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 Accurate brain tumor segmentation from medical imaging is critical for early 

diagnosis and effective treatment planning. Deep learning methods, 

particularly U-Net-based architectures, have demonstrated strong performance 

in this domain. However, prior studies have primarily focused on limited 

encoder backbones, overlooking the potential advantages of alternative 

pretrained models. This study presents a systematic evaluation of twelve 

pretrained convolutional neural networks ResNet34, ResNet50, ResNet101, 

VGG16, VGG19, DenseNet121, InceptionResNetV2, InceptionV3, 

MobileNetV2, EfficientNetB1, SE-ResNet34, and SE-ResNet18—used as 

encoder backbones in the U-Net framework for identification and extraction of 

tumor-affected brain areas using the BraTS 2019 multimodal MRI dataset. 

Model performance was assessed through cross-validation, incorporating fault 

detection to enhance reliability. The MobileNetV2-based U-Net configuration 

outperformed all other architectures, achieving 99% cross-validation accuracy 

and 99.3% test accuracy. Additionally, it achieved a Jaccard coefficient of 

83.45%, and Dice coefficients of 90.3% (Whole Tumor), 86.07% (Tumor 

Core), and 81.93% (Enhancing Tumor), with a low-test loss of 0.0282. These 

results demonstrate that MobileNetV2 is a highly effective encoder backbone 

for U-Net in extracting tasks for tumor-affected brain regions using 

multimodal medical imaging data. 
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1. INTRODUCTION 

Brain tumors, defined by aberrant neural cell proliferation, constitute one of the most difficult 

problems in neuro-oncology, with significant global incidence (e.g., 23,820 new cases reported in the US in 

2019 [1], [2]). Accurate diagnosis and management of these tumors rely heavily on advanced medical 

imaging modalities, particularly multiparametric MRI (T1, T1c, T2, FLAIR), which provides superior soft-

tissue contrast for delineating tumor boundaries compared to CT or ultrasound [3], [4]. While these imaging 

techniques are indispensable, manual segmentation of tumor subregions (enhancing tumor, necrotic core, and 

peritumoral edema) remains labor-intensive, time-consuming, and subject to inter-rater variability, 

underscoring the critical need for automated, high-precision computational methods. 

https://creativecommons.org/licenses/by-sa/4.0/
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Traditional machine learning approaches for brain tumor segmentation often struggle with limited 

feature generalizability and dependence on handcrafted feature engineering. In contrast, deep learning (DL), 

particularly convolutional neural networks (CNNs), has shown powerful success in medical image analysis 

through autonomous acquisition of hierarchical features. Among DL architectures, U-Net has emerged as the 

de facto standard for biomedical segmentation, utilizing an encoder-decoder configuration combined with 

skip connections, which help maintain spatial details during the learning process [5], [6]. However, U-Net 

implementations face challenges, including high computational complexity and dependence on sizable 

annotated datasets, a major obstacle in the domain of medical imaging due to the scarcity of labeled data. 

To address these limitations, transfer learning (TL) has been increasingly adopted, employing pre-

trained CNNs (e.g., ResNet, VGG, DenseNet) as encoders to enhance feature extraction while reducing 

training time [7], [8]. Recent studies highlight the efficacy of TL-integrated U-Net variants.  

Nawaz et al. [9] achieved 0.81–0.88 Dice similarity coefficient for tumor subregions using VGG19-

U-Net. While Ghosh et al. [10] have suggested a k-fold cross-validation method and U-Net architecture 

employing VGG-16 as a backbone network for segmenting brain tumors. Their model achieved a 92% Dice 

score on the TCGA-LGG dataset. Lin et al. [11] reported improved efficiency with EfficientNetV2-U-Net for 

multi-sequence MRI. Rabby et al. [12] attained an 86% Dice score using InceptionV3-U-Net, while 3D 

extensions further improved multi-modal fusion. Saifullah et al. [13] suggested a combined model that 

integrates ResNet50 with DeepLabV3, achieving a 96.9% Dice score on the Figshare dataset. Authors in 

[14]. Proposed a framework that utilizes the EfficientNetB4 as its feature extraction backbone. 

EfficientNetB4 employs a method of mixture scaling that enhances the network's width, depth, and resolution 

to get a good balance between performance and computational efficiency. Their model scored 93.39% Dice 

score on the Figshare dataset. Another study [15] presents a custom approach using Convolutional Neural 

Networks (CNNs) with DenseNet201 to detect and categorize Acute lymphoblastic leukaemia cases using 

3562 blood smear images from 89 patients, achieving 98% segmentation accuracy and 97.09% test accuracy. 

Despite these advances, a systematic comparison of pre-trained encoders for brain tumor 

segmentation remains underexplored, particularly regarding their computational efficiency, segmentation 

accuracy, and ability to generalize across tumor categories. 

This study presents a comprehensive evaluation of 12 pre-trained CNN architectures as U-Net 

encoders for multimodal brain tumor segmentation, using the BraTS 2019 dataset. Key innovations include: 

a) Architectural Benchmarking: Precise comparison of ResNet34/50/101, VGG16/19, DenseNet121, 

InceptionResNetV2/V3, MobileNetV2, and EfficientNetB1, quantifying performance via Dice, Jaccard, 

and computational metrics. 

b) Novel SE-ResNet Integration, which utilizes squeeze-and-excitation blocks to improve feature 

extraction, SE-ResNet18/34 was first used as U-Net encoders. 

c) Computational-accuracy trade-off analysis: Identification of MobileNetV2 as an optimal encoder, 

balancing accuracy and efficiency. 

This manuscript's sections are prepared as follows: Section 2 demonstrates the suggested framework 

and various frameworks employed in the research, along with implementation specifics and assessment 

criteria. Section 3 outlines the outcomes and subsequent analysis for twelve pre-trained encoders. Section 4 

illustrates the conclusion of this work. 

 

 

2. METHOD 

The experimental methodology used in this study is explained in this section. Initially, a publicly 

accessible multimodal MRI BraTS 2019 dataset was selected. A sequence of preprocessing steps was used to 

ensure compatibility with the deep learning models. These transformations standardized the image 

dimensions to 224x224 pixels, including rotation and contrast adjustment. Following data preprocessing, the 

chosen deep learning models were implemented, and their performance was subsequently evaluated using 

relevant metrics. Additionally, this section offers a thorough explanation of the dataset, a brief examination 

of the deep learning architectures that have been applied in execution, and an inclusive evaluation of the 

performance of the proposed approach. 

 

2.1.  Standard U-Net model 

The U-Net architecture [16], created for the segmentation of biomedical images, is a fully 

convolutional network (FCN) distinguished by its unique U-shaped topology. There are two main parts to 

this architecture: 

a) Contextual information and abstract features are captured by the Contracting Path (Encoder), which 

gradually downsamples the input image. Convolutional layers are applied repeatedly, and then pooling 

operations are performed. 
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b) The expanding path (Decoder) improves spatial resolution by upsampling feature maps from the 

contracting path and using skip connections to merge low spatial resolution contextual information with 

high spatial resolution localized features, as presented in Figure 1. 
 

 

 
 

Figure 1. U-net model structure visualization 

 

 

2.2.  Proposed models for encoders 

This framework involves an upsampling path (decoder) intended to restore spatial resolution and 

improve the segmentation output, and a downsampling path (encoder) responsible for feature extraction. 

Initially, the decoder component within the U-Net architecture was held constant, while the encoder component 

was replaced with pre-trained models. The proposed study utilized 12 pre-trained encoder algorithms, including 

ResNet34, ResNet50, ResNet101, VGG16, VGG19, DenseNet121, InceptionResNetV2, Inception V3, 

MobilenetV2, Efficient Net B1, SE ResNet34, and SE ResNet18 as encoders with the fixed decoder part in the 

U-Net architecture only. Figure 2 presents a comprehensive description of the research workflow, and Table 1 

compares pre-trained encoders in terms of the number of layers.  

 

 

 
 

Figure 2. Overview of the investigation's workflow 
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Table 1. Comparison of pre-trained encoders in terms of number of layers 
Model Number of Layers 

DenseNet-121 121 
ResNet34 34 
ResNet50 50 

ResNet101 101 
VGG16 16 

VGG19 19 

Inception-v3 48 
Inception-ResnetV2 164 

SE ResNet18 183 

SE ResNet34 311 
Efficient Net B2 373 

MobilenetV2 196 

 
 

ImageNet weights were used to initialize these backbone encoders, and the encoder layers were all 

kept frozen. Then, the 12 pre-trained encoders were trained on the specific dataset to generate their models. 

The procedures that compose the training phase are explained in Algorithm 1. 
 

Algorithm 1. Steps (Training Phase) 
Step 1: Brain MRI images are read from the selected dataset. 

Step 2: The images are resized to match the input dimensions required by the transfer 

learning models. 

Step 3: The dataset is distributed into 70% for training, 10%for validation, and 20% for 

testing. 

Step 4: Features are extracted from each of the twelve models pre-trained on the benchmark 

dataset. 

Step 5: Adjusting and optimizing the associated function to train pre-trained models. 

Step 6: Fully trained models are generated. 

 

2.3.  The input dataset 

This study uses twelve pre-trained models as backbone encoders in an experimental study using the 

MICCAI BraTS 2019 [17] challenge dataset with 335 cases. The dataset includes native, post-contrast, T2-

weighted, and T2-FLAIR scan volumes. The study identifies necrotic and non-enhancing tumor core 

NCR/NET (label 1), peritumoral edema ED, and enhancing tumor ET labels, transforming them into 3-

channel volumes. Each imaging dataset segments three labels. The illustration in Figure 3 displays four 

different modalities and the mask. 
 

 

 
 

Figure 3. BraTS 2019 modalities and generated mask 
 

 

2.4.  Training and experimental configuration 

Model training was conducted using an Nvidia Tesla P100 GPU with 16GB GDDR6 VRAM. The 

framework used in the experiments is TensorFlow. The dataset's distribution is 80% chosen at random for 

training (70% for training and 10% for validation), with the remaining 20% going toward testing. While 

training, the optimizer Adam is used with a learning rate value set at 0.0001 [18] and Relu for activation 

function with 50 epochs. The loss function that is utilized is binary_ cross-entropy. The definition of binary-

cross-entropy [19] is shown in (1). 
 

𝐿𝑐=−
1

𝑛
∑ {𝑦𝑖

𝑛
𝑖=1 𝑙𝑜𝑔 𝑓𝑖+(1-𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑓𝑖)} (1) 

 

2.5.  Evaluation metrics  

For model evaluation, by dividing the total number of predictions by the sum of accurate positive 

and negative predictions, the accuracy score is determined as in (2). Another metrics are the Dice coefficient 

and the Jaccard coefficient, which can be calculated according to (3) and (4).  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 (2) 

 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (3) 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐶𝑜𝑓𝑓𝑖𝑐𝑒𝑛𝑡 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (4) 

 

 

3. RESULTS AND DISCUSSION  

The suggested study used pre-trained deep learning architectures as an encoder backbone for Unet to 

segment brain tumors from multimodal MRI images with ImageNet weights. Here, 12 pre-trained 

architectures are applied as encoders for Unet: ResNet34, ResNet50, ResNet101, VGG16, VGG19, 

DenseNet121, InceptionResNetV2, Inception V3, MobilenetV2, and Efficient Net B1, utilizing the BraTS 

2019 brain tumor segmentation multimodal dataset. In addition, an evaluation of the two novel architectures, 

SEResNet 18 and SEResNet 34, was also conducted. The results of training and validation accuracy for pre-

trained encoders are shown in Figure 4. Figure 5 evaluates and contrasts the pre-trained models' performance 

in terms of the Dice similarity coefficient. Table 2 compares pre-trained encoders for U-net models regarding 

training time, trainable parameters, and non-trainable parameters. The test loss and accuracy graphs for 12 

different models using pre-trained encoders are compared in Figure 6. Table 3 compares the Jaccard and Dice 

coefficients for segmenting brain tumors with U-net with previous work.  

 

3.1.  Results analysis 

According to the results in MobilenetV2 (Figure 4(l)) was the most accurate and least loss pre-

trained model used to segment brain tumors from the multimodal dataset (Figures 4(a)-4(c)). Followed by 

VGG16 and VGG19 as shown in Figures 4(d) and 4(e). Efficient Net B1 came in third place, as shown in 

Figure 4(k), followed by Dense121 network encoders as in Figure 4(h). InceptionResNetV2 and Inception V3 

(Figure 4(f)) were also considered, but Inception V3 (Figure 4(f)) was superior in loss. ResNet34 (Figure 

4(g))was considered the best of the three ResNet models (ResNet34, ResNet50, and ResNet101), while 

SEResNet 18 (Figure 4(i))and SEResNet 34 (Figure 4(j)) had the worst results. 
 

 

 
 

Figure 4. Training and validation accuracy: (a) ResNet34, (b)ResNet-50, (c) ResNet-101, (d) VGG16,  

(e) VGG19, (f) InceptionV3, (g) Inception ResNet, (h) Dense121, (i) SEResNet 18, (j) SEResNet 34,  

(k) Efficient Net B1 and (l) MobilenetV2 
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Concerning Figures 5(a)-5(l), the U-Net segmentation model utilizing MobileNetV2 as its encoder 

backbone had the highest dice coefficient compared to other U-Net models, as exhibited in Figure 5-l. The 

worst case is the Inception-Resnet-Unet model. Furthermore, Table 2 shows that the MobilenetV2-Unet 

achieves the minimum training time among all models with pre-trained encoders, and has the fewest 

parameters represented in trainable and non-trainable parameters. So, MobileNet V2 offers higher 

performance with fewer parameters and less computational expense than its predecessor. 

 

 

 
 

Figure 5. Training and Validation Dice coefficient: (a) ResNet-34, (b)ResNet-50, (c) ResNet-101,  

(d) VGG-16, (e) VGG-19, (f) InceptionV3, (g) Inception ResNet, (h) Dense121, (i) SEResNet 18,  

(j) SEResNet 34, (k) Efficient Net B1 and (l) MobilenetV2 

 

 

Table 2. Comparison of pre-trained encoders for U-net frameworks for non-trainable parameters, trainable 

parameters, and training time 
Model structure Training time 

(𝑠𝑒𝑐) 
Total parameters 

(millions) 
Trainable parameters Non-trainable 

parameters 
ResNet34- Unet 3199.676 24,456,589 3,167,495 21,289,094 
ResNet50- Unet 3756.361 32,561,549 9,059,079 23,502,470 

ResNet101- Unet 4562.659 51,605,901 9,111,303 42,494,598 
VGG-16-Unet 3261.144 23,752,708 9,033,988 14,718,720 
VGG-19-Unet 3325.981 29,062,404 9,033,988 20,028,416 

InceptionV3-Unet 3287.786 29,933,540 8,145,988 21,787,552 

Inception-ResnetV2-Unet 4652.045 62,061,988 7,753,540 54,308,448 

DenseNet121-Unet 3416.719 12,145,412 5,189,572 6,955,840 
SE ResNet18-Unet 3400.858 14,430,085 3,160,071 11,270,014 

SE ResNet34-Unet 3356.315 24,617,785 3,167,495 21,450,290 

Efficient Net B2-Unet 3765.542 12,641,604 6,126,436 6,515,168 
MobilenetV2-Unet 3227.675 8,047,876 5,822,020 2,225,856 

 

 

As shown in Figure 6, MobilenetV2-Unet reached the highest accuracy on the test set of 99.2%, 

with a loss of 0.0282. The VGG19 model achieved a test accuracy of 99.19%, followed by VGG16 with 

98.68% and 0.0358 and 0.0437 test losses, respectively. Within the ResNet architecture family, ResNet34 

demonstrated superior performance with 98.46% test accuracy and 0.0658 test loss compared to ResNet50 

and ResNet101.In addition, we presented an evaluation of the new architectures represented by SE ResNet34 
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and SE ResNet18 pre-trained encoders, and they achieved the lowest test accuracy with 97.26% and 95.53%. 

respectively. And the highest error rate among the 12 models.  

Table 3 provides a comparative analysis of the previous pre-trained encoders alongside the Unet and 

MobileNetV2 encoders and the two novel architectures, SEResNet34 and SE ResNet18, proposed in this 

study. The comparison is focused on the assessment of each model’s results based on multiple evaluation 

metrics, e.g., Jaccard, dice coefficient for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). 

MobilenetV2-Unet has the best dice coefficient for (ET) of 81.93%, 86.07% (TC), and 90.03% (WT) and the 

highest Jaccard value of 81.63%. According to the results in Table 3, MobileNet V2 as an encoder 

demonstrates a favorable trade-off between accuracy and computational efficiency. Figure 7 graphically 

represents the top four performing models out of the twelve evaluated, based on the highest obtained values 

for accuracy, Dice similarity coefficient, and Jaccard index . 

 

 

 
 

Figure 6. Comparison graph of test loss and accuracy for 12 different models with pre-trained encoders 

 

 

 
 

Figure 7. The top four models with pre-trained encoders achieved visual segmentation 
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Table 3. Previous work in comparison with the MobilenetV2 encoder with U-net models in terms of Jaccard 

and Dice coefficients for ET, TC, and WT 
Model Jaccard (%) ET (%) TC (%) WT (%) 

ResNet34- Unet [20] 63.56 73.96 78.66 82.33 
ResNet50- Unet [21] 63.42 73.88 78.45 82.02 

ResNet101- Unet [22] 61.08 72.32 77.30 81.14 
VGG-16 -Unet [23] 72.23 77.57 80.52 84.61 

VGG-19 Unet [24] 74.13 77.75 80.63 85.41 

InceptionV3-Unet [12] 70.18 75.77 79.09 83.48 
Inception-ResnetV2-Unet [25] 64.58 74.85 78.45 82.45 

DenseNet121-Unet [26] 62.09 75.88 79.26 83.61 

SE ResNet18-Unet 60.61 72.06 76.49 81.00 
SE ResNet34-Unet 62.50 72.57 77.64 82.02 

Efficient Net B1-Unet [11] 81.63 79.23 83.57 88.65 

MobilenetV2-Unet (this work) 83.45 81.93 86.07 90.3 

 

 

4. CONCLUSION  

This article investigated the efficacy of employing pre-trained transfer learning models as encoders 

within the U-Net design for segmenting brain tumors. We evaluated twelve pre-trained encoders, initialized 

with ImageNet weights, using the BraTS 2019 dataset under identical hyperparameter configurations. This 

study extends the understanding of advanced backbone networks for semantic segmentation, specifically 

addressing challenges related to interpretability, computational demands, and overfitting. Our comparative 

analysis, focusing on metrics such as Dice coefficient, test loss, accuracy, and training duration, revealed that 

the hybrid U-Net model employing MobileNetV2 in the encoding path exhibits superior performance. 

The MobileNetV2-enhanced U-Net reached a test accuracy of 99.3%, a cross-validation accuracy of 

99%, a Jaccard coefficient of 83.45%, and a test loss of 0.0282. Furthermore, it demonstrated powerful 

segmentation performance across tumor sub-regions, with Dice coefficients of 86.07% for the TC, 90.3% for 

the WT, and 81.93% for the ET. Importantly, the MobileNetV2 encoder's lightweight nature translates to 

reduced computational resource consumption. 

According to these results, incorporating MobileNetV2 as an encoder into the U-Net architecture 

provides a strong argument for precise and effective brain tumor segmentation. This has significant 

implications for clinical practice, potentially enabling faster and more precise diagnoses, which can lead to 

enhanced clinical outcomes and informed treatment decision-making. The main limitation of pre-trained 

models are often complex and large, requiring significant computational resources for fine-tuning, which can 

be challenging for researchers or practitioners with limited access to advanced computing resources. But the 

reduced computational cost associated with MobileNetV2 also makes this approach more accessible for 

resource-constrained environments.  

Future research could investigate further optimizing the architecture, perhaps through the 

incorporation of attention mechanisms or novel loss functions, which could lead to even greater 

improvements in segmentation performance. Furthermore, future work could involve the adoption of the 

MobileNetV2-enhanced U-Net framework for additional medical image segmentation requirements, like 

organ or tumor segmentation. Future research could also benefit from examining the effectiveness of the 

model in actual time clinical settings and with larger brain datasets. 
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