Indonesian Journal of Electrical Engineering and Computer Science
Vol. 40, No. 3, December 2025, pp. 1377~1390
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v40.i3.pp1377-1390 O 1377

Dynamic resource allocation in cloud-radio access network

using call detail record analysis

Régis Donald Hontinfinde?, Ida Sémévo Tognisse®, Marie Méléne Sémévo Tonou?,

Senan lda Valeire Hontinfinde!, Miton Abel Konnon'

!Laboratory of Science Engineering and Mathematics (LSIMA), National University of Science,
Technology, Engineering and Mathematics (UNSTIM), Abomey, Republic of Benin
2Photonics and Digital Broadcasting Research Unit (UR-PHORAN), University of Abomey Calavi (UAC),
Polytechnic School of Abomey Calavi (EPAC-UAC), Abomey Calavi, Republic of Benin
3Institute of Mathematics and Physical Sciences (IMSP), University of Abomey Calavi (UAC), Porto-Novo, Republic of Benin

Article Info

ABSTRACT

Article history:

Received Jan 17, 2025
Revised Oct 28, 2025
Accepted Nov 16, 2025

Keywords:

Big data analytic
Cellular network
C-RAN optimization
Deep learning
Telecommunications

We propose a solution based on call detail record (CDR) data analysis for
cloud-radio access network (C-RAN) network optimization. First, we
propose a data traffic prediction model in 3G and 4G networks using
artificial intelligence (Al) models (long short-term memory (LSTM) and
Bidirectional LTSM (BiLSTM)). Second, we propose a dynamic baseband
units (BBU) resource allocation algorithm based on the obtained traffic
prediction results to evaluate the rate of BBUs used as well as the average
utilization rate of active BBUs in a C-RAN network. We used mean absolute
error, root mean square error and mean absolute percentage error to evaluate
the prediction model. The results obtained show that the best performance
for estimating data traffic in 3G and 4G networks was obtained with the
BiLSTM model, and is as follows: 1.143; 1.521; 2.47 percent for 4G, and for
3G, we have 0.2553; 0.3608 and 27.70 percent. Finally, evaluations with the
predicted traffic dataset show that our framework provides up to 81%
reduction in the number of BBUs used by the normal RAN. Moreover,
active BBUs are exploited on average up to 88.34% of their capacity in a
C-RAN compared to an average rate of 10.8% in a traditional RAN.
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1. INTRODUCTION

With the fourth industrial revolution, the use of smartphones and internet of things (loT), the
volume of network network traffic has increased exponentially in recent years [1]. To cope with the rapid
growth of subscribers and increasing traffic demand, telecommunication network operators are deploying
more and more base stations to extend their network coverage and adding more powerful processing units to
increase their network capacity [2], [3]. The increasing traffic volumes therefore pose great challenges for
cellular network operators to reduce operational costs and ensure quality of service (QoS). Therefore,
designing cost-effective and quality-aware network architectures is now essential for network operation and
research [4]-[7]. Cloud radio access network (C-RAN) is a promising solution to address the many challenges
[5]. C-RAN is no longer a secret to the scientific community; it has been widely studied in the literature
[7]-[17]. It offers many advantages. First, better network performance, providing higher throughput to users.
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Second, resource sharing among different BBUs present in the pool, allowing to put some of these units in
sleep mode when their workload is low. However, in order to fully exploit the power of the C-RAN
architecture, one of the major challenges is to design appropriate mapping schemes between remote radio
head (RRH) and BBUSs, so as to maximize the utilization rate for the entire network [7]-[8]. However, most
of these works have proposed dynamic resource allocation algorithms with computational complexity, which
is the problem we address in our solution in this work, aiming at achieving the optimal cost and scheduling
objectives, we propose a data-driven C-RAN optimization algorithm to address the above challenges.
From the traffic prediction models developed using real network data, we were able to dynamically optimize
the RRH-BBU mapping schemes for C-RAN. The method used can be seen in two phases. we propose a data
traffic prediction model in 3G and 4G networks using artificial intelligence (Al) models (long short-term
memory (LSTM) and Bidirectional LTSM (BiLSTM)). Second, we propose a dynamic baseband units (BBU)
resource allocation algorithm based on the obtained traffic prediction results to evaluate the rate of BBUs
used as well as the average utilization rate of active BBUs in a C-RAN.

2. METHOD
2.1. Related work

In the literature, several works have proposed prediction models for mobile data traffic [11], [12],
[15], [18]-[25]; as well as dynamic resource allocation schemes between RRHs and BBHs [11]-[15].
With the digital revolution, a massive amount of big data on cellular networks, such as call detail records
(CDRs), has been generated, providing researchers with new opportunities to understand mobile user
dynamics and thus better plan resource allocation. The knowledge discovered from these big data can be used
to guide the optimization of cellular networks. In the literature, several works have proposed prediction
models for mobile data traffic [11], [12], [15], [18]-[25]; as well as dynamic resource allocation schemes
between RRHs and BBHs [11]-[15]. But there is still a gap in the literature with regard to the provision of
efficient algorithms for the optimal use of BBUs resources. In the remainder of this work, we will focus
on this aspect using traffic data to simulate the results. The exponential growth of mobile data traffic, driven
by the proliferation of smart devices and emerging applications, has necessitated innovative RAN
architectures such as C-RAN and open-RAN (O-RAN). C-RAN centralizes baseband processing into a
shared BBU pool, improving resource utilization and reducing operational costs [26]. O-RAN extends the
C-RAN paradigm by introducing openness and intelligence through the RAN intelligent controller (RIC),
enabling dynamic and software-based resource management [27]. Nevertheless, efficient resource
allocation remains a central challenge, given fluctuating traffic patterns, user mobility, and stringent QoS
requirements. This review summarizes recent advances in dynamic resource allocation strategies for
C-RAN and O-RAN, emphasizing the transition from traditional optimization techniques to data-driven
approaches.

In C-RAN, resource management is generally divided into computational resource management
(CRM) and radio resource management (RRM) [28]. Traditional CRM methods focus on associating RRHs
with BBUs to optimize computational efficiency. According to [26], clustering techniques may account for
geographical proximity, traffic load, interference levels, QoS targets, or throughput maximization. Such
strategies often employ bin packing or genetic algorithms, which perform adequately under static conditions
but adapt poorly to rapidly changing network dynamics. RRM, by contrast, governs the allocation of radio
resources such as spectrum and power. Common strategies include power control, joint optimization of
multiple parameters (e.g., power and bandwidth), and sum-rate maximization [26]. While these methods form
the basis of resource management in C-RAN, their reliance on predefined models limits their applicability to
dynamic and heterogeneous environments.

The evolution toward O-RAN and cloud-native architectures has fostered the integration of Al and
machine learning (ML) to overcome these limitations. By exploiting real-time network data, Al-driven
solutions offer adaptive and context-aware resource management. For instance, [27] developed an ML-based
xApp for dynamic physical resource block (PRB) allocation on the near-real-time RIC. Using a random
forest classifier, the system selects among four allocation policies; Equal allocation, voice priority, mobile
broadband (MBB) priority, and dedicated resource reservation; based on network conditions and QoS
demands. Simulations in a 5G heterogeneous network (HetNet) achieved an 85% accuracy in policy
selection, improving scheduling performance at the O-RAN distributed unit (O-DU). Similarly, [28]
employed reinforcement learning (RL) for adaptive centralized unit (CU) and DU selection, using an actor—
critic model to balance observability and latency under varying traffic and delay conditions. Results obtained
with ns3-gym simulations showed reductions in latency and improvements in throughput and packet delivery
compared to static deployments.
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Further work by [29] extended deep RL to cloud-native wireless systems, addressing resource
allocation in network slicing and multi-access edge computing (MEC). Two algorithms were proposed:
Twin delayed deep deterministic policy gradient (TD3) for continuous bandwidth allocation and deep Q-
network (DQN) for discrete task offloading. Experiments on a Free5gc-based testbed demonstrated superior
adaptability and efficiency over static schemes, confirming the scalability of deep RL for complex O-RAN
architectures.

Overall, conventional techniques remain relevant for their simplicity and theoretical rigor, yet they
lack the flexibility required for dynamic network conditions. Emerging Al-based methods, as demonstrated
by [27]-[29], leverage learning-based models to adapt resource allocation in real time, significantly
enhancing latency, throughput, and resource utilization. Although these approaches incur additional
computational cost and demand substantial training data, they mark a decisive shift from static optimization
toward intelligent and adaptive network control in C-RAN and O-RAN environments. Future research should
explore hybrid models combining ML and RL, address scalability in large-scale deployments, and tackle
challenges like fronthaul constraints and user mobility, as noted by [26]. These advancements will be crucial
for realizing the full potential of next-generation RANS.

2.2. Problem formulation
In this section, we present the formulation of our problem as a constrained optimization problem.
We will highlight the objective function as well as the optimization constraints.

2.2.1. Decision variables
x;; € {0,1} : Binary indicator, equal to 1 if RRH i is connected to BBU j, and 0 otherwise; y; €
{0,1}: Binary indicator, equal to 1 if BBU j is active, and 0 otherwise.

2.2.2. Parameters
NRRH: Total number of RRHs.; NBBU: Total number of BBUs; C;: Maximum capacity of BBU

Jj; T;: Load (traffic) of RRH i.

2.2.3. Objective function
Minimize the number of BBUs used and maximize the average utilization rate of active BBUs,

NRRH ... .

ZNBBUEL‘=;| Ti "lz,y,

j=1 C; J
ZNBBU

Minimize : aZ?’foyj -pB
j=1 Vi

where,
— a > 0 Weight for minimizing the number of BBUs used.
— B > 0 Weight for maximizing the average utilization rate of active BBUs.

2.2.4. Contraints
— An RRH can only be connected to one BBU,

YUEBY x; = 1,Yi € {1,2, ..., Nggu}

— A BBU can be connected to multiple RRHs, but its total load cannot exceed its capacity,

N .
Zi=R1RH Ti - xij S C]y], V] € {1,2, ey NBBU}
—  Consistent activation of BBUs,

xij < ¥;,Vi €{1,2, ..., Nggy}, Vj € {1,2, ..., Nggy}

—  Variable domains,

x;; € {0,1},y; € {0,1}
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2.2.5. Compact formulation

NRRH ... .
sNBBULi=1 Ti%y,

j=1 Cj

Yj

Yj

P NBBuU ., _
Minimize: « X2V y; — B Y"EBU
=

Subject to,

ZNBBU

j=1 xij = 1,Vl

T T %y < Gy Y
xi]- < y],Vl,]
xij:yj € {011};Vl:]

In the following section, we present the greedy algorithm that we proposed for solving our problem thus
formulated.

2.3. Method

To provide an effective solution to this problem, we have adopted a multi-stage methodological
approach: modeling and simulation using case studies and real data
We evaluated our algorithm on three levels and compared it to the current RAN network. The focus was on
the number of BBUs used, the utilization rate of BBUs, and the utilization rate of active BBUs.
—  Number of BBUs used

During the simulation period, we calculated the number of BBU cards used by our algorithm and
compared it to the number used in the current RAN network.
—  Utilization rate of BBUs

The BBU utilization rate (TB) is obtained by calculating the ratio between the number of BBUs
used with our algorithm (TBCRAN) and the number used in the RAN network (TBRAN), multiplied by 100.
The number of BBUs used and their utilization rate were evaluated at two levels: average level, the average
value over the simulation period; Maximum level : the peak value during the entire simulation period. Lower
values for these indicators imply better performance of the algorithm.
— Average utilization rate of active BBUs

At each hour, the average utilization rate of active BBUs was calculated by taking, for each BBU,
the ratio of its load to its capacity, multiplied by 100, and then averaging this value across all active BBUSs.
The average utilization rate of active BBUs over the simulation period was obtained by averaging the hourly
rates across the entire simulation period. The closer this indicator is to 100, the better the algorithm performs.

2.4. Traffic prediction

In the literature, LSTM and BILSTM models have demonstrated promising performance, which
influenced their selection for our study. In the following sections, we compare their results to determine
which model achieves superior performance. For each RRH, and for both 3G and 4G, we implemented both
models. To define the architecture of these models, we established value ranges for the hyperparameters.
These ranges were kept identical for both models to ensure a fair comparison.

2.4.1. Prediction methodology

After acquiring and processing our data, our modeling followed two majors’ steps,
—  Training and validation phases :

In this first step, 70% of the data was used to train our different models. During training, 15% of the
data served as a test set to validate the model and promote the convergence of the loss function.
—  Test phase

During this phase, the performance of the best trained BiLSTM model is evaluated on the test data.
For each sector, we used 15% of the data for testing purposes. Since the data is hourly, our mission is to
determine the value of traffic for the next hour. We exploited the sequence of traffic values of the previous 24
hours to predict the value of traffic for the 25th hour. This was applied to all RRHs and for both chosen
models.
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2.4.2. Evaluation of models
We used three metrics to evaluate and compare our different models.
—  RMSE: The square root of the mean square error, which is a relative error.

RMSE = [L51, (- 9)? @

—  MAE: indicates the average differences between the predictions and the actual values.
1 ~
MAE =~ ¥\ ly; - 9il @)
—  MAPE: this is the percentage of the mean absolute error.

_ 100wy |¥i=9i
MAPE =231 |—yi | 3)

3. RESULTS AND DISCUSSION
3.1. Proposed algorithm
3.1.1. Presentation of algorithm
We've proposed our algorithm in four steps. At each of these stages, a certain number of variables
were utilized. The Table 1 presents all the variables used.

Table 1. Summary of the key variables used in the algorithm

Variables Values Types
pre_values n previous values of traffic for all of RRHs matrix
Traffic values of predicted traffic for all of RRHs vector
BBU_state if BBU active, 1 else, 0 binary vector
commu_state 1 if RRH connected to BBU and 0 else binary matrix
charge charge calculated per BBU for t + 1 vector

—  Prediction step

This first step mainly involves predicting the traffic value for each RRH at time ¢t + 1. At this stage,
our predictive model will be utilized by leveraging the traffic values from the previous 24 hours for each
RRH. Thus, the model will take the previous traffic values as input and return the predictions for t + 1.
In our simulations for the subsequent stages of the algorithm, we used the actual traffic values already
available. We employed 10% of our dataset to perform the simulation.

—  Calculation of charge step

At time ¢, the variable commu_state provides information about the switching state between the
BBUs and the RRHSs. To calculate the load of each BBU at time ¢ + 1, we sum the traffic values of the RRHs
associated with each of these BBUSs.

—  Overloaded BBU discharge step

After the load calculation, it often turns out that some BBUs are overloaded, meaning the traffic
load they have to manage exceeds their actual capacity or the maximum load they can support. In this
context, we offload some of the RRHs connected to these overloaded BBUs onto other BBUs following the
procedure below.

First, for each overloaded BBU, we identify the RRH with the lowest traffic and attempt to offload
it onto an active BBU that can fully handle its traffic without becoming overloaded. If this option is not
feasible after exploration, the RRH is then simply offloaded onto an inactive BBU. Throughout this process,
the variables BBU_state and commu_state are simultaneously updated.

—  Adjustment step

The main objective of our algorithm is to reduce the utilization rate of BBUs within the BBU pool
by aiming to deactivate as many BBUs as possible while ensuring maximum utilization of the active BBUs.
In line with this objective, after the phase of offloading overloaded BBUs, we proceed to offload additional
BBUs, particularly the least loaded ones, to optimize the utilization of the remaining active BBUs. This
process is iterated until no further offloading is possible. Simultaneously, the variables BBU_state and
commu_state are updated and returned at the end of the algorithm.

Here is our algorithm formulation.

Dynamic resource allocation in cloud-radio access network using call detail ... (Régis Donald Hontinfinde)
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Algorithm 1. Proposed algorithm

Input: Traffic at time T, = {TtRRHi |i=12, ...,NRRH}
Capacity of BBUs Cbgw/

Association state Assoq(RRHDBBU);

Activation state SnnefBUjE {0,1}
Output: Updated association Assoc;y; and activation state Statey,,
Phase 1: Traffic Prediction
foreach RRH; do
Predict T = (TR ) // Using 24-hour historical data
end

Phase 2: Calculation of charge

foreach BBU; do
BBU;j RRH;
Compute load: L, T = ZRRHi € Assoct(,BBU}) Tia

end

Phase 3: Overloaded BBU Discharge

BBU;
foreach BBU; such that L.’ >Cppy; do

Identify RRH with lowest traffic:

. RRH;
RRHmin = argMinNgry; e Assact(-,BBUj)Tt+1 ‘
Attempt reassignment to active BBUs:

foreach BBU, such that SHUefBUk= 1 do

if Ly K4 TSY™n < Cppy, then

t+1 +1
Assocy41(RRH i, BBU) «—— 1; break

end

end

if no active BBUs can accommodate RRH,;, then

Assign to inactive BBU:

Activate BBUpgetive: SunefgWdeee—l

ASSOCt+1 (RRHminr BBUinuctive) —1

end
end
Phase 4: Adjustment
Repeat until no further optimization is possible:
While rebalancing is feasible do

Identify least-loaded BBU:
BBUp,;; = arg minBBUj € {Active BBUS}LffiI]
Reassign its RRHs to other active BBUs, respecting capacity limits.
if all RRHs are reassigned do
Deactivate BBUp,,:
StatefBUmm
end
end
Return Assoc,,,, State.,,

—0

3.2. Prediction model
We followed the same modeling steps for all RRHs, both for 3G and 4G. Here, we will present the
results obtained at each step.

3.2.1. Training and validation phases

To build robust models that fit our data well, we need to design an appropriate architecture for each
of these models. Therefore, we defined value ranges and searched for combinations that optimize the chosen
loss function. The value ranges used are the same for all RRHSs, and they are presented Table 2.

Table 2. Hyperparameters and range of values for both models

Hyperparameters Range
Number of layers {3,4}
Number of neurons in layer  20...150 € N,
Optimizer Adam
Activation function ReLu
Dropout {0.1,0.2}
Number of epochs {50}
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3.3. Data

The data used in this study were collected from the radio sites of Celtiis Benin, specifically in the
Abomey-Calavi district. This area was chosen for our study because it is one of the regions where network
congestion issues are frequent. The area is covered by 25 sites, 24 of which are tri-sector, while the last site
has an additional sector, making it a four-sector site. Celtiis Benin operates with three different technologies:
2G, 3G, and 4G. However, this study focuses exclusively on data traffic for 3G and 4G.

3.3.1. General data by site

For all the sites within the study area, there are 64 bandwidth units, also known as BBUs or
universal BB processing units (UBBPs). Each site is equipped with a certain number of carriers, each
managing a specific number of cells. The UBBPs cards come in three types of configurations: the first
dedicated solely to 3G cells, the second exclusively to 4G cells, and the third capable of handling both 3G
and 4G cells. The number of cells per carrier that each card can manage, depending on the configuration,
varies based on the type of card. The following table provides a summary of these configurations by card
category.

The Table 3 provides an overview of the number of cells supported by each type of UBBP card
based on its configuration. Additionally, at the sector level for each site, three different types of RRHs
(Ressource radio unit: RRUS) are used,

—  RRU 5508 for low frequencies (700 MHz to 1,000 MHz).

—  RRU 5502 for medium frequencies (1,700 MHz to 2,100 MHz).

— RRU 5301 for high frequencies (particularly 2,600 MHz in our case).

The distribution of these different RRH types across sectors is detailed in the following table.

The RRU 5508 and RRU 5502 manage both 3G and 4G cells, providing coverage for multiple
technologies. In contrast, the RRU 5301 exclusively handles 4G data traffic and is available only in a limited
number of sectors.

Table 3. Summary of the number of cells supported by each type of UBBP card according to configuration
UBBP UMTS mode LTEmode UMTS-LTE FDD mode

UBBPe4 12 6 6-3
UBBPgla 12 6 6-3
UBBPg2a 12 12 6-6 or 3-9
UBBPg2 12 12 6-6 or 3-9

3.3.2. Mobile traffic data

The data pertains to 3G and 4G mobile data traffic, recorded hourly over a four-month period, from
April 1to July 31, 2024. Traffic values were provided per cell for each site. To calculate the traffic per RRU,
we associated each RRU with its corresponding cells. For the UMTS 2,100 MHz cells, the traffic was
aggregated, as the RRU 5502 simultaneously manages all four cells. Thus, the traffic for this RRU
corresponds to the combined total of the four cells. The mobile data traffic is measured in gigabytes (GB).

3.3.3. BBU capacities data

For this study, we opted to use the cards in LTE FDD mode, as 4G accounts for the largest share of
mobile data traffic. The current capacities are provided in terms of the number of cells. Therefore, it is
necessary to convert these capacities into the same unit as mobile traffic. The data transfer rate or speed was
provided for three 4G cells. The transfer rate, which represents the amount of data transmitted per second, is
expressed in megabits per second (Mbit/s).

Let V be the data rate, Q the amount of data, and T the time, we have,

V=1 4)
Q=VXT (5)

Since the data is hourly, we will aim to determine the amount of data that the cells can handle in one hour,
T = 1h,s0 T = 3600s, which leads us to,

Q = 3600 xV (6)
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The data rate being in Mbits, the amount of data will be in Mb (megabits), whereas the traffic data is in GB. 1
Gb = 1,024 Mb and 1 GB = 8 Gb, so this leads us to,

3600XV
" 10248 (7)

Q

Let C be the capacity of a BBU in GB, n the number of cells that the BBU can support, and knowing that the
data rate is given for three cells, we have,

C=2Q ®)
3
where,
75XnXV
¢= 512 ©)
with C en GB.

3.4. Test phase
3.4.1. 3G data prediction result

By comparing the actual values with the predicted values (Figure 1) for each of the different models
applied to the two selected RRHs, we observe that the predicted values generally follow the trend of the
actual values. Furthermore, the predictions made by the LSTM model (Figure 1(a) and Figure 1(b)), for the
two selected RRHs appear to be lower than those of the BiLSTM model (Figure 1(c) and Figure 1(d)).

—— True Values
— Predicted Values

= True Values
Predicted Values

Value

Time Time
(@) (b)
— True Values = True Values
—— Predicted Values —— Predicted Values
5 25
4 2
o
2 3 g 15
- 3
2 1
|
1
0.5
0 100 200 300 400 0 100 200 300 400
Time Time
(©) (d)

Figure 1. LSTM model vs BiLSTM model predictions at two RRH on 3G case; (a) LSTM prediction on
RRH1, (b) LSTM prediction on RRH2, (c) BILSTM prediction on RRH1, and (d) BiLSTM prediction on
RRH2
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Let us now focus on the prediction errors of the different models for the two selected RRHSs.
From Table 4, we can observe that for both selected RRHs, the BiLSTM model predominantly produces the
lowest prediction errors (two out of three errors).

Table 4. Values of different metrics for 3G data - LSTM vs BiLSTM

RRH1 RRH2
Models LSTM BILSTM LSTM BILSTM
RMSE  0.706 0.668 0.380 0.360
MAE 0.487 0.443 0.273 0.255
MAPE  27.21 27.70 27.69 28.20

3.4.2. 4G data prediction result

As in the case of 3G, we observe that the predicted values from the different models for the two
selected RRHs in the 4G case generally follow the trend of the actual values (Figure 2). Additionally, it is
noteworthy that with the LSTM model (Figure 2(a) and Figure 2(b)), the predictions appear not to exceed a
certain maximum value for the two selected RRHs. In contrast, the BiLSTM model does not exhibit this
limitation and seems to have its predicted values (Figure 2(c) and Figure 2(d)) closer to the actual values
compared to the LSTM model. Predominantly, the BiLSTM model also proves to be the one that yields the
lowest errors in this case as well (three out of three errors) in Table 5.

20 = True Values
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~— True Values

w Predicted Values
200 300 400
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Figure 2. LSTM model vs BiLSTM model predictions at two RRH on 4G case; (a) LSTM prediction on
RRHL, (b) LSTM prediction on RRH2, (c) BiLSTM prediction on RRH1, and (d) BiLSTM prediction on

RRH2

Table 5. Values of different metrics for 4G data - LSTM vs BiLSTM

RRH1 RRH2
Models LSTM BiLSTM LSTM BIiLSTM
RMSE  1.804 1.633 1.536 1.521
MAE 1.375 1.209 1.200 1.143
MAPE  13.47 11.61 13.57 12.47
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3.5. Dynamic resource allocation algorithm

To evaluate the performance of our algorithm on real data, we conducted simulations using 10% of
our dataset. For the simulations, we assessed two scenarios: the current network architecture and our
proposed algorithm. The simulation period spans 12 days.To calculate the traffic at each RRH, we summed
the 3G and 4G data traffic at each moment for RRHs 5508 and 5502, as these two RRHs handle both 3G and
4G data traffic. For RRH 5301, we only considered 4G data traffic since it exclusively handles that.
By comparing the number of BBU cards used in the current RAN network (Figure 3) with those of the
C-RAN network with our algorithm, we observe that the number of cards in the current RAN network
remains constant regardless of the time. In contrast, the number of cards in the C-RAN network with our
algorithm varies (Figure 3(a)).

The number of cards used in the RAN is 64, whereas in the C-RAN network with our algorithm,
it varies between 3 and 12 (Figure 3(a) and Figure 3(b)). We observed an average BBU utilization rate of
11.58% and a maximum utilization rate of 18.75%. This results in a reduction of up to 81% in the number of
BBU cards used with our algorithm compared to the current RAN network. The statistics are presented in
Table 6.

. 12
60 C-RAN —_ [
PR S ;
50 0] ¢ \
T | 4 1 I | ”
® 40 C-RAN g 3 i =] BN | e g ) S [
E &
w 30 / [=4] Sl - ) B i oo ok | B
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220 /
1 4
10) %4 At A A A A E %
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Time (H) Time (H)
@ (b)

Figure 3. Number of BBUs used - 12 days simulation (a) C-RAN Vs RAN and (b) C-RAN

Table 6. Values of different metrics for 4G data - LSTM vs BiLSTM

RAN C-RAN
Level Average Maximum Average Maximum
Number of BBUs Used 64 64 7 12
Utilization Rate of BBUs 100 100 11.58 18.5

Let us now focus on the utilization rate of active BBUs with our algorithm and the current network.
From Figure 4, we can observe that with our algorithm, active BBUs are utilized up to 88.34% of their
capacity. Meanwhile, active BBUs in the RAN network are, on average, utilized at only 10.6% of their
capacity. With our algorithm, we achieve a reduction of up to 81% in the number of BBUs used.
Additionally, the BBUs that are used operate, on average, at 88.34% of their capacity.

The results are significantly better than many traffic prediction models available. By comparing the
results obtained with those of by [26], which are based on theoretical resource management models in the C-
RAN without addressing traffic prediction solutions, the method proposed in this work uses the BiLSTM
model to achieve a MAPE of 2.47% for 4G, which is much better than many existing methods that do not
incorporate real-time traffic prediction or have higher error rates. This forecasting quality allows the
proposed algorithm to proactively allocate resources based on demand, which is a significant advance
compared to the static approaches encountered in the study by [26], [30], use unsupervised learning
techniques on CDRs to classify traffic, but their approach is at most concerned with network planning
without being able to rationalise real-time resource allocation. The research work described here goes beyond
simple classification, since predicted traffic models are then used for dynamic allocation of BBUs, enabling
BBU utilisation to be reduced by up to 81%, with an average BBU utilisation rate of 88.34%, much higher
than the 10.8% of a traditional RAN system. The proposed method shows a gain in efficiency in terms of
resource utilisation, providing an answer to one of the limitations of the study by Zhou et al. By proposing an
xApp for allocating optimal PRBs using a ML approach which, for example, displays a good 85% accuracy
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rate, by [27], do not integrate the dimensions of resource optimisation at the BBU level, which is conditioned
by large-scale implementation considerations, not all of which are able to offer a complete resource
management solution. By lightening the operation of the BBUs while achieving suitable utilisation rates for
the active BBUSs, one of the solutions we believe could, for example, generate significant savings while
helping to ensure the efficiency of the network end-tool. The recommended method improves both latency
and resource utilisation on the largest possible scale, based on real-time traffic forecasts and optimised BBU
allocation.
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Figure 4. Average utilization rate of active BBUs - RAN vs C-RAN

4.  CONCLUSION

Our study proposes a novel approach for optimizing cloud-RAN networks, using Al models to
predict traffic and dynamically allocate BBU resources. This method significantly reduces the number of
BBUs required (up to 81%) while maximizing their utilization, with an average utilization of 88.34% of
active BBUs, compared to only 10.8% in a traditional network. These results confirm that data-driven traffic
prediction combined with adaptive resource allocation can significantly enhance network efficiency, offering
a scalable and low-cost optimization strategy. This study represents the starting point for a series of
investigations. Future research may extend this work by leveraging the proposed traffic prediction framework
based on LSTM and BiLSTM architectures to design more advanced resource management solutions.
Integrating 5G, and eventually 6G, technologies, together with real-time and multi-source datasets, would
further enhance the model’s applicability to next-generation networks. The proposed dynamic BBU
allocation algorithm serves as a reference for intelligent resource management in shared or multi-operator
environments. For experimental validation, future studies should focus on testing the model with real-world
data collected from diverse scenarios, including urban and rural settings as well as peak traffic conditions.
Additionally, evaluating the scalability and robustness of the model in large-scale simulated environments
will be crucial for assessing its practical deployment potential. It is also essential to validate the system's
robustness in the event of unforeseen events (sudden spikes, network failures) and to measure their impact on
QoS. Finally, energy efficiency and economic viability studies should be conducted to strengthen the
industrial value of the solutioneffective C-RAN adoption. In summary, by integrating Al into Cloud-RAN
network optimization, this study paves the way for more efficient resource management, with significant
gains in performance and reduced energy footprint.
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