (t)

0 CT;:
@ij S By t

Figure 2. Membership function of CTM

In this study, we use both possibility and necessity metrics. To determine the makespan using the
possibility measure, we set 3;; = 0 for each task ¢ and j. To accomplish the necessity measure, we set a;;; = 0
for each task ¢ and j. For the process of defuzzification, we apply the center of gravity method which involves
identifying of taking the abscissa corresponding to the center of gravity of the membership function.

After this new modeling, the multiobjective problem in|2.|becomes:

{ Minimize fi(Xy) = m%nM (10)
Minimize f(X;;) = min Ei
we convert this multi-objective problem into a single-objective formulation as follows.
Minimize f(X,;) = Minimize (w; x f1(X;;) + w2 X fa(Xij)) (11)
Subject to:
iXijzl, Vi, 1<i<n (12)
j=1

which means that a task 7; should not be assigned to only one VM V. w; and w, are positive weights satisfying
0 <wp <1,k=1,2 and w; + we = 1. The choice of w; and ws, for the decision maker is not an easy.
Moreover, these values should be chosen in such a way that the optimization of both criteria (fl and f5) is fair.
To do this, w; and wy should not be considered constant, but change dynamically in each iteration (t) of the
algorithm as in [28].

Fuzzy multi-objective workflow scheduling optimization (Chehlafi Ayoub)

876 a ISSN: 2502-4752

X fL(X
wi(t+1) = M and wy(t+1)= A (13)
f1(Xe) + f2(Xy) fi(Xe) + f2(Xy)
where ¢ is an iteration of the used algorithm. Consequently, our problem becomes.
Minimize f(X;;) = Minimize (w1 (¢) x fi(Xi;) +wa(t) x f2(Xij)) (14)

3. METHOD

Let n and m correspond to the total number of tasks and VMs, respectively. To model our problem in
DGA and DPSO, we use an integer encoding scheme. We represented each solution like an vector of n integers,
where each element’s value ranges from 0 to m. For instance, in Figure[3] the encoding ‘2021212011° indicates
that task Ty is assigned to V My, T; is assigned to V' My, and we have 3 machines (V My, VM7, and V Ms).

TO T1 T9
2 0 2 1 2 1 2 0 1 1
VM2 VM1 ‘ VMO

Figure 3. Example of solution representation

3.1. Dynamic particle swarm optimization (DPSO) algorithm

The DPSO algorithm comprises S particles, where each particle’s position corresponds to a candidate
solution within the search space. The particles update their states based on the equations defined in (15) and
(16), respectively.

VIt = (we V) @ (¢l @ (bestP; © PY)) @ (¢2 ® (bestG © P})). (15)
P =P o V™ (16)

where w represents the inertia weight, ¢; and ¢ are coefficient numbers selected randomly from the interval
[0, 1], during each iteration, best P; denotes the best solution identified by the particle x; and bestG corresponds
to the best solution identified by all particles.

Define f(z) = wi f1(x) + wa fo(x) as the fitness function to be optimized and S corresponds to the
swarm size. The main procedures of the proposed DPSO algorithm are presented in Algorithm

To apply the DPSO algorithm to our problem, we proceed as follows.

— Step 1: (Initialize particles) Consider n tasks and m VMs. each particle in the population is encoded as
a vector of n integers, where each element in the vector as randomly selected from de set {0,--- ,m}.
A population refers to a collection of solutions.

— Step 2: (Fitness evaluation) The objective function value assigned to each particle is computed using (14).
If the particle’s current objective function value is more effective than its previous personal best (bestP), the
actual value is assigned as the new bestP. Then, the global best solution (bestG) is determined as the particle
with the highest fitness across the entire population.

— Step 3: (Update velocity and position) We calculate the velocity of each particle using in (15). Followed by
a position update using in (16).

— Step 4: Dynamically update w; and ws according to (13).

— Step 5: In this step, we find bestG.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 871-882

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 877

Algorithm 1 DPSO algorithm

Initialize Swarm parameters and .S.
Initialize Positions and velocities of all particles.
for each solution 7 do
Set bestP; < x;
Evaluate f(x;) using (14)
end for
while the termination criterion is not met do
for1 <i< Sdo
Compute velocity of the particle using Eq.(16),
Compute position of the particle using Eq. (15),
Evaluate f(x;) of each solution i
if f(z;) is more effective bestPi then
bestP; = x;
end if
if f(bestP;) is more effective than f(bestG) then
bestG = bestP;
end if
end for
Dynamically update w; and w, according to[2]
end while
Return the best solution bestG.

3.2. Dynamic genetic algorithm (DGA)

The DGA is a metaheuristic that mimics natural evolution. It works with populations composed of
several solutions. The population size represents the total number of chromosomes. Each chromosomes is
referred to as a solution (individual). Each chromosome has a set of genes. In this paper, we developed a DGA
as illustrated in Algorithm 2]

Algorithm 2 DGA Algorithm

Step 1: Initialize the population with random individuals.
Step 2: Repeat for a fixed number of generations
a. Evaluate each chromosome’s fitness in the population using (14).
b. Select parents for reproduction based on their fitness.
c. Create a new generation applying crossover and mutation operators to parents.
d. dynamically update w; and w5 according to (13)
Step 3: Select the best individual from the current population as the final solution.

To apply the DGA algorithm to our problem, we proceed as follows.

— Codage: we used the representation defined in section 3.

— Initial population: Consider n tasks and m VMs. Each chromosome in the population is initialized with
n randomly generated genes, in which each gene is an integer drawn from the collection {0,...,m}. A
population is a collection of solutions.

— Selection: We use in this operation the roulette wheel method.

— Crossover: A single-point crossover is applied where we determine randomly the crossover position. All
genes located after this point are swapped between the two parent chromosomes. The crossover process is
illustrated in Figure 4.

— Mutation: Once the gene (digit) selected for mutation, its value is exchanged with a number randomly
selected from the set {1, 2, ..., m}. The process of mutation operation is demonstrated in Figure 5.

— Weights: We dynamically update w; and wy according to (13).

Fuzzy multi-objective workflow scheduling optimization (Chehlafi Ayoub)

878 a ISSN: 2502-4752

Crossover position
x’/

2 3 094 8 5821 2 3 091 8 56173

Crossover

Parents

Children

5 0531 8 5673 5 0534 8 5821

Figure 4. The crossover mechanism

Selected gene Mutated gene

4 52 31 5 8673 4 5239 5 8673

Figure 5. The mutation mechanism

4. RESULTS AND DISCUSSION
4.1. Problem data

This part measures the performance of our algorithms by testing them utilizing two distinct problem
instances. The first one contains 10 tasks and 3 VMs. The second one contains 30 tasks and 3 VMs. The two
DAG with communication costs between the nodes distributed across three VMs are presented in Figure[6]and
Figure [7] respectively. Thus, Figure [6] on the left presents the communication requirements between tasks T;
and T;. For example, the value 18 between tasks Ty and T represents the quantity of data to be sent from task
T to task T;. Figure[f]on the right also presents the computation time matrix between tasks and VM. For
example, task Ty costs 14 ms if executed on VM3, 16 ms if executed on VMs, and 9 ms if executed on VMs3.
The same is true for Figure[7 on the left and right, but this time for 30 tasks and 3 VMs.

Tache | VM1 | VM2 | VM3
0 14 16 9

1 13 19 18
2 11 13 19
3 13 18 7
4 12 13 10
5 13 16 9
6 7 15 11
7 5 11 14
8 18 12 20
9 21 7 16

Task execution times on VMs

Figure 6. First problem instance: DAG with 10 tasks, 3 VMs and a matrix detailing the computation times for
each task on the different VMs

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 871-882

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 879

Taches | VM1 | VM2 | VM3
0 14 16 9
1 13 19 18
2 11 13 19
3 13 18 7
4 12 13 10
5 13 16 9
6 7 15 11
7 5 11 14
8 18 12 20
9 21 7 14
10 21 21 16
11 15 7 17
12 16 17 21
13 22 7 15
14 23 15 13
15 20 7 19
16 7 19 20
17 15 7 12
18 14 12 6
19 21 12 7
20 15 13 14
21 10 15 22
22 11 14 20
23 21 16 9
24 10 15 8
25 21 8 17
26 12 9 13
27 23 7 19
28 15 12 17
29 21 20 18

Task execution times on VMs

Figure 7. Second problem instance: DAG with 30 tasks, 3 VMs and a matrix detailing the computation times
for each task on the different VMs

4.2. Computational results

As described before, we developed two dynamic meta-heuristic algorithms DPSO and DGA to solve
the problem. The parameter values of DPSO and DGA have been set as shown in Tables [T|and [2] respectively.
The number of iterations for each method is itermaxz = 500 for the first instance and ¢termaxz = 1,000 for
the second one. The population size is psize = 30 for the first instance and psize = 50 for the second one.
Table[3|provides the voltage values and corresponding frequencies for each VM under consideration. For fuzzy
logic we decided to take o;; = 0.5 and 8;; = 0.2 for 4,5 € {0,1,--- ,n}.

Table 1. DPSO parameters

Parameters Value
w (Wma,z - ((Wma,z - wmin) * it))/itmaz
ql, q2 Generated at random

Where iter,,q, refers to the total number of iterations, it indicates the current iteration, w,q, rep-
resents the maximal value of of the parameter w (Wi = 0.9) and wyy,;, refers to the minimal value of the
parameter w (Wynin = 0.4).

Table 2. DGA parameters

Parameters ~ Value Description
Per 0.5 Crossover operation probability
Prut 0.01 Mutation operation probability

Table 3. VM frequency and voltage
VMI VM2 VM3

Voltage (V) 1.1 1.3 1.5

Frequency (GHz) 2.0 2.5 3.0
Lowest voltage (V) 0.7
Lowest frequency (GHz) 0.1

Fuzzy multi-objective workflow scheduling optimization (Chehlafi Ayoub)

880 a ISSN: 2502-4752

We measured the efficiency of our approach by evaluating it with HEFT algorithm, which is widely
recognized in the literature (see [[1]). The implementation of all algorithms was carried out using the Java
programming language. The algorithms were implemented in Java and executed on a system featuring an Intel
Core 15-5200U processor running at 2.20 GHz and 8 GB of RAM.

4.3. Discussion
4.3.1. Evaluation of our first challenge

The first challenge focuses on reducing the makespan and minimizing energy consumption in the
cloud, simultaneously and equitably. In Table] we presented the comparison of the three algorithms HEFT,
DPSO an DGA for each instance of the problem without using the fuzzy logic approach. The time in the fourth
column denotes the execution time (in ms) of each algorithm on our machine.

The results show that our two algorithms, DPSO and DGA, significantly outperform HEFT in terms
of energy consumption. In particular, DGA stands out as the most efficient, consistently reducing energy
consumption across all tested instances. Although HEFT achieves a slightly lower makespan, the difference
is minimal, confirming that our approach offers a suitable balance between execution performance and energy
efficiency.

4.3.2. Evaluation of the second challenge

To assess the usefulness of the fuzzy approach, we presented the results (i) considering the fuzzy
approach and (ii) without considering the fuzzy approach. Thus, Table [5] presented the comparison of DGA
performance for the two instances of problem with and without using the fuzzy logic approach. In this table,
we denoted by Poss_DGA the result by DGA when we used possibility measure and by Nec_DGA the result
by DGA when we used necessity measure.

The results showed that this approach is suitable for making a more realistic decision. Indeed, in the
second case for instance, unlike the approach without fuzzy logic (i.e. DGA), which sets the makespan at 321
and the energy consumption at 2043.54, the fuzzy logic approach introduced a certain flexibility. It provided a
range of values: the makespan varies between 316 and 322.99, and the energy consumption between 2043.54
and 2049.249, depending on whether an optimistic or pessimistic perspective is adopted in the decision-making
process. The same remarks are observed for the first instance. As a result, we observe that our DGA algorithm
performed better in addressing this scheduling problem. It achieved the main objective of this paper, namely,
optimizing energy efficiency in cloud computing, with only a slight degradation of the secondary objective,
which is makespan. Moreover, the results obtained through the fuzzy logic approach assisted decision-makers
in reaching more relevant and realistic decisions. In summary, our work offered two major contributions:

— A substantial reduction in energy consumption compared to traditional approaches such as HEFT.
— The integration of fuzzy logic, enabling more realistic and uncertainty-aware decision-making.

Table 4. Comparison of HEFT, DPSO, and DGA performance for the two instances of problem

Instance Algorithm Makespan (ms) Energy (J) Time (ms)
HEFT 75 685 0.151

First instance DPSO 88.0 657.48 4.43
DGA 88.0 657.48 5.832
HEFT 304 2293.36 0.291

Second instance DPSO 346.0 2161.20 4.187
DGA 321 2043.54 6.983

Table 5. Comparison of DGA performance for the two instances of problem with and without using the fuzzy
logic approach

Instance Algorithm Makespan (ms) Energy (J) Time (ms)
DGA 88.0 657.48 5.832
First instance Poss_.DGA 86.5 657.48 5.9
Nec_DGA 88.6 657.48 5.95
DGA 321 2043.54 6.983
Second instance ~ Poss_DGA 316.0 2049.249 7.39
Nec_DGA 322.99 2043.54 7.983

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 871-882

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 881

5. CONCLUSION

In this study, we have focused on the workflow scheduling optimization problem, which is essential
to the performance of cloud computing. To do this, we have introduced a dynamic multi-objective modeling
of the problem aiming at increasing both the makespan and the energy consumption. To handle this multi-
objective problem, we use dynamic weights to transform it into a single-objective one, ensuring an equitable
treatment of all objectives and automating the choice of weights. To address the situation where the CT is
uncertain and not exact, we introduced a fuzzy model in which each CT is considered as a fuzzy number,
and we used both possibility and necessity metrics. We have proposed two dynamic meta-heuristic algorithms
(DPSO and DGA) to solve this problem and compared them with the HEFT algorithm. The results found
demonstrated that the proposed algorithms are more efficient in minimizing the energy consumption compared
to the HEFT algorithm, in particular DGA which minimized the energy consumption with a slight deterioration
of makespan. As research perspectives, we can, on the one hand, improve the current model by integrating
additional objectives such as cost or reliability, key criteria in cloud environments. On the other hand, we
can explore hybrid approaches exploiting the complementary strengths of different metaheuristics, or integrate
machine learning techniques to more efficiently guide the search process towards optimal solutions.

FUNDING INFORMATION
Authors state no funding involved.

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
Data availability is not applicable to this paper as no new data were created or analyzed in this study.

REFERENCES

[1] A. Kumar, S. Ghosh, B. B. Naik, and P. Kuila, “Energy efficient workflow scheduling in cloud computing systems using particle
swarm optimization,” in Proceedings of the International Conference on Signal Processing and Computer Vision (SIPCOV 2023),
2024, pp. 266278, doi: 10.2991/978-94-6463-529-4 24.

[2] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning based dynamic task scheduling for energy-efficient cloud
computing,” Future Generation Computer Systems, vol. 108, pp. 361-371, Jul. 2020, doi: 10.1016/j.future.2020.02.018.

[3] Y. Wang and X. Zuo, “An effective cloud workflow scheduling approach combining PSO and Idle time slot-aware rules,” IEEE/CAA
Journal of Automatica Sinica, vol. 8, no. 5, pp. 1079-1094, May 2021, doi: 10.1109/JAS.2021.1003982.

[4] H. R. Faragardi, M. R. S. Sedghpour, S. Fazliahmadi, T. Fahringer, and N. Rasouli, “GRP-HEFT: a budget-constrained resource
provisioning scheme for workflow scheduling in IaaS clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 6, pp. 1239-1254, Jun. 2020, doi: 10.1109/TPDS.2019.2961098.

[5] Q. Wu, M. Zhou, and J. Wen, “Endpoint communication contention-aware cloud workflow scheduling,” IEEE Transactions on
Automation Science and Engineering, vol. 19, no. 2, pp. 1137-1150, Apr. 2022, doi: 10.1109/TASE.2020.3046673.

[6] C.Lu,]J.Zhu, H. Huang, and Y. Sun, “A multi-hierarchy particle swarm optimization-based algorithm for cloud workflow schedul-
ing,” Future Generation Computer Systems, vol. 153, pp. 125-138, 2024, doi: 10.1016/j.future.2023.11.030.

[7] Z.Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective workflow scheduling in cloud,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 5, pp. 1344-1357, May 2016, doi: 10.1109/TPDS.2015.2446459.

[8] X. Tang, “Reliability-aware cost-efficient scientific workflows scheduling strategy on multi-cloud systems,” IEEE Transactions on
Cloud Computing, vol. 10, no. 4, pp. 2909-2919, Oct. 2022, doi: 10.1109/TCC.2021.3057422.

[91 Z.-G. Chen et al., “Multiobjective cloud workflow scheduling: a multiple populations ant colony system approach,” IEEE Transac-
tions on Cybernetics, vol. 49, no. 8, pp. 2912-2926, Aug. 2019, doi: 10.1109/TCYB.2018.2832640.

[10] A.Iranmanesh and H. R. Naji, “DCHG-TS: a deadline-constrained and cost-effective hybrid genetic algorithm for scientific work-
flow scheduling in cloud computing,” Cluster Computing, vol. 24, no. 2, pp. 667-681, Jun. 2021, doi: 10.1007/s10586-020-03145-8.

[11] R. K. Jena, “Multi objective task scheduling in cloud environment using nested PSO framework,” Procedia Computer Science,
vol. 57, pp. 1219-1227, 2015, doi: 10.1016/j.procs.2015.07.419.

[12] A. Kumar, S. Ghosh, B. B. Naik, and P. Kuila, “Energy efficient workflow scheduling in cloud computing systems using particle
swarm optimization,” in International Conference on Signal Processing and Computer Vision (SIPCOV-2023), Atlantis Press, 2024,
pp. 266-278.

[13] A. Verma and S. Kaushal, “A hybrid multi-objective particle swarm optimization for scientific workflow scheduling,”
Parallel Computing, vol. 62, pp. 1-19, Feb. 2017, doi: 10.1016/j.parco.2017.01.002.

[14] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, “Minimizing cost and makespan for workflow scheduling in
cloud using fuzzy dominance sort based HEFT,” Future Generation Computer Systems, vol. 93, pp. 278-289, Apr. 2019,
doi: 10.1016/j.future.2018.10.046.

Fuzzy multi-objective workflow scheduling optimization (Chehlafi Ayoub)

882

a ISSN: 2502-4752

[15]
[16]

[17]

[18]

[19]
[20]
[21]
[22]
(23]

[24]

[25]

[26]

[27]

[28]

J.J. Durillo and R. Prodan, “Multi-objective workflow scheduling in Amazon EC2,” Cluster Computing, vol. 17, no. 2, pp. 169-189,
Jun. 2014, doi: 10.1007/s10586-013-0325-0.

Y. Hao, C. Zhao, Z. Li, B. Si, and H. Unger, “A learning and evolution-based intelligence algorithm for multi-objective heteroge-
neous cloud scheduling optimization,” Knowledge-Based Systems, vol. 286, 2024, doi: 10.1016/j.knosys.2024.111366.

H. Yuan, H. Liu, J. Bi, and M. Zhou, “Revenue and energy cost-optimized biobjective task scheduling for green cloud
data centers,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 2, pp. 817-830, Apr. 2021, doi:
10.1109/TASE.2020.2971512.

A. Rehman, S. S. Hussain, Z. ur Rehman, S. Zia, and S. Shamshirband, “Multi-objective approach of energy efficient workflow
scheduling in cloud environments,” Concurrency and Computation: Practice and Experience, vol. 31, no. 8, Apr. 2019, doi:
10.1002/cpe.4949.

P. V. Reddy and K. G. Reddy, “An energy efficient RL based workflow scheduling in cloud computing,” Expert Systems with
Applications, vol. 234, p. 121038, Dec. 2023, doi: 10.1016/j.eswa.2023.121038.

M. Adhikari, T. Amgoth, and S. N. Srirama, “Multi-objective scheduling strategy for scientific workflows in cloud environment:
a Firefly-based approach,” Applied Soft Computing, vol. 93, p. 106411, Aug. 2020, doi: 10.1016/j.as0c.2020.106411.

1. Behera and S. Sobhanayak, “Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO
approach,” Journal of Parallel and Distributed Computing, vol. 183, p. 104766, Jan. 2024, doi: 10.1016/j.jpdc.2023.104766.

D. Wu, Z. Li, H. Shi, P. Luo, Y. Ma, and K. Liu, “Multi-dimensional optimization for collaborative task scheduling in cloud-edge-end
system,” Simulation Modelling Practice and Theory, vol. 141, p. 103099, May 2025, doi: 10.1016/j.simpat.2025.103099.

L. Abualigah et al., “Improved synergistic swarm optimization algorithm to optimize task scheduling problems in cloud computing,”
Sustainable Computing: Informatics and Systems, vol. 43, p. 101012, Sep. 2024, doi: 10.1016/j.suscom.2024.101012.

B. M. H. Zade, N. Mansouri, and M. M. Javidi, “An improved beluga whale optimization using ring topology for solv-
ing multi-objective task scheduling in cloud,” Computers & Industrial Engineering, vol. 200, p. 110836, Feb. 2025, doi:
10.1016/j.cie.2024.110836.

H. Abd and E.-W. Khalifa, “Developing a new fuzzy approach for solving two-machine flow shop scheduling problems un-
der fuzziness,” Computational Algorithms and Numerical Dimensions, vol. 2, no. 4, pp. 195-204, 2023, [Online]. Available:
https://www.journal-cand.com/article_194229.html.

C.-C. Chyu and W.-S. Chang, “Optimizing fuzzy makespan and tardiness for unrelated parallel machine scheduling with archived
metaheuristics,” The International Journal of Advanced Manufacturing Technology, vol. 57, no. 5-8, pp. 763-776, Nov. 2011,
doi: 10.1007/s00170-011-3317-3.

Junging Li, Shengxian Xie, Tao Sun, Yuting Wang, and Huaqing Yang, “Solving fuzzy job-shop scheduling problem by
genetic algorithm,” in 2012 24th Chinese Control and Decision Conference (CCDC), May 2012, pp. 3243-3247, doi:
10.1109/CCDC.2012.6244513.

M. Gabli, E. M. Jaara, and E. B. Mermri, “A genetic algorithm approach for an equitable treatment of objective functions in multi-
objective optimization problems,” JAENG International Journal of Computer Science, vol. 41, no. 2, pp. 102-111, 2014.

BIOGRAPHIES OF AUTHORS

Ayoub Chehlafi &4 B 2 is a Ph.D. student in the Department of Computer Science at the FSO,
UME, Oujda, Morocco. His research focuses on artificial intelligence, machine learning, and op-
timization techniques. He has knowledge in applied Al, metaheuristic algorithms, optimization
network, cloud computing, and energy consumption. His work aims to contribute to advance-
ments in intelligent computing and efficient resource management. He can be contacted at email:
ayoub.chehlafi@ump.ac.ma.

Mohammed Gabli || &4 Ed 13| is an associate professor of Computer Science in the Department
of Computer Science at the FSO, UMF, Oujda, Morocco. He is a former guidance counselor at
the Moroccan Ministry of National Education. Currently, he is coordinator of the master’s degree
in Artificial Intelligence and Data Sciences. His research interests include artificial intelligence,
metaheuristics, optimization, and education. He has several publications in the field of artificial
intelligence. He can be contacted at email: medgabli @yahoo.fr or medgabli@ump.ac.ma.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 871-882

https://orcid.org/0000-0002-5724-823X
https://scholar.google.com.pk/citations?hl=en&pli=1&user=vJ0KGqEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57209400732
https://www.webofscience.com/wos/author/record/MXK-8555-2025
https://orcid.org/0000-0001-5020-9847
https://scholar.google.fr/citations?user=o0xW7WEAAAAJ&hl=fr&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55839822600
https://www.webofscience.com/wos/author/record/1950588

	Introduction
	THE PROPOSED MODEL
	METHOD
	Dynamic particle swarm optimization (DPSO) algorithm
	Dynamic genetic algorithm (DGA)

	Results and Discussion
	Problem data
	Computational results
	Discussion
	Evaluation of our first challenge
	Evaluation of the second challenge

	Conclusion

