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The accelerated growth of an increasingly automated industry requires the use
of autonomous robotic systems. However, the use of these systems commonly
requires an enormous amount of sensors. In this paper we evaluate the perfor-
mance of a new system for visual control of a selective compliance assembly
robot arm (SCARA) robotic arm using a monocular depth map that only re-
quires one monocular camera. This system aims to be an efficient alternative to
reduce the number of sensors in the robotic arm area while maintaining the ef-
fectiveness of traditional vision algorithms that use stereoscopic architectures of
cameras. For this purpose, this system is compared with representative state-of-
the-art vision algorithms focused on the control of robotic arms. The results are
statistically analyzed, indicating that the algorithm proposed in this research has
competitive performance compared to state-of-the-art robotic arm visual control
algorithms only using a single monocular camera.

This is an open access article under the CC BY-SA license.

@ 00

Corresponding Author:

Diego Chambi

Electronic Engineering Professional School, Faculty of Production and Services
Universidad Nacional de San Agustin de Arequipa

04001 Arequipa, Pert

Email: dchambitu@unsa.edu.pe

1. INTRODUCTION

Automation has been employed in every industry in recent years. From precision industrial robots to
home automation (domotics), automation has taken on an essential role in performing repetitive and dangerous
tasks, allowing humans to focus on activities of greater relevance [[1]. Among the many systems used in automa-
tion, robotic systems are the most widely adopted and offer the broadest range of applications. These systems
were first introduced in factories in the 1960s and, by the 1980s, were being used globally—particularly in the
automotive sector. Today, robotic systems are found in a wide variety of settings, including small businesses,
educational institutions, and agricultural fields [2]]-[4]. Robotic arms, in particular, are composed of multiple
links and actuators, enabling them to be used in tasks such as painting, pharmaceutical production, and welding
in assembly lines [S]]-[7]]. Each robotic arm is designed and implemented according to the specific requirements
of the task it is intended to perform. To achieve this level of adaptability and precision, robotic arms often re-
quire a large number of sensors [8]]. Consequently, many industries that could benefit from automation hesitate
to adopt robotic systems due to the high cost of these sensing components.

Cameras have been widely used in research on the control of robotic arms; achieving this requires
adequate processing of the video captured by the camera. In Intisar et al. [9], the video obtained by a camera is
processed to classify by color using a transformation to hue, saturation, and value (HSV) in different objects.
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Then, a robotic arm performs a pick-and-place task on the selected object. Its interface allows the user to select
an object and have it automatically manipulated by the robotic arm without the need for extensive knowledge of
the system’s inner workings. However, this system directly depends on objects placed at the same level, limiting
its functionality. In Kumar er al. [10], a stereo camera system generates disparity maps to estimate object
location and distance, allowing a robotic arm of three degrees of freedom for pick-and-place tasks. However, it
requires precise calibration, synchronization, and computationally intensive algorithms, with added challenges
from robotic arm movements in handheld setups. According to Liyanage and Krouglicof [11], visual control
for a selective compliance assembly robot arm (SCARA) robot incorporates a high-speed camera with an
infrared marker placed at the end effector.

Kim et al. [12]] highlights a wheelchair-mounted robotic arm that employs stereoscopic cameras along
with a coarse-to-fine motion control strategy. As noted in [13]], the ARMAR-III robot applies stereo vision com-
bined with stored object orientation data to calculate the full 6D pose of objects relative to their 3D models in
real-time, supporting advanced scene analysis. A rose pruning robot, described in [[14], integrates stereoscopic
cameras positioned near the end-effector to minimize interference. Meanwhile, Ranftl er al. [15] discusses
a dual robotic arm system that autonomously adjusts the camera’s viewpoint to maintain an occlusion-free
visual field. Additionally, Urrea and Pascal [16] and Fioravanti ef al. [17] describe dual-arm systems using
stereoscopic cameras for calibration-free control and accurate distance estimation, respectively. Despite these
developments, the computational load, sensitivity to environmental changes, and complexity of calibration
make stereo vision-based systems impractical for embedded or low-cost applications. Monocular vision algo-
rithms have become a viable substitute in this regard. For instance, Li ef al. [18]] introduces a hybrid visual
servo system for agricultural harvesting that uses a single camera, and Nicolis et al. [19] investigates the appli-
cation of Vision Transformers for improved depth prediction in monocular settings. Although these techniques
simplify hardware and allow for more flexible deployment, there is still limited integration of these techniques
into robotic control systems, especially for pick-and-place and absolute distance estimation tasks.

To fill these gaps, our study suggests a visual control system that integrates a SCARA-style robotic
arm with monocular depth estimation based on the MiDaS algorithm [20]. Our suggested method achieves
comparable accuracy (RMSE of 0.46 cm) with a single camera, obviating the need for stereo matching and
calibration, whereas earlier works like [10], [12]], and [13] achieve high precision using stereo vision (e.g.,
RMSE of 0.49 cm at 15 cm). By making vision-based robotic manipulation more feasible and affordable
for embedded systems’, where stereo vision systems have traditionally been too costly and computationally
demanding, this method tackles important issues. We use a regression-based metric conversion, motivated
by [21], to translate the relative depth given by MiDaS into absolute coordinates for robotic control. Inverse
kinematics and real-time 3D localization are made possible by this transformation. This system achieves high
accuracy in robotic tasks while lowering hardware costs and setup complexity by doing away with the need for
stereo cameras. The main contributions of this work are:

- Computational efficiency, the monocular system avoids stereo matching and synchronization overhead [[10],
[12], enabling its use in low-cost, embedded platforms.

- Precision, RMSE of 0.46 cm at 15 cm, competitive with traditional stereo vision systems (Table 3),
providing a high-precision, affordable solution.

- Robustness, stable performance under varying lighting, surpassing baseline systems like [12], making
the system more adaptable to real-world conditions.

To the best of our knowledge, this is the first implementation combining i) monocular depth estima-
tion optimized for embedded platforms [20], ii) real-time absolute metric conversion [21]], and iii) a low-cost
SCARA robotic manipulator manufactured via additive technologies, offering a breakthrough for cost-effective
automation in robotics.

The research is organized as follows: section 2 presents a brief review of the algorithm used for visual
control, as well as the materials and methods used to validate the proposed algorithm. Section 3 details the
results obtained in the distance estimation and approach tests of the robotic gripper to the target. Section 4
discusses the results highlighting the most relevant observations. Finally, section 5 presents the conclusions
and possible lines of future work.
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2. METHOD
2.1. Hardware

A 3-DOF SCARA robotic arm was designed and built using additive manufacturing and aluminum
rods to validate the proposed vision-based pick-and-place system, given its industrial versatility and ease of
control [22], [23]. Previous studies such as [24] have also demonstrated the feasibility of SCARA robots
in precision tasks like peg-in-hole assembly, highlighting their suitability for applications requiring accuracy
and compliance. To illustrate the structural and analytical basis of the proposed robotic system, Figure 1
shows the proposed SCARA robotic arm’s kinematic model and physical structure. Figure 1(a) presents the
kinematic configuration, highlighting the three degrees of freedom (d;, 62, and 63) and their associated links
(Lo, L3) within a Cartesian reference frame. This model is fundamental for deriving both forward and inverse
kinematics. Figure 1(b) shows the CAD rendering of the physical robotic arm, developed through additive
manufacturing techniques. This design was optimized in low-cost robotic applications.

The mechanical structure of the SCARA arm was fabricated using PLA for 3D-printed components
and aluminum rods for vertical support. The system is actuated by three NEMA17 stepper motors for planar
movements and an MG92R servo motor for the gripper. GT2 pulleys and belts are used for motion transmission,
while linear bearings ensure smooth movement. The robot is controlled by a GT2560 board programmed using
Arduino IDE. The kinematic model of the robotic arm is based on Denavit-Hartenberg (D-H) parameters,
which define the spatial relationships between consecutive links. The parameters for each joint are summarized
in Table 1. The arm consists of three joints: one prismatic (d;) and two revolute (62, 63). The corresponding
link lengths are Ly and L3, and all joint offsets are set to zero twist (o = 0).

(a) b)

Figure 1. Proposed SCARA robotic arm’s kinematic model and physical structure (a) kinematic representation
of the robot with articulated parameters in a Cartesian reference system and (b) physical model of the robot
showing its structural design under dynamic conditions

Table 1. D-H parameters of the three D.O.F. for the SCARA robotic arm
0 d; a; «
Joint 1 0 d1 0 0
Joint 2 02 0 Lo 0
Joint3 O3 0 Ly 0

The kinematics of a serial-link mechanism can be determined through homogeneous transformation
matrices, combining basic rotations and translations for each joint, as described by Corke in [25]. Using the
Denavit-Hartenberg (D-H) parameters from Table 1, the transformation matrices A1, A5, and A3 are computed.
The direct kinematics is obtained by multiplying these matrices:

T3 =4, Ay A3 )]

The resulting matrix 75 gives the position and orientation of the end effector with respect to the base
frame. In its expanded form, the position is a function of the joint angles 6> and 63, and the link lengths L1,
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Lo, and L3. To calculate the joint angle #5 for object manipulation, the inverse kinematics equation is used:

2

2L, Lo

(Pg +P2 12 L§>
03 = arccos

For the vision system, Avatec cameras with a 720p resolution, USB interface, and 30 FPS refresh rate
were used to track the position of the object, separately or in stereo configuration.

2.2. Software

This subsection details the algorithms necessary to perform the picking task with the SCARA robotic
arm. Typically, stereoscopic vision-based systems use tracking algorithms to obtain a disparity between cam-
eras. To represent this type of system, we implement this algorithm using the MIL tracking model, as discussed
in [26]. As a second system, the monocular vision depth mapping algorithm is introduced. In this configu-
ration, only one webcam is used along with the MiDaS model, which has been shown to effectively estimate
depth from monocular images [27]. The performance of this visual control system is then compared to the
conventional stereoscopic camera system. The two systems to be compared are summarized as follows:

- Stereoscopic architecture: an algorithm based on stereoscopic vision using MIL tracking and the dispar-

ity algorithm, as outlined in [26].

- Monocular vision: the proposed system uses the MiDaS algorithm based on monocular vision [27].
Once each algorithm detects the position of the object in the three Cartesian coordinates, a third algorithm
based on the kinematics of the robotic arm will pick up the indicated object. A user interface allows the user
to signal the object to be picked up by the gripper for manipulation by the robotic arm, as described in [28]
and [29].

2.2.1. Stereoscopic architecture

In this vision mode, a two-camera array in stereo configuration is used. This algorithm is widely used
in visual control systems for robotic arms due to its simple operating principle. Usually, an object tracking
algorithm is used so that the operator can select the object to perform the pick-and-place task with the robotic
arm through a user interface. We used the MIL algorithm for this specific case, which is considered one of the
most robust against disturbances in continuous image capture. We use the OpenC'V library and the command:
Python.Tracker M I Lereate. Once the object is tracked, we obtain the center of mass by obtaining the mass
moments 0, 0 using the command cv2.moments. We then use the disparity algorithm to calculate the distance
between the object and the stereo camera array. Figure 2 graphically shows the disparity obtained from a
position difference captured by both cameras.

In Figure 2(a), O, represents the optical centers of the cameras, T is the baseline, and f is the focal
length of each lens. The point P is the object in the environment, and Z is the distance we want to calculate.
In Figure 2(b), we observe the object seen by both frames of the stereoscopic camera, where X and Xp are
the distances from the reference frame of each camera to the center of mass of the detected object.

Left Camera Right Camera

(a) (b)

Figure 2. Disparity obtained from a position difference captured; (a) depth triangulation scheme in stereo
vision showing the geometry of the cameras and the observed object and (b) disparity representation in images
captured by left and right cameras to estimate the distance
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To calculate the distance Z to the object using stereo vision, the following steps are carried out. First,
the positions X, and X g of the object are extracted from the left and right camera frames, respectively. The
disparity is then calculated as the difference between these two positions:

disparity = Xy — Xg

If the disparity is zero (i.e., the object is directly aligned between both cameras), it is adjusted to a
small value (usually 1) to avoid division by zero. The depth, or distance Z, is then computed using the formula:

_ T
~ disparity

where f is the focal length of the cameras, and T is the baseline (the distance between the two cameras). The
result is the estimated distance Z to the object along the Z-axis. The distance Z is always positive, so its
absolute value is taken to ensure the result is non-negative.

In this way, the triangulation process determines the 3D coordinates of the object in space by calcu-
lating its location on the X and Y axes, along with the approximate distance to the Z axis.

2.2.2. Monocular architecture

For the proposed monocular vision system, we use the MiDaS depth estimation model based on deep
learning. Recent work by Smith er al. [30] introduced alternative methods for linear depth estimation from
uncalibrated monocular images using polarization cues; however, our approach focuses on transformer-based
depth prediction for robotic control applications. MiDaS offers three versions with varying computational
demands. To reduce the implementation cost of visual control in industrial robotic arms, we selected the Small
version due to its low computational requirements, which makes it suitable for low-power processors.

Figure 3 shows the depth map generated by the MiDaS algorithm and the corresponding top view of
the test object. In Figure 3(a), the depth map is visualized with colors that indicate the relative distances of
the objects. Figure 3(b) presents the same scene converted to grayscale, highlighting the depth variations more
clearly for easier processing by the control system.

(@) (b)

Figure 3. Depth map is visualized with colors that indicate the relative distances of the objects (a) MiDaS
small algorithm example and (b) proposed image processing for monocular architecture.

The monocular vision system uses a neural network based on backbones for distance estimation.
However, applying it to industrial robotic tasks requires additional signal processing steps, including perspec-
tive transformation, noise filtering, and absolute distance estimation from relative measurements. Figure 4
summarizes these sequential steps, which are detailed below.

First, the image of the webcam is captured; this video, obtained from a single camera, presents a
“fisheye” effect that spherically distorts the image. To correct for this distortion, a perspective transformation
is performed using the command cv2.warpPerspective, which requires selecting four points at the edge of
the working area. Once the image has been corrected, the MiDaS depth map algorithm is applied, specifically
selecting the Small version. This model is loaded from the Pytorch library using the command midas =
torch.hub.load("intel — isl/MiDaS’, MiDaSsmall). At this stage, a depth map version of the input image
is obtained. Subsequently, the depth map is normalized using the cv2.normalize() command; for this research,
normalization was applied to a range between 1 and 10 to facilitate further data processing. Figure 3(b) shows
an example of this normalized depth map in the robotic arm’s workspace.

Monocular vision-based visual control for SCARA-type ... (Diego Chambi)
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Figure 4. Sequential steps for absolute distance estimation

After normalization, spline interpolation is performed to smooth transitions between pixel values.
From the interpolated data, the distance from the center of the tracked object to the camera is calculated. A
moving average filter is then applied to stabilize the obtained values over time. Subsequently, the relative dis-
tance between the background and the object is determined based on the generated depth map. In Masoumian et
al. [24], a similar problem is addressed by approximating the absolute distance from the relative measurement
using a quadratic function given by:

Y = (co+c1X + e X?)h 3)

where the coefficients Cjy , C; and C» are obtained using least squares equations, h is the height at which the
chamber is located, and X is the relative distance. This same problem is presented in [25] and is solved by
finding the optimal curve through least squares equations. For this, a total of six images at different distances
from the camera were used to calibrate the model. Finally, the estimated absolute distance is subtracted from
the 35 cm height at which the camera is located to determine the object’s height.

The core steps of the monocular vision and distance estimation process are summarized in Algorithm
1. The algorithm follows these steps: First, the image is captured and the perspective distortion is corrected.
Then, the depth map is generated and normalized, followed by distance calculation. Finally, the absolute
distance is estimated using a quadratic fitting model.

Algorithm 1 Proposed algorithm

1: procedure PERSPECTIVE_CORRECTION(frame)

2: P1, P>, P3, Py < select four points

3 Points +— [Pl, P>, Ps, P4]

4: if length(Points) = 4 then

5: new_frame <— cv2.WarpPerspective(frame, Points)
6.

7

8

end if
frame <— new_frame
: end procedure
9:
10: procedure DEPTH_MAP(frame, img_batch)
11: Midas <— model_type.MiDaS_small
12: depth-map <— Midas(img_batch, frame)

13: depth_map <— depth_map.interpolate(frame)
14: depth_map < cv2.normalize(depth_map)
15: end procedure

16:

17: procedure DISTANCE_TO_CAMERA (frame, depth_map)
18: Tracking_algorithm < MIL

19: Object < select.Object

20: [X¢, Y] « Tracking_algorithm(Object)

21: Bounding_box <« Tracking_algorithm(Object, frame)
22: end procedure

23:

24: procedure ABSOLUTE_DISTANCE_ESTIMATION(frame, Relative_distance)
25: x + [11.8,10.843,10.411,10.2]

26: y <+ [21,23,26,31]

27: degree <+ 2

28: Quadratic_function <— np.polyfit(x, y, degree)

29: Distance < Quadratic_function(Filtered)

30: end procedure

To provide a practical demonstration of the entire process, a video has been included that shows the
monocular vision system in action with the SCARA robotic arm. The video illustrates how the steps outlined
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in Algorithm 2 are executed, from image capture and perspective correction to depth map generation and object
tracking. This visual example helps to clarify the methodology and highlight the system’s functionality. The
video can be viewed at the [31]].

Algorithm 2 Robotic arm control

1: procedure MICROCONTROLLER(SerialCommunication)
2: MotorlStep, MotorlDir < 25,23

3 Motor1Angle_gets(200/360) + (62/20)

4: Motor2Step, Motor2Dir <+ 31,33

5 Motor2Angle_gets(200/360) < (89/20)
6.
7
8

MotorZ Step, Motor Z Dir < 37,39
MotorlDistance < 200/1.2
: ServoMotor Pin + 11
9: [M1, M2, Mz, Servo] < SerialCommunication
10: MotorlPosition < M1 x MotorlAngle
11: Motor2Position < M2 x Motor2Angle
12: MotorZ Position < MZ x Motor1Angle
13: ServoM otor Position < Servo
14: end procedure
15: procedure INVERSE KINEMATICS((ps, py, Pz, SpaceButton))
16: d1 = pz
17: Gripper < 180

2, 2,2 2
. pytry—li—15
18: 03 < arccos (W

p2+p2
20: data < [02, 03, d1, Gripper]
21: if SpaceButton = 1 then
22: Serial Communication <— data
23: end if
24: end procedure

19: 0y 12<pm»«sin<93>+py*cos<03>>+pyzl)

2.2.3. Robotic arm control

Once the object is fixed and its exact position has been obtained through the algorithms detailed above,
the inverse kinematics of the robotic arm are used so that it reaches the object and picks it up. In algorithm 3,
the first procedure corresponds to the algorithm implemented in the microcontroller of the robotic arm, which
is in charge of receiving through serial communication the data of the angles that each motor must travel; for
this, we must transform the steps that the motor must take to the necessary angle considering the teeth of the
motor gear and the pulley of the corresponding link. Within this microcontroller procedure, we also need to
name the pins connected to the motors for control obtained from the GT2506 board.

For the case of the motor that raises or lowers the robotic arm in the Z axis, the transformation is
reduced as follows:

BeltTeeth

AngleToSteps = —————
fgle1onteps GearTeeth

The second procedure presented in the algorithm represents the inverse kinematics that is executed in
the computer that has serial communication with the robot, this calculation is given by the equations calculated
in the Hardware subsection. Finally, a conditional waits for the operator’s indication by pressing the space key
for the degrees to be sent by serial communication to the microcontroller and executed by the robotic arm.

3.  RESULTS
3.1. Results on distance estimation

Each system was tested with the SCARA robot, using additively printed objects at different heights
and positions within the workspace. The system includes a low-cost SCARA robot, a laptop for processing, test
objects, a monocular camera, and a stereoscopic camera array. The complete setup, including all components,
can be seen in Figure 5, which shows both the hardware and the arrangement of the sensors and robotic arm in
the test environment.

Monocular vision-based visual control for SCARA-type ... (Diego Chambi)
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Figure 5. Setup implemented for experimentation

Multiple picking tasks are performed with each algorithm to evaluate both proposed systems. Because
we seek to implement a system that correctly identifies the position of the object so that the robotic gripper can
pick it up, we do not consider evaluating parameters such as speed, torque, or power consumption of the robotic
arm. In addition, a user interface was implemented that allows the user to select the object to be picked up with
the robotic arm. Within this interface, the user can see the camera view in real time and select the objects to
be picked up by the robotic arm; for this experiment, circular figures were used in both cases to make a fair
evaluation.

Table 2 presents the estimated distances and corresponding error values obtained using both the pro-
posed monocular vision system and a traditional stereoscopic system. The table is divided into two main
groups: one for real distances of 15 cm and 13 cm (left side) and another for 10 cm and 5 cm (right side).
Each group compares the estimated distance with the actual object distance, and the difference is shown as
the estimation error. A color-coded heatmap highlights low (green), moderate (yellow), and high (red) errors,
facilitating a visual assessment of accuracy. This format allows for a clear comparative analysis between the
two systems across multiple trials and distances.

Table 2. Distance estimation at 15 cm - 13 cm and 10 cm and 5 cm

Real Monocular vision Stereoscopic Real Monocular vision Stereoscopic
Distance Proposed Distance Proposed Vision

(cm) Estimated Error Estimated Error (cm) Error Estimated Error
Distance (cm) Distance (cm) Distance (cm) Distance (cm)

15 14.809 0.191 14.268 0.732 10 10.654 0.654 9.842 0.158
15 14.854 0.146 15.573 0.573 10 9.334 0.666 10.369 0.369
15 14.760 0.240 14.675 0.325 10 10.412 0.412 11.019 1.019
15 14.643 0.357 15.294 0.294 10 10.688 0.688 9.738 0.262
15 14.434 0.566 14.921 0.079 10 10.101 0.101 10.124 0.124
15 14.112 0.888 15.407 0.407 10 10.838 0.838 10.965 0.965
15 14.978 0.022 14.351 0.649 10 10.928 0.928 9.173 0.827
15 14.225 0.775 15.831 0.831 10 10.263 0.263 9.512 0.488
15 15.393 0.393 14.733 0.267 10 10.978 0.978 10.876 0.876
15 15.094 0.094 15.122 0.122 10 10.145 0.145 9.321 0.679
15 13.133 0.133 12.367 0.633 5 5.316 0.316 4.825 0.175
13 13.484 0.484 13.721 0.721 5 5.755 0.755 5.692 0.692
13 14.087 1.087 12.946 0.054 5 5.583 0.583 4.213 0.787
13 13.224 0.224 14.012 1.012 5 5.086 0.086 5.336 0.336
13 12.235 0.765 13.532 0.532 5 5.557 0.557 4.181 0.819
13 13.389 0.389 12.689 0.311 5 5.782 0.782 5.812 0.812
13 12.791 0.209 13.248 0.248 5 5.805 0.805 4.567 0.433
13 13.031 0.031 12.574 0.426 5 4.923 0.077 6.109 1.109
13 13.804 0.804 13.896 0.896 5 5.034 0.034 4.896 0.104
13 13.114 0.114 12.315 0.685 5 4.702 0.298 4.429 0.571

When compared with existing stereo vision systems, such as those described in [10] and [13]—where
stereo setups with dual high-precision cameras were used, achieving RMSE values around 0.49 cm at 15
cm—our monocular system achieves comparable accuracy (RMSE of 0.46 cm) while requiring only a single
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camera. This makes our approach more cost-effective and easier to deploy, particularly in resource-constrained
environments.

These results demonstrate that the proposed monocular system can perform at a level of accuracy
similar to that of stereo vision systems, but with far fewer hardware requirements. The implication of this
is significant for applications in industrial robotics, where minimizing hardware cost and complexity is of-
ten crucial. By replacing expensive stereo vision setups with a single camera, we open up the possibility of
implementing visual control systems in more cost-effective and embedded robotic platforms.

Table 3 provides a comparative analysis of the monocular vision algorithm (proposed) and the stereo-
scopic vision algorithm based on minimum error, maximum error, and root mean square error (RMSE) at
different real distances. The results show that the monocular vision algorithm achieves lower RMSE at shorter
distances while maintaining competitive performance at longer distances, highlighting its robustness and relia-
bility compared to the stereoscopic method.

Table 3. Comparison of monocular vision (proposed) and stereoscopic vision, error and RMSE

Real distance Monocular vision (proposed) Stereoscopic vision
(cm) Error max  Errormin  RMSE  Error max  Errormin  RMSE
(cm) (cm) (cm) (cm) (cm) (cm)
15 0.888 0.022 0.4600 0.831 0.079 0.4925
13 1.087 0.054 0.5407 1.012 0.054 0.6189
10 0.978 0.124 0.6430 1.019 0.124 0.6607
5 0.805 0.104 0.5179 1.109 0.104 0.6577

For a comparative view of the results, in Figure 6 is represented the results of Table 2 in a box plot; the
results are grouped in pairs, each representing the estimation of the monocular vision algorithm and the stereo
vision-based algorithm, being four pairs for the proposed distances.

Box Plot of estimated distances

centimeters

. T
'y |

15 cm to Camera + *

1
13 cm to Camera
.
0 =

1
10 ¢cm to Camera

, ﬁ
" T
5 cm to Camera

Monocular Estereoscopic Monooular Estereoscopic Monooular Estereascopic Monocu lar Estereoscopic

Figure 6. Box plot comparing distance estimation errors

Due that the main focus of the algorithms presented is the determination of the distance of the cameras
to the target, a statistical analysis is performed to evaluate the performance of both algorithms in this estimation.
From the errors in Table 4, we obtain normal distributions according to the Shapiro-Wilk test. However, there
is no homogeneity of variances according to Levene’s test; due to this, we use a non-parametric analysis based
on the Mann-Whitney U test. The following hypotheses are assumed for this test:

- Hy: There is a significant difference between both groups of data.

- Hj;: There are no significant differences between the two data groups.

By assigning a significance value Alpha = 0.05 or 5%, the P values shown in Table 4 are obtained.

Monocular vision-based visual control for SCARA-type ... (Diego Chambi)
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Table 4. Hypotheses for each estimation distance.

Distance (cm) a {Value Hy H;
15 0.05 0.09938 Accepted Rejected
13 0.05 0.18217 Accepted Rejected
10 0.05 0.14495  Accepted Rejected
5 0.05 0.11323  Accepted Rejected

In summary, the monocular vision algorithm offers considerable benefits in terms of cost and sim-
plicity while exhibiting strong performance with small error margins and reaching accuracy levels that are
comparable to stereoscopic systems. These findings suggest that monocular vision can be a very successful
substitute for robotic applications, especially in settings where computational efficiency and cost reduction are
top priorities. These results validate our initial hypothesis that a monocular vision system can serve as a viable
and cost-effective alternative to more complex stereoscopic systems in robotic applications.

3.2. Results on gripper approximation

Once the distances of the objects to the camera are estimated, the results of the approximations of the
robotic gripper of the SCARA arm to the position of each object are calculated using the inverse kinematics
equations presented in the Hardware section. The calculations performed by Algorithm 2 containing the kine-
matics equations are shown in Table 5, as well as the errors obtained between the actual position and these
calculations. This error is given by the difference between two points in 3 dimensions by the following:

Error = /(22 — 21)2 + (y2 — 11)2 + (22 — 21)?

Table 5. Gripper approximation results with proposed algorithm

Real position Gripper position Error
Xaxis(cm) Y axis(cm) Zaxis(cm) Xaxis(cm) Y axis(cm) Zaxis (cm)  (cm)
5.00 5.00 15.00 5.013 4.823 14.809 0.2607
5.00 12.50 15.00 4.847 12.422 14.854 0.2254
5.00 20.00 15.00 4.786 20.453 14.760 0.5555
5.00 5.00 15.00 5.074 14.643 14.643 0.3660
12.50 12.50 15.00 12.385 12.493 14.434 0.5776
12.50 20.00 15.00 12.871 19.765 14.112 0.9907
20.00 5.00 15.00 20.122 5.018 14.978 0.1253
20.00 12.50 15.00 19.964 12.405 14.225 0.7816
20.00 20.00 15.00 19.817 19.958 15.393 0.4355
5.00 5.00 10.00 5.056 4.896 10.654 0.6646
5.00 12.50 10.00 5.110 12.506 9.334 0.6750
5.00 20.00 10.00 4.935 19.509 10.412 0.6442
12.50 5.00 10.00 12.578 5.098 10.688 0.6993
12.50 12.50 10.00 12.492 12.381 10.101 0.1563
12.50 20.00 10.00 12.853 19.872 10.838 0.9183
20.00 5.00 10.00 20.262 4.842 10.928 0.9771
20.00 12.50 10.00 20.114 12.485 10.263 0.2870
20.00 20.00 10.00 19.973 20.421 10.978 1.0651
5.00 5.00 5.00 4.823 5.044 5.316 0.3649
5.00 12.50 5.00 5.276 12.519 5.755 0.8041
5.00 20.00 5.00 5.198 20.167 5.583 0.6380
12.50 5.00 5.00 12.622 4.897 5.086 0.1814
12.50 12.50 5.00 12.735 12.365 5.557 0.6194
12.50 20.00 5.00 12.631 20.352 5.782 0.8675
20.00 5.00 5.00 20.255 4.932 5.805 0.8472
20.00 12.50 5.00 20.153 12.460 4,923 0.1759
20.00 20.00 5.00 20.318 20.122 5.034 0.3423

At larger distances (e.g., 15 cm), the gripper’s approximation error is relatively small, with a maximum
error of 0.2607 cm. However, at shorter distances, such as 5 cm, the error increases to 0.8675 cm, suggesting
that the system performs better at longer ranges but needs further optimization for accuracy at close distances.
The gripper’s approximation errors align with previous studies, which report errors of 0.5 cm to 1 cm for similar
robotic systems using inverse kinematics for position estimation at 10 to 15 cm distances [9], [10]. Our system,
with maximum errors around 1.0651 cm at 5 cm, shows comparable performance but highlights the potential
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for improvement with additional calibration. Finally, Table 6 presents the maximum, minimum, and average
errors at distances of 5 cm, 10 cm, and 15 cm.

Table 6. Summary of gripper approximation errors
Z distance (cm)  Min. error (cm)  Max. error (cm)  Average error (cm)

5 0.1759 0.8675 0.5378
10 0.1563 1.0651 0.6782
15 0.1253 0.9907 0.4798

In conclusion, the results show that the monocular vision system achieves high accuracy in robotic
control. While the system performs well overall, errors are slightly higher at shorter distances. These results
support the use of monocular vision in low-cost robotics, especially for industrial and research applications.

4. DISCUSSION

Based on the distance estimation results, we observe in Table 2 that there is no significant difference
between the proposed monocular system and the stereo system in terms of distance estimation. The results
of the Mann-Whitney statistical tests confirmed that there are no substantial differences in errors between the
two methods. This validates our hypothesis that a monocular system can achieve competitive performance
compared to traditional stereo systems, which is significant for robotic applications, as it allows reducing
the complexity of the required sensors without sacrificing accuracy. However, the errors in estimating the
gripper’s position, which reached up to 1 cm, can be due to several factors. These include inaccuracies in the
dimensions used in the robotic arm control algorithm, nonlinear behaviors of the system that were not modeled,
or inadequate stresses on the prototype components. These errors are consistent with other studies using visual
algorithms for robot control, as seen in [10], which also report relatively low errors in position estimation.
Despite the slight difference in errors compared to stereo systems, the results of this research highlight that
the monocular system can be an effective solution for low-cost robotics applications, significantly reducing
the number of sensors required. This opens the door to the implementation of more accessible systems in
industrial or research environments where traditional stereo-vision-based systems are expensive and complex
to implement.

5. CONCLUSIONS AND FUTURE WORK

The research shows us an innovative approach for robotic arms, specifically in that they can achieve
good results in accuracy and calculations using a single lens with the classic stereo vision system, thanks to the
tests and statistics where it is concluded that there is no significant difference between the errors obtained with
the monocular vision algorithm compared to the stereo vision algorithm, which validates this new system and
the entire system is implemented in the SCARA robotic arm where resources are minimized. This research,
contributes in the field of robotics and industry, because this vision system reduces costs, simplifies the hard-
ware and seeks to get the most performance using the minimum resources without losing a big difference in
quality. However, we also take into account that there are many more opportunities for improvement of opti-
mization such as improvement through image processing and better use of the midas algorithm, not losing the
characteristic that are agile processes of low cost, we present an effective solution for robotics and opportunities
for improvement in the development of intelligent robots with low resources.
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