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 Most research work focus only on binary classification of voice pathologies 

such as normal and pathological classification. However, the current work 

gives importance to multiclass classification too. The paper compares one-

dimensional (1D) feature vectors based machine learning (ML) techniques 

and two-dimensional (2D) scalogram image based deep learning (DL) model 

for binary and multiclass classification of voice pathology. The multiclass 

classification classifies the voice signal into four categories which are 

healthy, hyperkinetic dysphonia, hypokinetic dysphonia, and reflux 

laryngitis. The current work demonstrates the evaluation of 1D feature 

vectors extracted from speech signal such as MFCC (mel-frequency cepstral 

coefficient) and pitch with various ML techniques like K-nearest neighbor 

(KNN), Naïve Bayes, and discriminant analysis (DA). Another technique 

that uses time-frequency scalograms derived using three different wavelets, 

i.e., analytical Morlet (amor), Bump, and Morse, are used for training a pre-

trained GoogleNet architecture, which is a very popular DL model. 

Experimental results show that 2D scalogram image based DL model for 

binary (96.05%) and multiclass (89.8%) classification of voice pathology 

gives better performance while comparing with 1D feature vectors based ML 

techniques. 
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1. INTRODUCTION 

Speech is the most basic form of expression, and any change to the vocal cord interrupts its seamless 

flow. Vocal fatigue, pressure, dysphonia, roughness, glottal assault, sore throat, and other symptoms are 

exacerbated by speech problems. Long-term vocal cord abuse can result in diseases such as laryngeal 

malignancy, folding, polyp, and nodule. The hoarseness of one's voice might define these conditions. Aside 

from self-abuse, a sedentary lifestyle may lead to an increase in voice problems [1], [2]. Deep learning (DL) 

has surpassed traditional classifiers such as Naïve Bayes, decision trees, K-nearest neighbor (KNN), and 

support vector machine (SVM). Since the last several decades, handcrafted speech or acoustic characteristics 

have been critical for detecting voice disorder and this cannot be overlooked [3]-[7]. For diagnosing voice 

pathology, a wide range of long and short feature descriptors have been employed. Long-term characteristics 

have been employed in certain significant research studies [8]-[11]. Wahed [12] suggested a study to develop 

a detector for vocal larynx abnormalities by extracting a mixture of various feature descriptors from a 
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diseased voice sample. Orozco-Arroyave et al. [13] presented a method for diagnosing Parkinson's illness, 

palate dysfunction, and vocal fold abnormalities, hypernasal lip. Another seminal study that used entropy to 

distinguish between healthy and diseased voices was suggested in [14]. Uloza et al. [15] describes a multi-

class voice pathology classifier that employs a rich feature vector generated from varied and common speech 

characteristics. Reynolds and Rose [16] removed characteristics from short regular utterances using a mel-

frequency filter bank. Pravena et al. [17] used the Gaussian mixture model (GMM) model to train 11 distinct 

mel-frequency cepstral coefficient (MFCC) characteristics to distinguish a normal voice from a disordered one. 

The machine learning techniques is applied in most of the medical application [18].  

 

2. METHOD 

For studying the implementation results of one-dimensional (1D) and 2D based machine learning 

(ML) and DL systems, two separate workflows are proposed in the current methodology, as discussed in the 

following two subsections. The summarized architectures of Figures 1 and 2 are similar, except, the former 

deals with a binary class prediction and the latter is a multiclass predictor. In case of 1D binary classification, 

the first step is to collect data which is input speech, the second step go for feature extraction, the third step is 

for ML which is training and testing the sample provided and the last step undergoes classification of healthy 

and pathological. The MFCC and pitch characteristics are extracted from the input signal as a feature 

extraction. KNN, Naive Bayes, and discriminant analysis (DA) are used for training and testing the samples. 

In 2D binary classification, the input speech is converted into time-frequency scalogram and goes for DL 

using GoogleNet and lastly classification. The time frequency sclogram and DL method is explained in the 

later section. In case of 1D multiclass classification, the first step is to collect data which is input speech, the 

second step go for feature extraction, the third step is for ML which is training and testing the sample 

provided and the last step undergoes classification of healthy, hyperkinetic dysphonia, hypokinetic dsyphonia 

and laryngitis. As feature extraction, MFCC and pitch characteristics are extracted from the input signal. 

KNN, Naive Bayes, and DA are used for ML which explained in later section. In 2D mutliclass 

classification, the input speech is converted into time-frequency scalogram and goes for DL and lastly 

classification which is explained in later section.  

 

 

2.1.  Dataset 

Cesari et al. [19] suggested a vocal pathology dataset, which will be used in this study. The 

collection contains 151 diseased and 55 healthy speech samples, respectively. There are three types of 

abnormal voices: hypokinetic dysphonia, hyperkinetic dysphonia, and reflux laryngitis. All recordings feature 

a 4.76 second sustained ‘a' vowel sound at an 8 kHz sampling rate. To avoid overfitting, each speech sample 

is split into 10 equal length segments of 0.476 second duration, 3,808 sampling points, and an 8 kHz 

sampling frequency. Overfitting or excessive variance might lead to misleading positive outcomes. As 

indicated in Table 1, this arrangement yielded 1,510 and 550 diseased and healthy speech samples, 

respectively. To prevent the issue of class imbalance, the total number of samples that will be trained and 

tested is 550 for each class. The number of segmented samples for the healthy class, 550, is used as the upper 

limit in this case. This balanced no. will subsequently take part in training and testing. 

There are 41, 72, and 38 samples from the hypokinetic dysphonia, hyperkinetic dysphonia and 

reflux laryngitis categories, respectively, among the 151 un-segmented voice samples. It's also worth noting 

that they're all divided into ten equal-length speech samples. Table 2 shows that there are now 720, 410, and 

380 samples available for each of the three classes. To prevent the issue of class imbalance, the number of 

samples for all four classes is kept at 380, with reflux laryngitis having the fewest. This balanced no. will 

take part in future training and testing. 

 

 

Table 1. Dataset distribution for binary prediction 
Class Original no. Segmented no. Balanced no. 

Healthy 55 550 550 

Pathological 151 1510 550 

 

 

Table 2. Dataset distribution for multiclass prediction 
Class Original no. Segmented no. Balanced no. 

Healthy 55 550 380 

Hypokinetic dysphonia 41 410 380 

Hyperkinetic dysphonia 72 720 380 
Reflux laryngitis 38 380 380 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 654-666 

656 

2.2.  Framework for classification using 1D features and machine learning 

The workflow of the proposed 1D features-based ML architecture is shown in Figures 1(a) and 2(a). 

It will consist of three stages as explained in subsection. 

 

 

  

(a) (b) 

Figure 1. The proposed architectures for (a) 1D and (b) 2D learning models for binary prediction 

 

 

2.2.1. Speech input 

Speech samples from either Table 1 or Table 2 will be used depending on the type of prediction 

model needed, i.e., binary or multiclass. Regardless of prediction model, all samples have an 8 kHz sampling 

frequency and 3,808 sampling points. 

 

2.2.2. Feature descriptors 

The MFCC and pitch characteristics are extracted from the input signal. These two characteristics 

are retrieved from a single input voice sample and concatenated into a single vector. Concatenated vectors of 

this kind are created for all training samples. They will participate in training. 

MFCC is an acoustic signal description predicated on the linear cosine transform of a log power 

spectrum on a nonlinear mel scale of frequency [20]. The MFCC features are the coefficients that make up 

the mel-frequency cepstrum. This frequency warping improves the representation of sound and speech data. 

The window length is set at 3% of the sampling rate, which is 240. And the overlap length is fixed at 2.5% of 

the sampling rate, which is 200. The original sampling rate, i.e., 8 kHz is utilized.  

Pitch. The fundamental frequency or pitch of a voice relates to the number of times the vocal folds 

come together during phonation per second. The auto-correlation function is used in time-domain pitch 

period estimate methods (ACF). The main principle behind correlation-based pitch tracking is that the 

correlation signal will have a significant magnitude peak during the pitch period's lag. The autocorrelation 

computation is performed directly on the waveform and is a simple calculation [21]. Salhi et al. [21] 

computes the autocorrelation function for a signal x(n). 

 

𝜑𝑥(𝑚) = lim
𝑛→∞

1

2𝑁+1
∑ 𝑥(𝑛)𝑥(𝑛 + 𝑚)𝑁

𝑛=−𝑁   (1) 

 

The autocorrelation function of a signal is basically a transformation of the signal which is useful for 

displaying structure in the waveform. Thus, for pitch detection, if we assume x(n) is exactly periodic with 

period P, i.e. x(n)=x(n+P) for all n, then the autocorrelation function of (1) is also periodic with the same 

period. 

 

𝜑𝑥(𝑚) = 𝜑𝑥(𝑚 + 𝑃) (2) 

 

2.2.3. Machine learning classifiers 

There are numerous classification algorithms available today, but none of them outperform the 

others in every case [22]. We chose three classifiers for the current work study: KNN, Naive Bayes, and DA. 

These classifiers are trained individually using the concatenated feature vectors obtained from the training 

samples. 

Akbulut et al. [23] states, the KNN technique is among the earliest and easiest kinds of 

nonparametric classifier. The drawback is that when a low k value is used, the separation border becomes 

excessively adapted to the training data, resulting in over-training. At higher k values, the border tends to be 

smoother, resulting in improved prediction results for fresh samples. The best value of k must be found 
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empirically. To identify the optimal value of k, we empirically evaluated different values of k using the 

Euclidean distance metric. More specifically, we tested k=1,2,3,4,5,6,7. It was discovered that a value of k=5 

produces the greatest results.  

Naive Bayes: the fundamental feature of Naive Bayes is a strong naive assumption of independence 

from each condition or occurrence. It is a straightforward model that may be used to huge datasets. The basis 

of the Naive Bayes theorem is the Bayes formula, which is given by 

 

𝑃(𝐶|𝑋) =
𝑃(𝐶) 𝑃(𝑋|𝐶)

𝑃(𝑋)
  (3) 

 

where, X= (x1, x2, x3, …, xn) is the attribute, C is the class, P(C|X): probability of event 𝐶 given 𝑋 has 

occurred, P(X|C): probability of event 𝑋 given 𝐶 has occurred, P(C): probability of event C, P(X): probability 

of event X. 

We must maximise the probability value of each class in the Nave Bayes classifier, which is 

represented as the hypothesis maximum a posteriori (HMAP).  

 

𝐻𝑀𝐴𝑃 = arg max 𝑃(𝐶|𝑋1, 𝑋2, … … … , 𝑋𝑛) = arg max 𝑃(𝐶) ∏
𝑖=1
𝑛 𝑃(𝑋𝑖 |𝐶) (4) 

 

Where, P represents opportunity, xi is the ith attribute value, C is class. 

Linear discriminant analysis (LDA): it can be used for classification as well as dimensionality 

reduction. This classifier evaluates a projection hyperplane that accomplishes two goals: 1) interclass 

variance should be reduced, and 2) projected means of classes should be as close to each other as possible 

[4]. Consider the following example in which a class is to be predicted. Let X represent the predictor 

variables. Suppose X is the single predictor variable, i.e. X=x. Let fk(x) be the estimated discriminator score 

that the observation belongs to the Ck class. Then, fk(x) can be evaluated by the formula: 

 

𝑓𝑘(𝑥) = 𝑥
𝜇𝑘

𝜎2 −  
𝜇𝑘

2

2𝜎2 + log (∏𝑘) (5) 

 

where, ∏𝑘 is the prior probability that the class of observation is Ck. 𝜇𝑘is the average of training observations 

belonging to class Ck. For each of the K classes the weighted average of sample variances is represented by 

𝜎2. The LDA classifier will predict that class k for the given observation whose discriminant score is largest. 

 

2.3.  Framework for classification using 2D scalograms and deep learning 

The current subsection will discuss the effects of using an image-based analysis for performing both 

binary and multiclass predictions. The workflow is highlighted in Figures 1(b) and 2(b). The first step is to 

generate scalogram images from all samples of every class.  

 

 

 

 

(a) (b) 
 

Figure 2. The proposed architectures for (a) 1D and (b) 2D learning models for multiclass prediction 
 

 

Time-frequency scalograms: the next step is to convert the segmented speech samples from each of 

these three classes into Morse scalogram (M.S) 2D images. The continuous wavelet transform (CWT) of a 

given signal having function f(t) is evaluated by using the mother wavelet through the expression: 
 

𝐶𝑊𝑇(𝑥, 𝑦) =  
1

√𝑥
∫ 𝑓(𝑡) ∗ 𝑚 (

𝑡−𝑦

𝑥
) 𝑑𝑡

+𝛼

−𝛼
 (6) 
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where, x and y are the scaling and shifting factor for the mother wavelet and * signifies convolutions 

operation. The above expression can be translated as an integration of summation of the input audio sample 

multiplied by the time scaled and shifted forms of the mother wavelet (m).  

The Morse wavelet is being chosen for the current work because it displays strong localization in 

both the frequency and temporal domains, making it ideal for studying localized discontinuities. The fourier 

transform of a Morse wavelet is expressed as: 

 

𝑚𝑑,𝑛(𝜔) =  𝜀(𝜔)𝛼𝑑,𝑛𝜔𝑛
𝑑2

𝑒−𝜔𝑛
 (7) 

 

where, ξ(𝜔) is a unit step function, 𝑑2 is the time-bandwidth product, 𝛼𝑑,ɳ signifies normalization constant 

and   is the symmetry parameter. Different combination of 
2

d  and   can produce diverse Morse wavelets.  

Similarly, the coefficients of (6) can be implemented with bump wavelet transformation [24] to 

derive the glottal derivative Bump scalogram. The fourier transform of a bump wavelet is: 

 

𝜓(𝑠𝜔) = 𝑒

(1−
1

1−
(𝑠𝜔−𝜇)2

𝜎2

)

1
[
𝜇−𝜎

𝑠
,
𝜇+𝜎

𝑠
]
 (8) 

 

where,  and  are parameters that controls the transformed signal’s frequency and time localization.  

Applying time-domain to frequency-domain transformation using wavelet, the 1-D input signal is 

transformed into a 2D signal. And an analytical morlet (amor) wavelet based time- frequency version of the 

input audio is: 

 

𝜔 = 𝑒2𝑖𝜋 𝑓𝑡𝑒
−4ln(2)𝑡2

ℎ
2    (9) 

 

where h is full-width at half-maximum (FWHM) which is the distance in time between 50% gain before the 

peak to 50% gain after the peak [23]. 

 

2.3.1. GoogLeNet 

It is a cutting-edge convolutional neural network (CNN) suggested by Google. It had a top-five 

mistake rate of 6.67 % [25]. The GoogleNet employs nine (9) 1D-inception modules, each of which employs 

three distinct convolutional kernels, namely 1x1, 3x3, and 5x5. This network has a total of 142 layers. The 

input layer is a 2D image input layer with 224x224x3 dimensions. It is linked to a convolutional layer with a 

kernel size of 7x7, stride of 2, and 512 filters. This layer will collect features from the preceding layer (the 

input layer) and store them as activation maps with 512 depths (equal to the number of filters). It is linked to 

a max-pooling layer with kernel size or filter size 3x3 and stride equal to 2 through a rectified linear unit 

(ReLU) layer. The max-pooling layer's goal is to downsample (or minimise) the size of the activation maps 

created by the previous layer. To minimise overfitting, this new activation map is now put into a normalising 

layer. Overfitting is a phenomenon that reduces DL network accuracy by supplying features in a non-uniform 

manner. Overfitting is minimised by utilising either a dropout layer or a normalising layer; currently, dropout 

is seldom employed, and batch normalisation or cross channel normalisation has largely replaced it. The 

normalised layer is linked to two further convolutional layers with kernel sizes of 3x3, stride 2 through a 

ReLU layer. With this second convolutional layer, a cross channel normalisation layer is employed, followed 

by a max-pooling layer. This max-pooling layer's activation maps are linked to an inception module. Each 

inception module includes 13 layers, 6 of which are convolutional layers and the rest are a mix of ReLU and 

max-pooling layers. A depth concatenation module is utilised at the conclusion of each inception module to 

merge the activation maps from the inception module's four columns. The GoogLeNet's final layers include 

dropout, fully connected, softmax, and a classification output layer. The dropout layer employs a dropout 

probability of 70%. The dimension of the completely linked layer is 2,048. The related probabilities will be 

computed using the softmax layer. The last layer is a classification output layer, which will be programmed 

to identify the number of classes requested. 

 

 

3. RESULTS AND DISCUSSIONS 

After carefully implementing the precodure in the model, the experimental results are evaluated as 

follows:  
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3.1.  Evaluation metrics 

The current work will be evaluated using nine (9) metrics, which are – sensitivity (Sen.), accuracy 

(Acc.), Cohen’s kappa index error (Err.), precision (Pre.), specificity (Spe.), Matthews correlation coefficient 

(MCC), false positive rate (FPR), and F1 score. Here, TP, TN, FP, FN stands for true positive, true negative, 

false positive, and false negative respectively. 

− Sensitivity: it identifies the actual number of positive samples of all the positives samples. It is also called 

as true positive rate (TPR) and is given by: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

 

− Accuracy: it is the simplest and most common metric for model evaluation. It is the ratio of the correct 

prediction which is the sum of TP and TN to the total number of predictions of the given dataset or 

samples which is given by: 

 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (11) 

 
− Cohen’s Kappa index: it is used to measure the fedility of two raters. If the value is less, then zero than 

there is no agreement and if it is in between 0.81 to 1 than ther is perfect agreement. 

 

𝐶𝐾𝐼 =
𝑝𝑜− 𝑝𝑒

1− 𝑝𝑒
= 1 −  

1− 𝑝𝑜

1− 𝑝𝑒
  (12) 

 

− Error: it determines the wrong classification which is given by (13). 

 

𝐸𝑟𝑟 = 100 − 𝐴𝑐𝑐 (13) 

 

− Precision: it is the ratio of the true positives to all the positives of the samples. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (14) 

 

− Specificity: it identifies the actual number of negative samples of all the negative samples. Here, it is 

more important to classify the negative then to classify the positive. So, it is also called TNR. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (15) 

 

− MCC: it is a measure for binary classification’s quality. It gives best result for an unbalanced class while 

taken into consideration TPs, TNs, FPs, FNs. 

 

𝑀𝐶𝐶 =  
𝑇𝑃 𝑋 𝑇𝑁−𝐹𝑃 𝑋 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (16) 

 

− False positive rate: it is the probability that positive result is predicted when the true value is negative 

which a false prediction.  

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (17) 

 

− F1 score: it combines the precision and recall of the samples which is given by the harmonic mean of 

precision and recall and is known as dice similarity coefficient (DSC). It gives better performance for 

unbalanced dataset. 

 

𝐹1= 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (18) 

 

3.2.  Implementation results of the 1D feature-based machine learning approaches 

The current section shows the implementation of a 1D image-based ML approach for performing 

binary and multiclass prediction. There are two subsections – binary prediction and multiclass prediction. For 

the binary prediction, there are 550 samples in each category as shown in Table 3 and mean classification 
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score is shown in Table 4. Whereas, the multiclass prediction utilizes four categories which have 550 samples 

in each category in Table 5. 

 

3.2.1. Binary prediction 

For each of the two classes, the training and testing samples are split in the ratio of 80:20%. It 

results in the formation of 440 training and 110 test samples respectively. The training samples are made to 

undergo training with three ML techniques individually by using the parameters mentioned in section 2.2.3. 

It may be kindly noted that the training samples are initially converted to MFCC and pitch feature vectors 

and then fed to the ML algorithms. Due to the use of window for feature extraction as mentioned in section 

2.2, a total of 8,941 speech frames are generated from the 110 healthy test samples. Similarly, a total of 7,637 

frames are generated from 110 pathological test samples. It is these resulting test frames that will undergo 

exhaustive testing. The test frames mentioned above are tested against the KNN, Naïve Bayes, and LDA 

classifiers. The per-class performance is highlighted in Figures 3 to 5. It is observed that all the three 

classifiers provide significantly low per-class performance, with 62.4% as shown in Figure 3 being the 

highest for the healthy class and 50.6% shown in Figure 4 for the pathological class. The mean scores derived 

from these per-class scores are also highlighted in Table 4. It is observed that KNN provides the highest 

accuracy 57.89% in comparison to the other two classifiers.  

 

 

Table 3. Number of training and test samples for binary prediction 
Class Training Testing Total Test frames 

Healthy 440 110 550 8,941 

Pathological 440 110 550 7,637 

 

 

Table 4. Mean classification score of 1D feature-based binary prediction 

 
Algorithm Sen. Acc. Kappa Err Pre. Spe. MCC FPR F1 

KNN 67.89 57.89 15 42.11 58.27 47 15.23 53 62.71 

Naïve Bayes 62.39 55.02 9.43 44.98 56.2 47 9.5 53 59.13 

LDA 59.63 54.55 8.66 45.45 56.03 49 8.68 51 57.78 

 

 

  
 

Figure 3. Per-class and per-frame classification 

 

Figure 4. Per-class and per-frame classification result for 

the Naïve Bayes method result for the KNN method 
 

 

 
 

Figure 5. Per-class and per-frame classification result for the LDA method 
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Therefore, it is noted that use of 1D feature with ML classifiers cannot give good results in cases of 

low number of training samples. It is also desired to study the performance of 2D image-based datasets with 

DL algorithms. They are performed in section 3.3. 

 

3.2.2. Multiclass prediction 

For the current multiclass prediction also, the training and test samples are again split in the ratio 

80:20%. It has also been discussed in Table 2 that there are 380 samples in each of the four classes. By 

applying the above splitting ratio, the number of training and test samples in each class are 304 and 76 

respectively. From all the training samples, feature vectors which is a combination of MFCC and pitch 

feature vectors are extracted. These feature vectors are utilized in training three ML classifiers individually 

by using the parameters mentioned in section 2.2.3. Also, due to the use of window for feature extraction as 

mentioned in section 2.2, the number of test frames for each of the four classes are 5,198; 5,514; 3,393; and 

5,099 (see Table 5). These test frames will undergo exhaustive testing.  

The test frames mentioned in Table 5 are tested against the KNN, Naïve Bayes, and LDA classifiers. 

The per-class performance is highlighted in Figures 6 to 8. It is observed that the KNN provided the best per-

class accuracies for healthy (i.e., 40.2%), hyperkinetic dysphonia (i.e., 32.5%), hypokinetic dysphonia (i.e., 

56.5%). The Naïve Bayes classifier provided the best performance for the reflux laryngitis category by 

demonstrating an accuracy of 42.9%. 

 

 

Table 5. Number of training and test samples for multiclass prediction 
Class Training Testing Total Test frames 

Healthy 304 76 380 5,198 

Hyperkinetic dysphonia 304 76 380 5,514 
Hypokinetic dysphonia 304 76 380 3,393 

Reflux Laryngitis 304 76 380 5,099 

 

 

 
 

 

Figure 6. Per-class and per-frame classification result 

for the KNN method 

 

 

 

Figure 7. Per-class and per-frame classification 

result for the Naïve Bayes method 

 
 

Figure 8. Per-class and per-frame classification result for the LDA method 
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The mean scores derived from these per-class scores are also highlighted in Table 6. It is observed 

that similar to the binary prediction approach discussed above, the KNN classifier demonstrated the best 

performance for the multiclass prediction also. It is also desired to study the performance of 2D image-based 

datasets with DL algorithms. They are performed in section 3.3. 

 

 

Table 6. Mean classification score of 1D feature-based binary prediction 
Algorithm Sen. Acc. Kappa Error Pre. Spe. MCC FPR F1 

kNN 37.82 37.02 40.45 62.98 37 79.09 16.47 20.91 36.18 
Naïve Bayes 28.14 27.68 44.71 72.32 25.02 75.97 14.03 24.03 26.16 

LDA 32.78 32.18 44.71 67.82 30.23 77.51 19.95 22.49 30.74 

 

 

3.3.  Implementation results of the 2D image-based deep learning approach 

The current section shows the implementation of a 2D image-based DL approach for performing 

binary and multiclass prediction. There are two subsections –binary prediction an multiclass prediction. For 

the binary prediction, there are 380 training samples in each category as Table 7. Whereas, the multiclass 

prediction utilizes four categories which have 380 samples in each category in Table 8. 

 

 

Table 7. Number of training and test samples for binary prediction 
Class Training Testing 

Healthy 304 76 

Pathological 304 76 

 

 

Table 8. Mean classification score of 2D feature-based binary prediction 
Algorithm Dataset Sen. Acc. Kappa Error Pre. Spe. MCC FPR F1 

GoogLeNet M.S. 96.05 96.05 92.11 3.95 96.05 96.05 92.11 3.95 96.05 

GoogLeNet B.S. 96.05 96.05 92.11 3.95 96.05 96.05 92.11 3.95 96.05 
GoogLeNet A.S. 96.05 94.74 89.47 5.26 6.58 93.42 89.5 94.81 94.81 

 

 

3.3.1. Binary prediction 

It can be seen in Table 7 that there are two categories in which there are 380 samples each. The 

training and testing ratio were divided in the ratio of 80:20% respectively. It translates to around 304 training 

and 76 test samples respectively. The training and test samples were kept in different folders so that none of 

the test samples were used (or seen) during the training process. Furthermore, the training samples were 

further divided into training and validation samples in the ratio 80:20% respectively. This means that out of 

304 training samples there are 243 actual training and 61 validation samples respectively.  

Therefore, it can be summarized that there are 243 training, 61 validation and 76 test samples 

respectively for each class. The parameters mentioned in section 3.3 (above) is used for developing the M.S 

database. The training and validation samples are made to undergo training by setting the following 

parameters: minibatch size as 16, validation frequency 30 and flat learning rate of 0.0001. The number of 

epochs is set as 15, however the training process is terminated when the validation accuracy and loss curves 

become flat. Figure 9 shows the training progression for the GoogLeNet model with the M.S dataset for 

binary class prediction. Figure 10 gives its confusion matrix. For an extensive evaluation, the Amor 

scalogram (A.S) and Bump scalogram (B.S) datasets are also developed as shown in Figures 11 to 14. 

Another two GoogLeNet models are also training with these datasets by using the same set of DL training 

parameters. The per class performance of the GoogleNet with the M.S dataset is shown by the confusion 

matrix of Figure 10. It is observed that 73 out of 76 healthy test samples are correctly predicted, thereby 

giving a per-class accuracy of 96.1%. Similarly, the pathological test samples are also classified with a per-

class accuracy of 96.1%.  

The mean classification scores are also recorded in Table 8 for a comparison with other scalograms 

such as the B.S and A.S dataset. The separate evaluation of the GoogLeNet with the M.S. and B.S datasets 

shows a similar performance, i.e., 96.05% each. The value of MCC and Kappa are slightly low (i.e., 92.11% 

each). The A.S. dataset with the GoogLeNet provides the lowest mean accuracy, which is 94.74%. 

 

3.3.2. Multiclass prediction 

There are four classes in this type of prediction. They are – (i) healthy, (i) hyperkinetic dysphonia, 

(iii) hypokinetic dysphonia, and (iv) reflux laryngitis. The same training, validation and test samples splitting 
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pattern mentioned in section 3.3.1 is also adopted here. There are 243 training, 61 validation and 76 test 

samples respectively for each class. By applying the same set of parameters mentioned in section 3.3, the 

M.S, B.S, and A.S datasets are generated by using all the samples mentioned in Table 9. The same set of DL 

training parameters mentioned in section 3.3.1 is used here. 

Figure 15 shows the training progress of the GoogleNet with the M.S dataset for multiclass class 

prediction. The per class performance of the GoogleNet with the M.S dataset is shown by the confusion 

matrix of Figure 16. It is observed that since the number of classes has increased in comparison to the binary 

prediction, all the four classes demonstrate around 90% per-class accuracy. For instance, the healthy test 

samples are classified with an accuracy of 88.2%, the hyperkinetic dysphonia and reflux laryngitis are 

classified with 90.8% accuracy each. Finally, the hypokinetic dysphonia records a per-class accuracy of 

89.5%. The mean classification scores are also recorded in Table 10 for a comparison with other scalograms 

such as the B.S and A.S dataset. The separate evaluation of the GoogLeNet with the M.S., B.S. and A.S. 

datasets show that use of M.S. with GoogLeNet provides the best performance over 9 metrics. 

Figure 17 shows the training progress of the GoogleNet with the A.S dataset for multiclass class 

prediction. The per class performance of the GoogleNet with the A.S dataset is shown by the confusion 

matrix of Figure 18. It is observed that the healthy test samples are classified with an accuracy of 94.7%, the 

hyperkinetic dysphonia of 78.9%, the hypokinetic dysphonia of 77.6% and reflux laryngitis are of 94.7%. 

Meanwhile, the training progress of the GoogleNet with the B.S dataset for for multiclass class prediction is 

shown in Figure 19. And its confusion matrix is shown in Figure 20. It is observed that the healthy test 

samples are classified with an accuracy of 84.2%, the hyperkinetic dysphonia of 84.2%, the hypokinetic 

dysphonia of 77.6% and reflux laryngitis are of 89.5%. 

 

 

  
 

Figure 9. Training progress of the GoogLeNet with the per-

class M.S dataset for binary class prediction 

 

Figure 10. Confusion matrix showing the 

result GoogLeNet with the M.S 

 

 

  
 

Figure 11. Training progress of the GoogLeNet with the 

A.S dataset for binary classprediction 

 

Figure 12. Confusion matrix showing the per-

class result GoogLeNet with the A.S 
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Figure 13. Training progress of the GoogLeNet with the 

B.S dataset for binary class prediction 

 

Figure 14. Confusion matrix showing the per class 

result GoogLeNet with the B.S 

 
 

Table 9. Number of training and test samples for multiclass prediction 
Class Training Testing 

Healthy 304 76 

Hyperkinetic dysphonia 304 76 

Hypokinetic dysphonia 304 76 
Reflux Laryngitis 304 76 

 
 

  
 

Figure 15. Training progress of the GoogLeNet with 

the M.S dataset for multiclass class prediction 

 

Figure 16. Confusion matrix showing the per-class 

result GoogLeNet with the M.S 

 
 

Table 10. Mean classification score of 2D feature-based multiclass prediction 
Algorithm Dataset Sen. Acc. Kappa Error Pre. Spe. MCC FPR F1 

GoogLeNet M.S. 89.8 89.8 72.81 10.2 90.36 96.6 86.65 3.4 89.93 
GoogLeNet B.S. 83.88 83.88 57.02 16.12 84.48 94.63 78.77 5.37 83.92 

GoogLeNet A.S. 86.51 86.51 64.04 13.49 87.02 95.5 82.24 4.5 86.36 

 

 

  

 

Figure 17. Training progress of the GoogLeNet with the 

A.S dataset for multiclass class prediction 

 

Figure 18. Confusion matrix showingthe per-

class result GoogLeNet with the A.S 
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Figure 19. Training progress of the GoogLeNet with the B.S 

dataset for multiclass class prediction 

 

Figure 20. Confusion matrix showing the 

per- class result GoogLeNet with the B.S 

 

 

4. CONCLUSION 

The current work has performed an exhaustive evaluation of the performance of 1D-based ML and 

2D-based DL binary and multiclass predictions. It is observed that even though same number of training and 

test samples are used for 1D and 2D methods, the 1D based method demonstrates significantly poor 

performance than 2D or image-based prediction. For instance, the highest mean accuracy obtained from the 

1D based classifier are 57.89% and 37.02% for binary and multiclass prediction. Whereas, the highest mean 

accuracy obtained from the 2D based classifier are 96.05% and 89.8% for binary and multiclass classifier 

respectively. Therefore, it is understood that voice pathology classification can be successfully performed 

with image-based DL techniques.  
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