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Most research work focus only on binary classification of voice pathologies
such as normal and pathological classification. However, the current work
gives importance to multiclass classification too. The paper compares one-
dimensional (1D) feature vectors based machine learning (ML) techniques
and two-dimensional (2D) scalogram image based deep learning (DL) model
for binary and multiclass classification of voice pathology. The multiclass
classification classifies the voice signal into four categories which are
healthy, hyperkinetic dysphonia, hypokinetic dysphonia, and reflux
laryngitis. The current work demonstrates the evaluation of 1D feature
vectors extracted from speech signal such as MFCC (mel-frequency cepstral
coefficient) and pitch with various ML techniques like K-nearest neighbor
(KNN), Naive Bayes, and discriminant analysis (DA). Another technique
that uses time-frequency scalograms derived using three different wavelets,
i.e., analytical Morlet (amor), Bump, and Morse, are used for training a pre-
trained GoogleNet architecture, which is a very popular DL model.
Experimental results show that 2D scalogram image based DL model for
binary (96.05%) and multiclass (89.8%) classification of voice pathology
gives better performance while comparing with 1D feature vectors based ML
techniques.
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1. INTRODUCTION

Speech is the most basic form of expression, and any change to the vocal cord interrupts its seamless
flow. Vocal fatigue, pressure, dysphonia, roughness, glottal assault, sore throat, and other symptoms are
exacerbated by speech problems. Long-term vocal cord abuse can result in diseases such as laryngeal
malignancy, folding, polyp, and nodule. The hoarseness of one's voice might define these conditions. Aside
from self-abuse, a sedentary lifestyle may lead to an increase in voice problems [1], [2]. Deep learning (DL)
has surpassed traditional classifiers such as Naive Bayes, decision trees, K-nearest neighbor (KNN), and
support vector machine (SVM). Since the last several decades, handcrafted speech or acoustic characteristics
have been critical for detecting voice disorder and this cannot be overlooked [3]-[7]. For diagnosing voice
pathology, a wide range of long and short feature descriptors have been employed. Long-term characteristics
have been employed in certain significant research studies [8]-[11]. Wahed [12] suggested a study to develop
a detector for vocal larynx abnormalities by extracting a mixture of various feature descriptors from a
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diseased voice sample. Orozco-Arroyave et al. [13] presented a method for diagnosing Parkinson's illness,
palate dysfunction, and vocal fold abnormalities, hypernasal lip. Another seminal study that used entropy to
distinguish between healthy and diseased voices was suggested in [14]. Uloza et al. [15] describes a multi-
class voice pathology classifier that employs a rich feature vector generated from varied and common speech
characteristics. Reynolds and Rose [16] removed characteristics from short regular utterances using a mel-
frequency filter bank. Pravena et al. [17] used the Gaussian mixture model (GMM) model to train 11 distinct
mel-frequency cepstral coefficient (MFCC) characteristics to distinguish a normal voice from a disordered one.
The machine learning techniques is applied in most of the medical application [18].

2. METHOD

For studying the implementation results of one-dimensional (1D) and 2D based machine learning
(ML) and DL systems, two separate workflows are proposed in the current methodology, as discussed in the
following two subsections. The summarized architectures of Figures 1 and 2 are similar, except, the former
deals with a binary class prediction and the latter is a multiclass predictor. In case of 1D binary classification,
the first step is to collect data which is input speech, the second step go for feature extraction, the third step is
for ML which is training and testing the sample provided and the last step undergoes classification of healthy
and pathological. The MFCC and pitch characteristics are extracted from the input signal as a feature
extraction. KNN, Naive Bayes, and discriminant analysis (DA) are used for training and testing the samples.
In 2D binary classification, the input speech is converted into time-frequency scalogram and goes for DL
using GoogleNet and lastly classification. The time frequency sclogram and DL method is explained in the
later section. In case of 1D multiclass classification, the first step is to collect data which is input speech, the
second step go for feature extraction, the third step is for ML which is training and testing the sample
provided and the last step undergoes classification of healthy, hyperkinetic dysphonia, hypokinetic dsyphonia
and laryngitis. As feature extraction, MFCC and pitch characteristics are extracted from the input signal.
KNN, Naive Bayes, and DA are used for ML which explained in later section. In 2D mutliclass
classification, the input speech is converted into time-frequency scalogram and goes for DL and lastly
classification which is explained in later section.

2.1. Dataset

Cesari et al. [19] suggested a vocal pathology dataset, which will be used in this study. The
collection contains 151 diseased and 55 healthy speech samples, respectively. There are three types of
abnormal voices: hypokinetic dysphonia, hyperkinetic dysphonia, and reflux laryngitis. All recordings feature
a 4.76 second sustained ‘a' vowel sound at an 8 KHz sampling rate. To avoid overfitting, each speech sample
is split into 10 equal length segments of 0.476 second duration, 3,808 sampling points, and an 8 kHz
sampling frequency. Overfitting or excessive variance might lead to misleading positive outcomes. As
indicated in Table 1, this arrangement yielded 1,510 and 550 diseased and healthy speech samples,
respectively. To prevent the issue of class imbalance, the total number of samples that will be trained and
tested is 550 for each class. The number of segmented samples for the healthy class, 550, is used as the upper
limit in this case. This balanced no. will subsequently take part in training and testing.

There are 41, 72, and 38 samples from the hypokinetic dysphonia, hyperkinetic dysphonia and
reflux laryngitis categories, respectively, among the 151 un-segmented voice samples. It's also worth noting
that they're all divided into ten equal-length speech samples. Table 2 shows that there are now 720, 410, and
380 samples available for each of the three classes. To prevent the issue of class imbalance, the number of
samples for all four classes is kept at 380, with reflux laryngitis having the fewest. This balanced no. will
take part in future training and testing.

Table 1. Dataset distribution for binary prediction

Class Original no.  Segmented no.  Balanced no.
Healthy 55 550 550
Pathological 151 1510 550

Table 2. Dataset distribution for multiclass prediction

Class Original no.  Segmented no.  Balanced no.
Healthy 55 550 380
Hypokinetic dysphonia 41 410 380
Hyperkinetic dysphonia 72 720 380
Reflux laryngitis 38 380 380
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2.2. Framework for classification using 1D features and machine learning
The workflow of the proposed 1D features-based ML architecture is shown in Figures 1(a) and 2(a).
It will consist of three stages as explained in subsection.

Input Speech

2D Image |dataset formation

Deep Learning

Input Speech

Feature Extraction

1D Feature |vectors formation

Machine Learning

Healthy Pathological Healthy  Pathological
Classification Classification
(@) (b)

Figure 1. The proposed architectures for (a) 1D and (b) 2D learning models for binary prediction

2.2.1. Speech input

Speech samples from either Table 1 or Table 2 will be used depending on the type of prediction
model needed, i.e., binary or multiclass. Regardless of prediction model, all samples have an 8 kHz sampling
frequency and 3,808 sampling points.

2.2.2. Feature descriptors

The MFCC and pitch characteristics are extracted from the input signal. These two characteristics
are retrieved from a single input voice sample and concatenated into a single vector. Concatenated vectors of
this kind are created for all training samples. They will participate in training.

MFCC is an acoustic signal description predicated on the linear cosine transform of a log power
spectrum on a nonlinear mel scale of frequency [20]. The MFCC features are the coefficients that make up
the mel-frequency cepstrum. This frequency warping improves the representation of sound and speech data.
The window length is set at 3% of the sampling rate, which is 240. And the overlap length is fixed at 2.5% of
the sampling rate, which is 200. The original sampling rate, i.e., 8 kHz is utilized.

Pitch. The fundamental frequency or pitch of a voice relates to the number of times the vocal folds
come together during phonation per second. The auto-correlation function is used in time-domain pitch
period estimate methods (ACF). The main principle behind correlation-based pitch tracking is that the
correlation signal will have a significant magnitude peak during the pitch period's lag. The autocorrelation
computation is performed directly on the waveform and is a simple calculation [21]. Salhi et al. [21]
computes the autocorrelation function for a signal x(n).

px(m) = lim =Sy x()x(n +m) €y

The autocorrelation function of a signal is basically a transformation of the signal which is useful for
displaying structure in the waveform. Thus, for pitch detection, if we assume x(n) is exactly periodic with
period P, i.e. x(n)=x(n+P) for all n, then the autocorrelation function of (1) is also periodic with the same
period.

px(m) = px(m + P) )

2.2.3. Machine learning classifiers

There are numerous classification algorithms available today, but none of them outperform the
others in every case [22]. We chose three classifiers for the current work study: KNN, Naive Bayes, and DA.
These classifiers are trained individually using the concatenated feature vectors obtained from the training
samples.

Akbulut et al. [23] states, the KNN technique is among the earliest and easiest kinds of
nonparametric classifier. The drawback is that when a low k value is used, the separation border becomes
excessively adapted to the training data, resulting in over-training. At higher k values, the border tends to be
smoother, resulting in improved prediction results for fresh samples. The best value of k must be found
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empirically. To identify the optimal value of k, we empirically evaluated different values of k using the
Euclidean distance metric. More specifically, we tested k=1,2,3,4,5,6,7. It was discovered that a value of k=5
produces the greatest results.

Naive Bayes: the fundamental feature of Naive Bayes is a strong naive assumption of independence
from each condition or occurrence. It is a straightforward model that may be used to huge datasets. The basis
of the Naive Bayes theorem is the Bayes formula, which is given by

p() P(X|C)
P(X)

P(CIX) = ©)

where, X= (X1, X2, X3, ..., Xn) is the attribute, C is the class, P(C|X): probability of event C given X has
occurred, P(X|C): probability of event X given C has occurred, P(C): probability of event C, P(X): probability
of event X.

We must maximise the probability value of each class in the Nave Bayes classifier, which is
represented as the hypothesis maximum a posteriori (HMAP).

Hyap = argmax P(C|X1, Xy, v ovr ,X,) = argmax P(C) [T, P(X;|C) 4)

Where, P represents opportunity, X is the iw attribute value, C is class.

Linear discriminant analysis (LDA): it can be used for classification as well as dimensionality
reduction. This classifier evaluates a projection hyperplane that accomplishes two goals: 1) interclass
variance should be reduced, and 2) projected means of classes should be as close to each other as possible
[4]. Consider the following example in which a class is to be predicted. Let X represent the predictor
variables. Suppose X is the single predictor variable, i.e. X=x. Let fx(x) be the estimated discriminator score
that the observation belongs to the Ck class. Then, fx(x) can be evaluated by the formula:

fiebe) = x4 10g (T,) (5)

where, []y is the prior probability that the class of observation is Ci. u,is the average of training observations
belonging to class Ck. For each of the K classes the weighted average of sample variances is represented by
o2. The LDA classifier will predict that class k for the given observation whose discriminant score is largest.

2.3. Framework for classification using 2D scalograms and deep learning

The current subsection will discuss the effects of using an image-based analysis for performing both
binary and multiclass predictions. The workflow is highlighted in Figures 1(b) and 2(b). The first step is to
generate scalogram images from all samples of every class.

Input Speech

Feature Extraction

1D Feature |vectors formation

Input Speech

Scalogram
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Machine Learning |

Deep Learning
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Figure 2. The proposed architectures for (a) 1D and (b) 2D learning models for multiclass prediction

Healthy

Classification

Time-frequency scalograms: the next step is to convert the segmented speech samples from each of
these three classes into Morse scalogram (M.S) 2D images. The continuous wavelet transform (CWT) of a
given signal having function f(t) is evaluated by using the mother wavelet through the expression:

CWT(xy) = 15 f@) = m () dt ©®)
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where, x and y are the scaling and shifting factor for the mother wavelet and * signifies convolutions
operation. The above expression can be translated as an integration of summation of the input audio sample
multiplied by the time scaled and shifted forms of the mother wavelet (m).

The Morse wavelet is being chosen for the current work because it displays strong localization in
both the frequency and temporal domains, making it ideal for studying localized discontinuities. The fourier
transform of a Morse wavelet is expressed as:

2 _.n
Myn(@) = e(@)agwf e

(7

where, &(w) is a unit step function, d? is the time-bandwidth product, g, Signifies normalization constant

and 5 is the symmetry parameter. Different combination of d* and » can produce diverse Morse wavelets.

Similarly, the coefficients of (6) can be implemented with bump wavelet transformation [24] to
derive the glottal derivative Bump scalogram. The fourier transform of a bump wavelet is:

(=7
Y(sw) =e ot Moo ®)

where, 0 and # are parameters that controls the transformed signal’s frequency and time localization.

Applying time-domain to frequency-domain transformation using wavelet, the 1-D input signal is
transformed into a 2D signal. And an analytical morlet (amor) wavelet based time- frequency version of the
input audio is:

—4In(2)t%
w=enite K ©)
where h is full-width at half-maximum (FWHM) which is the distance in time between 50% gain before the
peak to 50% gain after the peak [23].

2.3.1. GoogLeNet

It is a cutting-edge convolutional neural network (CNN) suggested by Google. It had a top-five
mistake rate of 6.67 % [25]. The GoogleNet employs nine (9) 1D-inception modules, each of which employs
three distinct convolutional kernels, namely 1x1, 3x3, and 5x5. This network has a total of 142 layers. The
input layer is a 2D image input layer with 224x224x3 dimensions. It is linked to a convolutional layer with a
kernel size of 7x7, stride of 2, and 512 filters. This layer will collect features from the preceding layer (the
input layer) and store them as activation maps with 512 depths (equal to the number of filters). It is linked to
a max-pooling layer with kernel size or filter size 3x3 and stride equal to 2 through a rectified linear unit
(ReLU) layer. The max-pooling layer's goal is to downsample (or minimise) the size of the activation maps
created by the previous layer. To minimise overfitting, this new activation map is now put into a normalising
layer. Overfitting is a phenomenon that reduces DL network accuracy by supplying features in a non-uniform
manner. Overfitting is minimised by utilising either a dropout layer or a normalising layer; currently, dropout
is seldom employed, and batch normalisation or cross channel normalisation has largely replaced it. The
normalised layer is linked to two further convolutional layers with kernel sizes of 3x3, stride 2 through a
ReLU layer. With this second convolutional layer, a cross channel normalisation layer is employed, followed
by a max-pooling layer. This max-pooling layer's activation maps are linked to an inception module. Each
inception module includes 13 layers, 6 of which are convolutional layers and the rest are a mix of ReLU and
max-pooling layers. A depth concatenation module is utilised at the conclusion of each inception module to
merge the activation maps from the inception module's four columns. The GoogLeNet's final layers include
dropout, fully connected, softmax, and a classification output layer. The dropout layer employs a dropout
probability of 70%. The dimension of the completely linked layer is 2,048. The related probabilities will be
computed using the softmax layer. The last layer is a classification output layer, which will be programmed
to identify the number of classes requested.

3. RESULTS AND DISCUSSIONS
After carefully implementing the precodure in the model, the experimental results are evaluated as
follows:

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 654-666



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 659

3.1. Evaluation metrics
The current work will be evaluated using nine (9) metrics, which are — sensitivity (Sen.), accuracy
(Acc.), Cohen’s kappa index error (Err.), precision (Pre.), specificity (Spe.), Matthews correlation coefficient
(MCC), false positive rate (FPR), and F1 score. Here, TP, TN, FP, FN stands for true positive, true negative,
false positive, and false negative respectively.
— Sensitivity: it identifies the actual number of positive samples of all the positives samples. It is also called
as true positive rate (TPR) and is given by:

TP
TP+FN

Sensitivity = (10)

— Accuracy: it is the simplest and most common metric for model evaluation. It is the ratio of the correct
prediction which is the sum of TP and TN to the total number of predictions of the given dataset or
samples which is given by:

Acc = — 20 (11)

TP+TN+FP+FN

— Cohen’s Kappa index: it is used to measure the fedility of two raters. If the value is less, then zero than
there is no agreement and if it is in between 0.81 to 1 than ther is perfect agreement.

CKI =Po=Pe—q_ =P (12)
1-pe 1-pe

— Error: it determines the wrong classification which is given by (13).
Err =100 — Acc (13)

— Precision: it is the ratio of the true positives to all the positives of the samples.

TP
TP+FP

Precision = (14)

— Specificity: it identifies the actual number of negative samples of all the negative samples. Here, it is
more important to classify the negative then to classify the positive. So, it is also called TNR.

TN
TN+FP

Specificity = (15)

— MCC: it is a measure for binary classification’s quality. It gives best result for an unbalanced class while
taken into consideration TPs, TNs, FPs, FNs.

_ TP X TN—FP X FN
= J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

McCC

(16)

— False positive rate: it is the probability that positive result is predicted when the true value is negative
which a false prediction.

FP
FP+TN

FPR = (17)

— F1 score: it combines the precision and recall of the samples which is given by the harmonic mean of
precision and recall and is known as dice similarity coefficient (DSC). It gives better performance for
unbalanced dataset.

_ 2TP
2TP+FP+FN

F; (18)
3.2. Implementation results of the 1D feature-based machine learning approaches

The current section shows the implementation of a 1D image-based ML approach for performing
binary and multiclass prediction. There are two subsections — binary prediction and multiclass prediction. For
the binary prediction, there are 550 samples in each category as shown in Table 3 and mean classification
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score is shown in Table 4. Whereas, the multiclass prediction utilizes four categories which have 550 samples
in each category in Table 5.

3.2.1. Binary prediction

For each of the two classes, the training and testing samples are split in the ratio of 80:20%. It
results in the formation of 440 training and 110 test samples respectively. The training samples are made to
undergo training with three ML techniques individually by using the parameters mentioned in section 2.2.3.
It may be kindly noted that the training samples are initially converted to MFCC and pitch feature vectors
and then fed to the ML algorithms. Due to the use of window for feature extraction as mentioned in section
2.2, a total of 8,941 speech frames are generated from the 110 healthy test samples. Similarly, a total of 7,637
frames are generated from 110 pathological test samples. It is these resulting test frames that will undergo
exhaustive testing. The test frames mentioned above are tested against the KNN, Naive Bayes, and LDA
classifiers. The per-class performance is highlighted in Figures 3 to 5. It is observed that all the three
classifiers provide significantly low per-class performance, with 62.4% as shown in Figure 3 being the
highest for the healthy class and 50.6% shown in Figure 4 for the pathological class. The mean scores derived
from these per-class scores are also highlighted in Table 4. It is observed that KNN provides the highest
accuracy 57.89% in comparison to the other two classifiers.

Table 3. Number of training and test samples for binary prediction

Class Training  Testing  Total  Test frames
Healthy 440 110 550 8,941
Pathological 440 110 550 7,637

Table 4. Mean classification score of 1D feature-based binary prediction

Algorithm Sen.  Acc. Kappa Err Pre. Spe. MCC FPR F1

KNN 67.89 57.89 15 4211 5827 47 1523 53 6271
Naive Bayes 62.39 55.02 943 4498 56.2 47 9.5 53 5913
LDA 59.63 5455 866 4545 56.03 49 8.68 51 57.78

Test Accuracy (Per Frame) Test Accuracy (Per Frame)

Healthy 37.6% Healthy 40.4%

Pathological Pathological 49.4%

True Class

True Class

41.4% 48.3%
Healthy Pathological Healthy Pathological
Predicted Class Predicted Class

Figure 3. Per-class and per-frame classification Figure 4. Per-class and per-frame classification result for
the Naive Bayes method result for the KNN method

Test Accuracy (Per Frame)

43.1% 502%

Healthy

Pathological

True Class

Healthy Pathological
Predicted Class

Figure 5. Per-class and per-frame classification result for the LDA method
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Therefore, it is noted that use of 1D feature with ML classifiers cannot give good results in cases of
low number of training samples. It is also desired to study the performance of 2D image-based datasets with
DL algorithms. They are performed in section 3.3.

3.2.2. Multiclass prediction

For the current multiclass prediction also, the training and test samples are again split in the ratio
80:20%. It has also been discussed in Table 2 that there are 380 samples in each of the four classes. By
applying the above splitting ratio, the number of training and test samples in each class are 304 and 76
respectively. From all the training samples, feature vectors which is a combination of MFCC and pitch
feature vectors are extracted. These feature vectors are utilized in training three ML classifiers individually
by using the parameters mentioned in section 2.2.3. Also, due to the use of window for feature extraction as
mentioned in section 2.2, the number of test frames for each of the four classes are 5,198; 5,514; 3,393; and
5,099 (see Table 5). These test frames will undergo exhaustive testing.

The test frames mentioned in Table 5 are tested against the KNN, Naive Bayes, and LDA classifiers.
The per-class performance is highlighted in Figures 6 to 8. It is observed that the KNN provided the best per-
class accuracies for healthy (i.e., 40.2%), hyperkinetic dysphonia (i.e., 32.5%), hypokinetic dysphonia (i.e.,
56.5%). The Naive Bayes classifier provided the best performance for the reflux laryngitis category by
demonstrating an accuracy of 42.9%.

Table 5. Number of training and test samples for multiclass prediction

Class Training Testing Total Test frames
Healthy 304 76 380 5,198
Hyperkinetic dysphonia 304 76 380 5,514
Hypokinetic dysphonia 304 76 380 3,393
Reflux Laryngitis 304 76 380 5,099
Test Accuracy (Per Frame) Test Accuracy (Per Frame)
Healthy 402%|59.8% Healthy | 1301 | 1146 | 1576 | 1175
HyperkineticDysphonia 32.5% m“% HyperkineticDysphonia 477 1461 557
§ HypokineticDysphonia % HypokineticDysphonia | 1214 355 1106 718
o 6]
9 RefluxLaryngitis g RefluxLaryngitis 852 1001 1061 423%]57.1%
= =
20.4% 16.0% 213% | 47.1%
Y\ea\«\* 9?‘\00@ 9\3“06\9 aﬂ(@(\g
«;\‘\e‘\& _\(\e@)\‘ z,\\y\,
e \e\\\\)e )
e Predicted Class
Predicted Class
Figure 6. Per-class and per-frame classification result Figure 7. Per-class and per-frame classification
for the KNN method result for the Naive Bayes method

Test Accuracy (Per Frame)
Healthy 1418 946 1053

HyperkineticDysphonia 634 458 1448 974

HypokineticDysphonia [ 1204 499 1258 432

RefluxLaryngitis

True Class

Predicted Class

Figure 8. Per-class and per-frame classification result for the LDA method
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The mean scores derived from these per-class scores are also highlighted in Table 6. It is observed
that similar to the binary prediction approach discussed above, the KNN classifier demonstrated the best
performance for the multiclass prediction also. It is also desired to study the performance of 2D image-based
datasets with DL algorithms. They are performed in section 3.3.

Table 6. Mean classification score of 1D feature-based binary prediction
Algorithm Sen. Acc. Kappa Error  Pre. Spe. MCC FPR F1

kNN 3782 37.02 4045 62.98 37 79.09 16.47 2091 36.18
Naive Bayes 28.14 27.68 4471 7232 2502 7597 14.03 24.03 26.16
LDA 32.78 3218 4471 67.82 30.23 7751 1995 2249 30.74

3.3. Implementation results of the 2D image-based deep learning approach

The current section shows the implementation of a 2D image-based DL approach for performing
binary and multiclass prediction. There are two subsections —binary prediction an multiclass prediction. For
the binary prediction, there are 380 training samples in each category as Table 7. Whereas, the multiclass
prediction utilizes four categories which have 380 samples in each category in Table 8.

Table 7. Number of training and test samples for binary prediction

Class Training Testing
Healthy 304 76
Pathological 304 76

Table 8. Mean classification score of 2D feature-based binary prediction

Algorithm Dataset Sen. Acc. Kappa Error  Pre. Spe. MCC FPR F1

GoogLeNet M.S. 96.05 96.05 92.11 395 96.05 96.05 9211 3.95 96.05
GoogLeNet B.S. 96.05 96.05 92.11 395 96.05 96.05 9211 3.95 96.05
GoogLeNet AS. 96.05 94.74  89.47 5.26 6.58 9342 895 9481 9481

3.3.1. Binary prediction

It can be seen in Table 7 that there are two categories in which there are 380 samples each. The
training and testing ratio were divided in the ratio of 80:20% respectively. It translates to around 304 training
and 76 test samples respectively. The training and test samples were kept in different folders so that none of
the test samples were used (or seen) during the training process. Furthermore, the training samples were
further divided into training and validation samples in the ratio 80:20% respectively. This means that out of
304 training samples there are 243 actual training and 61 validation samples respectively.

Therefore, it can be summarized that there are 243 training, 61 validation and 76 test samples
respectively for each class. The parameters mentioned in section 3.3 (above) is used for developing the M.S
database. The training and validation samples are made to undergo training by setting the following
parameters: minibatch size as 16, validation frequency 30 and flat learning rate of 0.0001. The number of
epochs is set as 15, however the training process is terminated when the validation accuracy and loss curves
become flat. Figure 9 shows the training progression for the GoogLeNet model with the M.S dataset for
binary class prediction. Figure 10 gives its confusion matrix. For an extensive evaluation, the Amor
scalogram (A.S) and Bump scalogram (B.S) datasets are also developed as shown in Figures 11 to 14.
Another two GoogLeNet models are also training with these datasets by using the same set of DL training
parameters. The per class performance of the GoogleNet with the M.S dataset is shown by the confusion
matrix of Figure 10. It is observed that 73 out of 76 healthy test samples are correctly predicted, thereby
giving a per-class accuracy of 96.1%. Similarly, the pathological test samples are also classified with a per-
class accuracy of 96.1%.

The mean classification scores are also recorded in Table 8 for a comparison with other scalograms
such as the B.S and A.S dataset. The separate evaluation of the GoogLeNet with the M.S. and B.S datasets
shows a similar performance, i.e., 96.05% each. The value of MCC and Kappa are slightly low (i.e., 92.11%
each). The A.S. dataset with the GoogLeNet provides the lowest mean accuracy, which is 94.74%.

3.3.2. Multiclass prediction
There are four classes in this type of prediction. They are — (i) healthy, (i) hyperkinetic dysphonia,
(iii) hypokinetic dysphonia, and (iv) reflux laryngitis. The same training, validation and test samples splitting
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pattern mentioned in section 3.3.1 is also adopted here. There are 243 training, 61 validation and 76 test
samples respectively for each class. By applying the same set of parameters mentioned in section 3.3, the
M.S, B.S, and A.S datasets are generated by using all the samples mentioned in Table 9. The same set of DL
training parameters mentioned in section 3.3.1 is used here.

Figure 15 shows the training progress of the GoogleNet with the M.S dataset for multiclass class
prediction. The per class performance of the GoogleNet with the M.S dataset is shown by the confusion
matrix of Figure 16. It is observed that since the number of classes has increased in comparison to the binary
prediction, all the four classes demonstrate around 90% per-class accuracy. For instance, the healthy test
samples are classified with an accuracy of 88.2%, the hyperkinetic dysphonia and reflux laryngitis are
classified with 90.8% accuracy each. Finally, the hypokinetic dysphonia records a per-class accuracy of
89.5%. The mean classification scores are also recorded in Table 10 for a comparison with other scalograms
such as the B.S and A.S dataset. The separate evaluation of the GoogLeNet with the M.S., B.S. and A.S.
datasets show that use of M.S. with GoogLeNet provides the best performance over 9 metrics.

Figure 17 shows the training progress of the GoogleNet with the A.S dataset for multiclass class
prediction. The per class performance of the GoogleNet with the A.S dataset is shown by the confusion
matrix of Figure 18. It is observed that the healthy test samples are classified with an accuracy of 94.7%, the
hyperkinetic dysphonia of 78.9%, the hypokinetic dysphonia of 77.6% and reflux laryngitis are of 94.7%.
Meanwhile, the training progress of the GoogleNet with the B.S dataset for for multiclass class prediction is
shown in Figure 19. And its confusion matrix is shown in Figure 20. It is observed that the healthy test
samples are classified with an accuracy of 84.2%, the hyperkinetic dysphonia of 84.2%, the hypokinetic
dysphonia of 77.6% and reflux laryngitis are of 89.5%.
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Table 9. Number of training and test samples for multiclass prediction

Class Training Testing
Healthy 304 76
Hyperkinetic dysphonia 304 76
Hypokinetic dysphonia 304 76
Reflux Laryngitis 304 76
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Figure 16. Confusion matrix showing the per-class

Figure 15. Training progress of the GoogLeNet with
result GooglLeNet with the M.S

the M.S dataset for multiclass class prediction

Table 10. Mean classification score of 2D feature-based multiclass prediction
Algorithm Dataset Sen.  Acc.  Kappa Error  Pre. Spe. MCC FPR F1
GoogLeNet M.S.  89.8 898 7281 102 90.36 966 86.65 34 89.93
GoogLeNet ~ B.S. 8388 83.88 57.02 1612 8448 9463 7877 537 8392
GoogLeNet  AS. 8651 8651 6404 1349 87.02 955 8224 45 86.36
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CONCLUSION
The current work has performed an exhaustive evaluation of the performance of 1D-based ML and

2D-based DL binary and multiclass predictions. It is observed that even though same number of training and
test samples are used for 1D and 2D methods, the 1D based method demonstrates significantly poor
performance than 2D or image-based prediction. For instance, the highest mean accuracy obtained from the
1D based classifier are 57.89% and 37.02% for binary and multiclass prediction. Whereas, the highest mean
accuracy obtained from the 2D based classifier are 96.05% and 89.8% for binary and multiclass classifier
respectively. Therefore, it is understood that voice pathology classification can be successfully performed
with image-based DL techniques.
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