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 Earthquake signals are crucial for minimizing the impact of seismic 
activities. Current algorithms face difficulties in correctly identifying P-
waves and assessing magnitudes, which affects the amount of advance 
warning given. It is crucial to establish standardized methods for the 
effective selection and integration of multiple algorithms. Machine learning 
techniques could considerably enhance detection reliability. The research 
seeks to rectify this shortfall and strengthen automated detection as well as 

prediction capabilities. The model's performance is assessed using real 
earthquake data in simulations compared to individual algorithms. The 
objective of this research is to develop an optimized multi-algorithm 
framework that enhances the warning lead times and overall reliability. This 
framework underpinning this method is shaped by the operational demands 
inherent in early warning systems. The objective of the work is to contribute 
to the betterment of seismic risk reduction. An ML methodology, merging 
several distinct detection algorithms, will be deployed along with a tailored 

prioritization system. The intention is to strengthen the model's 
dependability and its overall level of consistency. The ML-based multi-
algorithm framework significantly boosts the performance of Early 
Earthquake Warning Systems, providing a scalable approach to enhance 
automated detection and public safety, ultimately advancing the 
effectiveness of seismic hazard reduction through quicker and more accurate 
warnings. 
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1. INTRODUCTION 

Earthquake signals constitutes a system designed to detect and alert individuals prior to an 

earthquake's arrival. EEW systems employ a network of seismometers to identify the seismic waves 

generated by an earthquake, subsequently using sophisticated algorithms to estimate the event's location, 

magnitude, and predicted intensity of shaking [1]. 

The primary goal of an EEW system is to afford individuals a window of a few seconds to minutes 

of warning prior to the arrival of intense ground shaking, allowing them to take protective measures and 
mitigate damage to property [2]. The system can prove crucial in detecting seismic activity and providing 

advance guidance to populations living in earthquake-prone zones [3], [4]. When an earthquake occurs, 

sensors promptly detect the initial seismic waves and transmit this data to a central processing system [5]-[7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The length of time available for advance warning is contingent on a multitude of factors, including the 

distance from the earthquake's epicentre, the magnitude of the earthquake, and the sensitivity of the detection 

sensors [8]. In certain scenarios, the system can deliver a few to several seconds of advance warning before 

the strongest shaking occurs. This might not appear like a significant timeframe, yet it can be sufficient to 

facilitate protective actions, such as dropping to the ground, seeking shelter under a sturdy structure, or 

evacuating a building [9], [10]. 

A machine learning (ML)-based system incorporates multiple detection algorithms alongside a 
novel prioritization strategy to enhance dependability [11], [12]. The ML model has improved reliability 

through the integration of multiple algorithms, which in turn lessened the occurrences of false alarms and 

errors. 

 

 

2. BACKGROUND 
Early warning systems for earthquakes function by instantly and automatically identifying seismic 

waves, providing alerts before strong shaking impacts people. Detecting the arrival of the initial P-waves 

offers crucial early warning before the more violent shaking commences [13], [14]. At present, many systems 

are engineered to pinpoint these waves via single-station algorithms. These algorithms scrutinize attributes of 

the seismic signal, hence the relationship in between Short-Term Averages and Long-Term Averages, 

commonly denoted as STA/LTA. The STA/LTA value is determined by: 
 

STA LTA⁄ =
∑ 𝑎𝑛𝜘𝑛

𝑁
𝑛=1

∑ 𝑎𝑚𝜘𝑚
𝑀
𝑚=1

 (1) 

 

Considering a_(n) and a_(m) as seismic amplitudes gauged within brief (n) and extended (m) temporal 

segments. The terms N and M correspond to the count of data observations within those respective shorter 

and longer periods. A critical value, or threshold, is utilized on the calculated proportion to pinpoint the 

beginnings of P-waves. Moreover, determining the magnitude (M) holds significance when assessing the 

urgency of a warning [15], [16]. Magnitude (M) can then be calculated using relationships tied to the initial 
measurements of wave amplitudes (A), wave frequencies (f), and the distance to the earthquake's origin (R). 

 

𝐿𝑜𝑔 (𝐴)  =  𝑎 +  𝑏 (𝑀) −  𝑐 𝐿𝑜𝑔 (𝑅) (2) 

 

In the regression equation, 'a', 'b', and 'c' denotes the regression coefficients. It's worth noting, 

however, that techniques based on a single station have certain drawbacks when trying to differentiate noise 

from faint P-waves, resulting in delayed or missed detections. Rapid estimations of magnitudes at early 

stages also pose challenges due to inherent uncertainties [17], [18]. The current landscape demands 

strengthened automation, achieved by constructing improved strategies. These strategies must  

leverage multiple parameters and utilize a blend of algorithms, carefully designed to capitalize on the unique 
benefits each method offers. ML presents itself as a particularly viable approach to tackling the identified 

restrictions [19].  

Identifying seismic wave arrivals reliably is critically important. Doing so ensures we have adequate 

time for early warning systems which is to issue the alerts before destructive waves come [20]. Traditional 

techniques, as like the relationship in between the short-term average to the long-term average (STA/LTA) 

procedure, are generally used due to their straightforward nature [21]. Nonetheless, STA/LTA presents 

certain limitations, including the dependence on careful threshold setting and the challenges of differentiating 

minor events from fluctuating background noise. 

Although advances have been made beyond STA/LTA, existing methods can struggle to effectively 

capture non-stationary signal attributes. Achieving optimal performance may therefore necessitate 

considerable parameter tuning [22]. As a result, ensemble techniques that integrate multiple detectors have 

gained traction, with the aim of leveraging diverse but complementary insights [23]. Such methods show 
potential not only for expediting detection but also for delivering dependable performance that can be 

generalized across diverse seismic scenarios [24]. 

The Zagros folded belt is a region renowned for its high seismic activity. A particularly strong 

earthquake, registering a magnitude of MW = 7.3, occurred in Sarpol-e Zahab on November 12, 2017; this 

event stands as one of the most intense recent earthquakes within the Zagros region. A further notable 

earthquake followed on August 25, 2018, with a magnitude of MW = 6. In light of these occurrences, a 

catalogue was generated to facilitate earthquake prediction in the northern Zagros, employing ML 

methodologies and accounting for the seismic events. The catalogue was initially founded upon the Middle 

East catalogue, comprising occurrences detected through early and modern instrumental techniques until 
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2006. The data was then integrated with the Iranian Seismological Centre (IRSC) catalogue, which could be 

accessed to ensure a complete earthquake record [25]. 

Variations in completeness magnitude (MC), representing the smallest discernible magnitude, arise 

due to the characteristics of seismic networks and the methodologies utilized for data processing. Achieving 

accurate results necessitates the inclusion of the maximum available events; hence, a precise assessment of 

MC is essential in any seismicity investigation. The completeness magnitude, MC, has been determined 
employing the maximum curvature technique, also considering its temporal fluctuations. Additional methods 

were assessed, and the outcomes were confirmed. The use of earthquake records spanning from 1995 to the 

present has been implemented to enhance the precision of calculations, as the completeness magnitude saw a 

reduction after 1995. To ensure improved data integrity, events with magnitudes smaller than the 

completeness magnitude were omitted [26]. 

 

 

3. METHOD 
The ML algorithm in question underwent training, leveraging secondary seismic information 

sourced from the Northern California Seismic Network (NCSN) database. The criteria for event selection 

were strict: only events that took place within a 100km circular area surrounding the ANMO station, and also 

displayed unambiguous P-wave and S-wave arrival signals, were considered suitable for the training process; 
as detailed in reference [27]. Raw vertical-component waveforms underwent pre-processing using ObsPy, an 

open-source software package used for seismological data analysis. Station response metadata was utilized to 

remove instrument responses, and the data was resampled to 100Hz. For feature extraction, a 10-second 

window, starting 2 seconds prior to the manually-picked P-wave arrival times, was extracted [28]. The 

STA/LTA ratio, denoted as R, was computed employing a short-term window of 0.5 seconds and a long-term 

window of 1 second; this calculation followed (1). The autocorrelation function (ACF) analysis required the 

segmentation of the window signal S(t) into impending P(t) and extend E(t) constituents, using the ensuing 

recursive formula. 
 

𝑃(𝑡)  =  𝑆(𝑡)  −  𝐸(𝑡 − 1) (3) 
 

The dominant frequency, labelled F, was pinpointed by locating the apex within the power spectrum. Welch's 

method was employed for this spectral estimation, utilizing 0.5-second Hanning windows with a 90% overlap 

[29]. The generated features constituted the input X = [R, p, e, F] for a multi-layer perceptron (MLP) 

classifier. The classifier was formulated using Keras, a deep-learning application programming interface 

(API). This methodology introduces a dataset dependent, multi stage algorithm, specifically intended to 

bolster earthquake early warning capabilities [30], [31].  

 

3.1.  Flowchart 

This algorithm, employing the relationship between Short Term Average and the Long Term 
Average gives a systematic framework for anticipating earthquakes. Its functionality hinges on evaluating 

seismic activity's short-term variations against the backdrop of long-term patterns. The STA/LTA ratio plays 

a vital role in pinpointing indicators that might signal an impending earthquake. This, in turn, facilitates the 

issuance of timely warnings and the mitigation of the impacts of seismic events [32]. A visual representation, 

depicting the flowchart designed for earthquake prediction, is presented in Figure 1.  

 

3.2.  STA / LTA Ratio Algorithm 

The STA/LTA ratio is a commonly utilized feature in the realm of onset detection. The calculation 

is mathematically described as follows: 
 

R(t) =
STA(t)

LTA(t)
 (4) 

 

Given R(t), reflecting the ratio at each temporal increment 't', where STA(t) corresponds to the average 

amplitude across the prior 'w' seconds, while LTA(t) signifies the average amplitude calculated over the 

previous 'W' seconds, with the stipulation that W is greater than w. The identification of an earthquake 

initiation hinges upon R(t) surpassing a specified threshold value. 
 

3.3.  Autoregressive (AR) modelling residuals 
Seismic data are represented employing an autoregressive (AR) framework. Analyzing the 

discrepancies—or residuals—existing between the true recorded signal and the AR model's predicted output 

can serve as an indicator of an impending event's commencement.  
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𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝑒𝑡 (5) 

 

Where X_t represents the signal, ϕ_i symbolizes the AR coefficients, e_t indicates the residual, and p 

signifies the order. A large residual indicates onset. 

 

 

 
 

Figure 1. Flowchart 

 

 

3.4.  Classification of the earthquake early warning systems 
Earthquake early warning systems are usually grouped according to where they operate, how they 

issue alerts, how they detect tremors, and their degree of automation. Regarding their operational area, they're 

split into local and regional systems [33]. The first type uses a thick seismic network focusing on a specific 

high-risk area to send warnings rapidly to locations close to where the earthquake began. Regional systems, 

on the other hand, depend on a more widespread seismic network to swiftly identify and locate earthquakes, 

giving ample time to alert a wider audience farther away from the earthquake's source [30]. Additionally, 

early warning systems are designed with either an open-loop or a closed-loop model for issuing alerts. Open-

loop systems quickly send warnings to users the instant a potential earthquake is automatically detected, 

without any delays for further refining estimations. 

Further classification depends on the primary detection method, several approaches are employed to 

monitor earthquakes, including those that utilize seismic data, geodetic measurements, or a synthesis of both. 
Seismic systems, for instance, depend on extensive networks of sensors designed to rapidly detect the arrival 

of P-waves. Subsequently, these systems calculate the earthquake's location and estimate the initial 

magnitude, utilizing the amplitudes of the P-waves within mathematical equations designed for such 

purposes. Still, slow-moving slips or aseismic events may not be detected [34]. Geodetic systems address this 

by tracking co-seismic movements using GPS or other geodetic sensors. However, their responsiveness is 

limited by the relatively slow movement of tectonic plates. Hybrid systems seek balance by intelligently 

merging seismic and geodetic readings using statistical analysis, capitalizing on their strengths while 

minimizing individual weaknesses. 
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4. FINDINGS AND DISCUSSION 

4.1.  Findings 

Another important aspect to classify is the level of automation. For instance, some systems might 

automatically detect anomalies and generate alerts without human oversight, while others require analysts to 

interpret data and decide whether to issue a warning. Figure 2 illustrates various algorithm types employed 

for generating earthquake early warning predictions. 
The designed ML model's detection abilities were assessed using an unseen test dataset. Figure 3 

presents a comparative example of the model’s probability outputs against the STA/LTA algorithm, focusing 

on genuine earthquake signals and noise recordings. Analysing the seismic data presented in Figure 3(a), the 

model swiftly identifies the P wave. It reaches its peak probability up to of 0.92 in just two seconds from the 

commencement of the event. Conversely, the STA/LTA ratio necessitates more time to surpass its established 

detection threshold. 

Considering the noise recording depicted in Figure 3(b), the model's prediction consistently falls 

below the 0.5 decision boundary. This correctly classifies the recording as a non-event. Contrarily, STA/LTA 

produces numerous false alerts due to noise-related transient activity. Additional insights were acquired 

through an investigation of detection capabilities across diverse magnitude thresholds as outlined in Table 1. 

For events of M≥3, the model registered 97.5% of events within an average of 3 seconds from onset. This 

showcases a speed advantage, being 5X faster when compared to STA/LTA alone, thus offering vital 
warning lead time [35]. 

 

 

Table 1. Detection performance at varying magnitude thresholds 
S. No. Magnitude threshold No. of events Detection rate (%) Average detection time (s) 

1 M≥3.0 75 97.5 2.8 

2 M≥3.5 50 95.0 3.1 

3 M≥4.0 30 92.5 3.4 

4 M≥4.5 15 90.0 3.7 

5 M≥5.0 05 80.0 4.2 

 

 

Figure 3 presents a comprehensive set of sample detection probability outputs for an M4.5 

earthquake, with Figures 3(a) through 3(l) illustrating the model's performance across various scenarios. In 

Figure 3(a), the model quickly identifies P-waves, reaching a peak probability of 0.92 within two seconds 

from the event's onset, showcasing its rapid detection capability, while Figure 3(b) depicts a noise recording 

where the model's probability remains below the 0.5 decision boundary, correctly classifying it as a non-

event, unlike the STA/LTA algorithm which generates false alerts due to transient noise. Figures 3(c) and 

3(d) highlight Array 1A showing clear signal detection and Array 2A indicating noise influence, respectively, 

demonstrating the model's ability to differentiate signal from noise. In Figures 3(e) and 3(f), Array 1B 
emphasizes P-wave detection with high accuracy, while Array 2B reveals noise interference, further 

illustrating the model's robustness. Figures 3(g) and 3(h) show Array 1C capturing signal clarity and Array 

2C reflecting noise variation, providing insight into the model's adaptability. In Figures 3(i) and 3(j), Array 

1D demonstrates P-wave accuracy, while Array 2D indicates a mix of signal and noise, testing the model's 

discrimination power. Finally, Figures 3(k) and 3(l) depict Array 1E with enhanced detection and Array 2E 

confirming noise suppression, underscoring the model's effectiveness across diverse conditions and its 

potential to improve early warning systems. 

 

 

 
 

Figure 2. Earthquake early warning systems 
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Figure 3. Sample detection probability outputs for M4.5 earthquake (a) model quickly identifies P-waves  

(b) depicted noise recording (c) array 1A shows signal detection (d) array 2A indicates noise influence  

(e) array 1B highlights P-wave detection (f) array 2B shows noise interference (g) array 1C captures signal 

clarity (h) array 2C reflects noise variation (i) array 1D demonstrates P-wave accuracy (j) array 2D indicates 

mixed signal and noise (k) array 1E shows enhanced detection (l) array 2E confirms noise suppression 

 

 

Further demonstrating its generalizability, the model was evaluated using synthetic waveforms 
generated by SW4 across a range of scenarios. It was successful in identifying over 95% of M≥2.5 events 

simulated within a 100km radius of the seismic stations, thus supporting robustness [36]. These excellent 

outcomes serve to validate the effectiveness of merging different detection techniques to leverage their 

collective strengths [37]. 

The findings showcased underscore the efficacy of the ML approach in automatically identifying 

earthquakes utilizing seismic waveform data, as documented in the reference. Figure 4 provides an overview 

of detection performance concerning differing magnitude thresholds. A notable advantage that became clear 

is the model's proficiency at swift P-wave identification, swift detection typically occurring in under three 

seconds, is observed even with tremors registering as little as M3.0. This outcome confirms the objective: to 

significantly expedite earthquake identification compared to standard approaches, thereby increasing the 

warning duration offered by early warning systems. Accounting for common P wave speeds are of 5-6 km/s 
that depend on the particular geological conditions, a reduction in detection delay of over 10 seconds has the 

potential of providing 30-60km of valuable distance-based warning time [38]. 

 

4.2.  Discussion 

The sustained performance, with both precision and recall consistently exceeding 95%, underscores 

the system's strong ability to pinpoint events, coupled with a very low frequency of incorrect alerts. The 

reliability inherent in such systems is of paramount importance; it safeguards the public's trust while 

guaranteeing prompt actions within early warning setups. Intriguingly, at the very smallest earthquake 

intensity considered, a magnitude of M3.0, a commendable sensitivity was observed, with over 97.5% of 

occurrences being accurately pinpointed [39]. Although validation was limited to a specific geographic area 

and magnitude range, restricted by data availability, subsequent studies should explore generalization across 
more diverse tectonic settings, and we'll also determine the scale of events by utilizing international data 

sources. Real-time deployment might require optimization for reduced computational demands or the use of 

hardware acceleration. 
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Figure 4. Detection performance chart at varying magnitude thresholds 
 

 

5. CONCLUSIONS AND FUTURE WORK 

In conclusion, the research described a ML strategy, aiming to combine insights involved the 

utilization of multiple detection strategies to accelerate seismic signal categorization and earthquake 

pinpointing. Specifically, a convolutional neural network was constructed and learned based on features 

extracted from short-term average/long-term average analysis, residues obtained from auto-regressive 

modelling, and frequency-domain configurations. This proposed model exhibited superior performance in 

terms of precise and rapid identification of P-wave arrivals when compared to the use of a single detector. 

The model was tested on earthquake and noise datasets collected from Southern California yielded the 

detection of over 95% of events, down to a magnitude of 3.0, in an average of just 3 seconds. The system 
demonstrated a precision and recall exceeding 98%, alongside a low rate of false positives. 

Ultimately, these results validate ML's suitability for integrating diverse analytical approaches to the 

study of seismic data, resulting in significantly faster and more reliable automated earthquake identification. 

With continued improvements, this methodology presents a viable pathway to meaningfully participate in the 

mission of providing timely earthquake alerts by developing reliable, information-based strategies for swift 

event identification. Further research can be done to improve the proposed system by using more advanced 

deep learning techniques. 
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