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 We propose a solution based on call detail record (CDR) data analysis for 
cloud-radio access network (C-RAN) network optimization. First, we 
propose a data traffic prediction model in 3G and 4G networks using 
artificial intelligence (AI) models (long short-term memory (LSTM) and 
Bidirectional LTSM (BiLSTM)). Second, we propose a dynamic baseband 
units (BBU) resource allocation algorithm based on the obtained traffic 
prediction results to evaluate the rate of BBUs used as well as the average 
utilization rate of active BBUs in a C-RAN network. We used mean absolute 

error, root mean square error and mean absolute percentage error to evaluate 
the prediction model. The results obtained show that the best performance 
for estimating data traffic in 3G and 4G networks was obtained with the 
BiLSTM model, and is as follows: 1.143; 1.521; 2.47 percent for 4G, and for 
3G, we have 0.2553; 0.3608 and 27.70 percent. Finally, evaluations with the 
predicted traffic dataset show that our framework provides up to 81% 
reduction in the number of BBUs used by the normal RAN. Moreover, 
active BBUs are exploited on average up to 88.34% of their capacity in a  

C-RAN compared to an average rate of 10.8% in a traditional RAN.  
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1. INTRODUCTION  

With the fourth industrial revolution, the use of smartphones and internet of things (IoT), the 

volume of network network traffic has increased exponentially in recent years [1]. To cope with the rapid 

growth of subscribers and increasing traffic demand, telecommunication network operators are deploying 

more and more base stations to extend their network coverage and adding more powerful processing units to 

increase their network capacity [2], [3]. The increasing traffic volumes therefore pose great challenges for 

cellular network operators to reduce operational costs and ensure quality of service (QoS). Therefore, 

designing cost-effective and quality-aware network architectures is now essential for network operation and 

research [4]-[7]. Cloud radio access network (C-RAN) is a promising solution to address the many challenges 

[5]. C-RAN is no longer a secret to the scientific community; it has been widely studied in the literature  

[7]-[17]. It offers many advantages. First, better network performance, providing higher throughput to users. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:donald.hontinfinde@yahoo.com


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 3, December 2025: 1377-1390 

1378 

Second, resource sharing among different BBUs present in the pool, allowing to put some of these units in 

sleep mode when their workload is low. However, in order to fully exploit the power of the C-RAN 

architecture, one of the major challenges is to design appropriate mapping schemes between remote radio 

head (RRH) and BBUs, so as to maximize the utilization rate for the entire network [7]-[8]. However, most 

of these works have proposed dynamic resource allocation algorithms with computational complexity, which 

is the problem we address in our solution in this work, aiming at achieving the optimal cost and scheduling 

objectives, we propose a data-driven C-RAN optimization algorithm to address the above challenges.  
From the traffic prediction models developed using real network data, we were able to dynamically optimize 

the RRH-BBU mapping schemes for C-RAN. The method used can be seen in two phases. we propose a data 

traffic prediction model in 3G and 4G networks using artificial intelligence (AI) models (long short-term 

memory (LSTM) and Bidirectional LTSM (BiLSTM)). Second, we propose a dynamic baseband units (BBU) 

resource allocation algorithm based on the obtained traffic prediction results to evaluate the rate of BBUs 

used as well as the average utilization rate of active BBUs in a C-RAN. 

 

 

2. METHOD 

2.1.  Related work 

In the literature, several works have proposed prediction models for mobile data traffic [11], [12], 

[15], [18]-[25]; as well as dynamic resource allocation schemes between RRHs and BBHs [11]-[15].  
With the digital revolution, a massive amount of big data on cellular networks, such as call detail records 

(CDRs), has been generated, providing researchers with new opportunities to understand mobile user 

dynamics and thus better plan resource allocation. The knowledge discovered from these big data can be used 

to guide the optimization of cellular networks. In the literature, several works have proposed prediction 

models for mobile data traffic [11], [12], [15], [18]-[25]; as well as dynamic resource allocation schemes 

between RRHs and BBHs [11]-[15]. But there is still a gap in the literature with regard to the provision of 

efficient algorithms for the optimal use of BBUs resources. In the remainder of this work, we will focus  

on this aspect using traffic data to simulate the results. The exponential growth of mobile data traffic, driven 

by the proliferation of smart devices and emerging applications, has necessitated innovative RAN 

architectures such as C-RAN and open-RAN (O-RAN). C-RAN centralizes baseband processing into a 

shared BBU pool, improving resource utilization and reducing operational costs [26]. O-RAN extends the  
C-RAN paradigm by introducing openness and intelligence through the RAN intelligent controller (RIC), 

enabling dynamic and software-based resource management [27]. Nevertheless, efficient resource  

allocation remains a central challenge, given fluctuating traffic patterns, user mobility, and stringent QoS 

requirements. This review summarizes recent advances in dynamic resource allocation strategies for  

C-RAN and O-RAN, emphasizing the transition from traditional optimization techniques to data-driven 

approaches. 

In C-RAN, resource management is generally divided into computational resource management 

(CRM) and radio resource management (RRM) [28]. Traditional CRM methods focus on associating RRHs 

with BBUs to optimize computational efficiency. According to [26], clustering techniques may account for 

geographical proximity, traffic load, interference levels, QoS targets, or throughput maximization. Such 

strategies often employ bin packing or genetic algorithms, which perform adequately under static conditions 
but adapt poorly to rapidly changing network dynamics. RRM, by contrast, governs the allocation of radio 

resources such as spectrum and power. Common strategies include power control, joint optimization of 

multiple parameters (e.g., power and bandwidth), and sum-rate maximization [26]. While these methods form 

the basis of resource management in C-RAN, their reliance on predefined models limits their applicability to 

dynamic and heterogeneous environments. 

The evolution toward O-RAN and cloud-native architectures has fostered the integration of AI and 

machine learning (ML) to overcome these limitations. By exploiting real-time network data, AI-driven 

solutions offer adaptive and context-aware resource management. For instance, [27] developed an ML-based 

xApp for dynamic physical resource block (PRB) allocation on the near-real-time RIC. Using a random 

forest classifier, the system selects among four allocation policies; Equal allocation, voice priority, mobile 

broadband (MBB) priority, and dedicated resource reservation; based on network conditions and QoS 

demands. Simulations in a 5G heterogeneous network (HetNet) achieved an 85% accuracy in policy 
selection, improving scheduling performance at the O-RAN distributed unit (O-DU). Similarly, [28] 

employed reinforcement learning (RL) for adaptive centralized unit (CU) and DU selection, using an actor–

critic model to balance observability and latency under varying traffic and delay conditions. Results obtained 

with ns3-gym simulations showed reductions in latency and improvements in throughput and packet delivery 

compared to static deployments. 
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Further work by [29] extended deep RL to cloud-native wireless systems, addressing resource 

allocation in network slicing and multi-access edge computing (MEC). Two algorithms were proposed:  

Twin delayed deep deterministic policy gradient (TD3) for continuous bandwidth allocation and deep Q-

network (DQN) for discrete task offloading. Experiments on a Free5gc-based testbed demonstrated superior 

adaptability and efficiency over static schemes, confirming the scalability of deep RL for complex O-RAN 

architectures. 
Overall, conventional techniques remain relevant for their simplicity and theoretical rigor, yet they 

lack the flexibility required for dynamic network conditions. Emerging AI-based methods, as demonstrated 

by [27]-[29], leverage learning-based models to adapt resource allocation in real time, significantly 

enhancing latency, throughput, and resource utilization. Although these approaches incur additional 

computational cost and demand substantial training data, they mark a decisive shift from static optimization 

toward intelligent and adaptive network control in C-RAN and O-RAN environments. Future research should 

explore hybrid models combining ML and RL, address scalability in large-scale deployments, and tackle 

challenges like fronthaul constraints and user mobility, as noted by [26]. These advancements will be crucial 

for realizing the full potential of next-generation RANs. 

 

2.2.  Problem formulation 

In this section, we present the formulation of our problem as a constrained optimization problem. 
We will highlight the objective function as well as the optimization constraints. 

 

2.2.1. Decision variables 

𝑥𝑖𝑗  ∈  {0,1} ∶ Binary indicator, equal to 1 if RRH 𝑖 is connected to BBU 𝑗, and 0 otherwise; 𝑦𝑗  ∈

 {0,1}: Binary indicator, equal to 1 if BBU 𝑗 is active, and 0 otherwise. 

 

2.2.2. Parameters 

𝑁𝑅𝑅𝐻: Total number of RRHs.; 𝑁𝐵𝐵𝑈: Total number of BBUs; 𝐶𝑗 : Maximum capacity of BBU 

𝑗; 𝑇𝑖: Load (traffic) of RRH 𝑖. 
 

2.2.3. Objective function 

Minimize the number of BBUs used and maximize the average utilization rate of active BBUs,  

 

Minimize : 𝛼 ∑ 𝑦𝑗 − 𝛽
∑

∑ 𝑇𝑖∙𝑥𝑖𝑗
𝑁𝑅𝑅𝐻
𝑖=1

𝐶𝑗

𝑁𝐵𝐵𝑈
𝑗=1

∙𝑦𝑗

∑ 𝑦𝑗
𝑁𝐵𝐵𝑈
𝑗=1

𝑁𝐵𝐵𝑈
𝑗=1   

 

where,  

 𝛼 > 0 Weight for minimizing the number of BBUs used. 

 𝛽 > 0 Weight for maximizing the average utilization rate of active BBUs. 

 

2.2.4. Contraints 

 An RRH can only be connected to one BBU,  

 

∑ 𝑥𝑖𝑗 = 1, ∀𝑖 ∈ {1,2, … , 𝑁𝑅𝑅𝐻}𝑁𝐵𝐵𝑈
𝑗=1   

 

 A BBU can be connected to multiple RRHs, but its total load cannot exceed its capacity,  

 

∑ 𝑇𝑖 ∙ 𝑥𝑖𝑗
𝑁𝑅𝑅𝐻
𝑖=1 ≤ 𝐶𝑗𝑦𝑗, ∀𝑗 ∈ {1,2, … , 𝑁𝐵𝐵𝑈}   

 

 Consistent activation of BBUs,  

 

𝑥𝑖𝑗 ≤ 𝑦𝑗 , ∀𝑖 ∈ {1,2, … , 𝑁𝑅𝑅𝐻}, ∀𝑗 ∈ {1,2, … , 𝑁𝐵𝐵𝑈}  

 

 Variable domains,  

 

𝑥𝑖𝑗  ∈  {0,1}, 𝑦𝑗  ∈  {0,1}   
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2.2.5. Compact formulation 

 

Minimize: 𝛼 ∑ 𝑦𝑗 − 𝛽
∑

∑ 𝑇𝑖∙𝑥𝑖𝑗
𝑁𝑅𝑅𝐻
𝑖=1

𝐶𝑗

𝑁𝐵𝐵𝑈
𝑗=1

∙𝑦𝑗

∑ 𝑦𝑗
𝑁𝐵𝐵𝑈
𝑗=1

𝑁𝐵𝐵𝑈
𝑗=1   

 

Subject to,  

 

∑ 𝑥𝑖𝑗 = 1, ∀𝑖
𝑁𝐵𝐵𝑈
𝑗=1  

 

∑ 𝑇𝑖 ∙ 𝑥𝑖𝑗
𝑁𝑅𝑅𝐻
𝑖=1 ≤ 𝐶𝑗𝑦𝑗, ∀𝑗  

 

𝑥𝑖𝑗 ≤ 𝑦𝑗 , ∀𝑖, 𝑗  

 

𝑥𝑖𝑗 , 𝑦𝑗  ∈  {0,1}, ∀𝑖, 𝑗   

 

In the following section, we present the greedy algorithm that we proposed for solving our problem thus 
formulated. 

 

2.3.  Method 

To provide an effective solution to this problem, we have adopted a multi-stage methodological 

approach: modeling and simulation using case studies and real data 

We evaluated our algorithm on three levels and compared it to the current RAN network. The focus was on 

the number of BBUs used, the utilization rate of BBUs, and the utilization rate of active BBUs.  

 Number of BBUs used 

During the simulation period, we calculated the number of BBU cards used by our algorithm and 

compared it to the number used in the current RAN network. 

 Utilization rate of BBUs 
The BBU utilization rate (TB) is obtained by calculating the ratio between the number of BBUs 

used with our algorithm (TBCRAN) and the number used in the RAN network (TBRAN), multiplied by 100. 

The number of BBUs used and their utilization rate were evaluated at two levels: average level, the average 

value over the simulation period; Maximum level : the peak value during the entire simulation period. Lower 

values for these indicators imply better performance of the algorithm. 

 Average utilization rate of active BBUs 

At each hour, the average utilization rate of active BBUs was calculated by taking, for each BBU, 

the ratio of its load to its capacity, multiplied by 100, and then averaging this value across all active BBUs. 

The average utilization rate of active BBUs over the simulation period was obtained by averaging the hourly 

rates across the entire simulation period. The closer this indicator is to 100, the better the algorithm performs. 

 

2.4.  Traffic prediction 

In the literature, LSTM and BiLSTM models have demonstrated promising performance, which 

influenced their selection for our study. In the following sections, we compare their results to determine 

which model achieves superior performance. For each RRH, and for both 3G and 4G, we implemented both 

models. To define the architecture of these models, we established value ranges for the hyperparameters. 

These ranges were kept identical for both models to ensure a fair comparison.  

 

2.4.1. Prediction methodology 

After acquiring and processing our data, our modeling followed two majors’ steps,  

 Training and validation phases : 

In this first step, 70% of the data was used to train our different models. During training, 15% of the 

data served as a test set to validate the model and promote the convergence of the loss function. 

 Test phase 

During this phase, the performance of the best trained BiLSTM model is evaluated on the test data. 

For each sector, we used 15% of the data for testing purposes. Since the data is hourly, our mission is to 

determine the value of traffic for the next hour. We exploited the sequence of traffic values of the previous 24 

hours to predict the value of traffic for the 25th hour. This was applied to all RRHs and for both chosen 

models. 
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2.4.2. Evaluation of models 

We used three metrics to evaluate and compare our different models. 

 RMSE: The square root of the mean square error, which is a relative error.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1  (1) 

 

 MAE: indicates the average differences between the predictions and the actual values. 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑁
𝑖=1  (2) 

 

 MAPE: this is the percentage of the mean absolute error. 

 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑁

𝑖=1  (3) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Proposed algorithm 

3.1.1. Presentation of algorithm 

We've proposed our algorithm in four steps. At each of these stages, a certain number of variables 
were utilized. The Table 1 presents all the variables used. 

 

 

Table 1. Summary of the key variables used in the algorithm 
Variables Values Types 

pre_values n previous values of traffic for all of RRHs matrix 

Traffic values of predicted traffic for all of RRHs vector 

BBU_state if BBU active, 1 else, 0 binary vector 

commu_state 1 if RRH connected to BBU and 0 else binary matrix 

charge charge calculated per BBU for 𝑡 + 1 vector 

 

 

 Prediction step 

This first step mainly involves predicting the traffic value for each RRH at time 𝑡 + 1. At this stage, 

our predictive model will be utilized by leveraging the traffic values from the previous 24 hours for each 

RRH. Thus, the model will take the previous traffic values as input and return the predictions for 𝑡 + 1.  
In our simulations for the subsequent stages of the algorithm, we used the actual traffic values already 

available. We employed 10% of our dataset to perform the simulation. 

 Calculation of charge step 

At time 𝑡, the variable commu_state provides information about the switching state between the 

BBUs and the RRHs. To calculate the load of each BBU at time 𝑡 + 1, we sum the traffic values of the RRHs 

associated with each of these BBUs. 

 Overloaded BBU discharge step 

After the load calculation, it often turns out that some BBUs are overloaded, meaning the traffic 

load they have to manage exceeds their actual capacity or the maximum load they can support. In this 

context, we offload some of the RRHs connected to these overloaded BBUs onto other BBUs following the 
procedure below. 

First, for each overloaded BBU, we identify the RRH with the lowest traffic and attempt to offload 

it onto an active BBU that can fully handle its traffic without becoming overloaded. If this option is not 

feasible after exploration, the RRH is then simply offloaded onto an inactive BBU. Throughout this process, 

the variables BBU_state and commu_state are simultaneously updated. 

 Adjustment step 

The main objective of our algorithm is to reduce the utilization rate of BBUs within the BBU pool 

by aiming to deactivate as many BBUs as possible while ensuring maximum utilization of the active BBUs. 

In line with this objective, after the phase of offloading overloaded BBUs, we proceed to offload additional 

BBUs, particularly the least loaded ones, to optimize the utilization of the remaining active BBUs. This 

process is iterated until no further offloading is possible. Simultaneously, the variables BBU_state and 
commu_state are updated and returned at the end of the algorithm. 

Here is our algorithm formulation. 
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Algorithm 1. Proposed algorithm 
Input: Traffic at time 𝑡, 𝑇𝑡 = {𝑇𝑡

𝑅𝑅𝐻𝑖  | 𝑖 = 1,2, … , 𝑁𝑅𝑅𝐻} 

Capacity of BBUs 𝐶𝐵𝐵𝑈𝑗
 ; 

Association state 𝐴𝑠𝑠𝑜𝑐𝑡(𝑅𝑅𝐻𝑖 , 𝐵𝐵𝑈𝑗); 

Activation state 𝑆𝑡𝑎𝑡𝑒𝑡

𝐵𝐵𝑈𝑗
∈  {0,1} 

Output: Updated association 𝐴𝑠𝑠𝑜𝑐𝑡+1 and activation state 𝑆𝑡𝑎𝑡𝑒𝑡+1. 
Phase 1: Traffic Prediction 

foreach 𝑅𝑅𝐻𝑖 do 

 Predict 𝑇𝑡+1
𝑅𝑅𝐻𝑖 = 𝑓(𝑇𝑡−23:𝑡

𝑅𝑅𝐻𝑖 ) // Using 24-hour historical data 
end 

 

Phase 2: Calculation of charge 

foreach 𝐵𝐵𝑈𝑗 do 

 Compute load: 𝐿𝑡+1

𝐵𝐵𝑈𝑗
= ∑ 𝑇𝑡+1

𝑅𝑅𝐻𝑖
𝑅𝑅𝐻𝑖  ∈ 𝐴𝑠𝑠𝑜𝑐𝑡(∙,𝐵𝐵𝑈𝑗)  

end 

 

Phase 3: Overloaded BBU Discharge 

foreach 𝐵𝐵𝑈𝑗 such that 𝐿𝑡+1

𝐵𝐵𝑈𝑗
 >𝐶𝐵𝐵𝑈𝑗

 do 

 Identify RRH with lowest traffic:  

 𝑅𝑅𝐻𝑚𝑖𝑛 = arg 𝑚𝑖𝑛𝑅𝑅𝐻𝑖  ∈ 𝐴𝑠𝑠𝑜𝑐𝑡(∙,𝐵𝐵𝑈𝑗)𝑇𝑡+1
𝑅𝑅𝐻𝑖  

 Attempt reassignment to active BBUs:  

 foreach 𝐵𝐵𝑈𝑘 such that 𝑆𝑡𝑎𝑡𝑒𝑡
𝐵𝐵𝑈𝑘 = 1 do 

 if 𝐿𝑡+1
𝐵𝐵𝑈𝑘 + 𝑇𝑡+1

𝑅𝑅𝐻𝑚𝑖𝑛 ≤  𝐶𝐵𝐵𝑈𝑘
 then 

 𝐴𝑠𝑠𝑜𝑐𝑡+1(𝑅𝑅𝐻𝑚𝑖𝑛 , 𝐵𝐵𝑈𝑘) ⟵ 1; break 
 end 

 end 

 if no active BBUs can accommodate 𝑅𝑅𝐻𝑚𝑖𝑛 then 

 Assign to inactive BBU:  

 Activate 𝐵𝐵𝑈𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒: 𝑆𝑡𝑎𝑡𝑒𝑡
𝐵𝐵𝑈𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ⟵ 1 

 𝐴𝑠𝑠𝑜𝑐𝑡+1(𝑅𝑅𝐻𝑚𝑖𝑛 , 𝐵𝐵𝑈𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒) ⟵ 1 
 end 

end 

Phase 4: Adjustment 

Repeat until no further optimization is possible:  

While rebalancing is feasible do 

 Identify least-loaded BBU:  

 𝐵𝐵𝑈𝑚𝑖𝑛 = arg 𝑚𝑖𝑛𝐵𝐵𝑈𝑗 ∈ {𝐴𝑐𝑡𝑖𝑣𝑒 𝐵𝐵𝑈𝑠}𝐿𝑡+1

𝐵𝐵𝑈𝑗
  

 Reassign its RRHs to other active BBUs, respecting capacity limits. 

 if all RRHs are reassigned do 

 Deactivate 𝐵𝐵𝑈𝑚𝑖𝑛 ∶ 

 𝑆𝑡𝑎𝑡𝑒𝑡
𝐵𝐵𝑈𝑚𝑖𝑛 ⟵ 0 

 end 

 end 

 Return 𝐴𝑠𝑠𝑜𝑐𝑡+1, 𝑆𝑡𝑎𝑡𝑒𝑡+1 

 

3.2.  Prediction model 

We followed the same modeling steps for all RRHs, both for 3G and 4G. Here, we will present the 

results obtained at each step. 
 

3.2.1. Training and validation phases 

To build robust models that fit our data well, we need to design an appropriate architecture for each 
of these models. Therefore, we defined value ranges and searched for combinations that optimize the chosen 

loss function. The value ranges used are the same for all RRHs, and they are presented Table 2. 
 

 

Table 2. Hyperparameters and range of values for both models 
Hyperparameters Range 

Number of layers {3,4} 

Number of neurons in layer 20 … 150 ∈  ℕ∗ 

Optimizer Adam 

Activation function ReLu 

Dropout {0.1,0.2} 

Number of epochs {50} 
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3.3.  Data 

The data used in this study were collected from the radio sites of Celtiis Benin, specifically in the 

Abomey-Calavi district. This area was chosen for our study because it is one of the regions where network 

congestion issues are frequent. The area is covered by 25 sites, 24 of which are tri-sector, while the last site 

has an additional sector, making it a four-sector site. Celtiis Benin operates with three different technologies: 

2G, 3G, and 4G. However, this study focuses exclusively on data traffic for 3G and 4G. 
 

3.3.1. General data by site 

For all the sites within the study area, there are 64 bandwidth units, also known as BBUs or 

universal BB processing units (UBBPs). Each site is equipped with a certain number of carriers, each 

managing a specific number of cells. The UBBPs cards come in three types of configurations: the first 

dedicated solely to 3G cells, the second exclusively to 4G cells, and the third capable of handling both 3G 

and 4G cells. The number of cells per carrier that each card can manage, depending on the configuration, 

varies based on the type of card. The following table provides a summary of these configurations by card 

category. 

The Table 3 provides an overview of the number of cells supported by each type of UBBP card 

based on its configuration. Additionally, at the sector level for each site, three different types of RRHs 

(Ressource radio unit: RRUs) are used,  

 RRU 5508 for low frequencies (700 MHz to 1,000 MHz). 

 RRU 5502 for medium frequencies (1,700 MHz to 2,100 MHz). 

 RRU 5301 for high frequencies (particularly 2,600 MHz in our case). 

The distribution of these different RRH types across sectors is detailed in the following table.  

The RRU 5508 and RRU 5502 manage both 3G and 4G cells, providing coverage for multiple 

technologies. In contrast, the RRU 5301 exclusively handles 4G data traffic and is available only in a limited 

number of sectors. 

 

 

Table 3. Summary of the number of cells supported by each type of UBBP card according to configuration 
UBBP UMTS mode LTE mode UMTS-LTE FDD mode 

UBBPe4 12 6 6-3 

UBBPg1a 12 6 6-3 

UBBPg2a 12 12 6-6 or 3-9 

UBBPg2 12 12 6-6 or 3-9 

 

 

3.3.2. Mobile traffic data 

The data pertains to 3G and 4G mobile data traffic, recorded hourly over a four-month period, from 

April 1 to July 31, 2024. Traffic values were provided per cell for each site. To calculate the traffic per RRU, 

we associated each RRU with its corresponding cells. For the UMTS 2,100 MHz cells, the traffic was 

aggregated, as the RRU 5502 simultaneously manages all four cells. Thus, the traffic for this RRU 

corresponds to the combined total of the four cells. The mobile data traffic is measured in gigabytes (GB). 

 

3.3.3. BBU capacities data 

For this study, we opted to use the cards in LTE FDD mode, as 4G accounts for the largest share of 
mobile data traffic. The current capacities are provided in terms of the number of cells. Therefore, it is 

necessary to convert these capacities into the same unit as mobile traffic. The data transfer rate or speed was 

provided for three 4G cells. The transfer rate, which represents the amount of data transmitted per second, is 

expressed in megabits per second (Mbit/s). 

Let 𝑉 be the data rate, 𝑄 the amount of data, and 𝑇 the time, we have, 

 

𝑉 =
𝑄

𝑇
 (4) 

 

𝑄 = 𝑉 × 𝑇 (5) 

 

Since the data is hourly, we will aim to determine the amount of data that the cells can handle in one hour, 

𝑇 = 1ℎ, so 𝑇 = 3600𝑠, which leads us to,  

 

𝑄 = 3600 × 𝑉 (6) 
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The data rate being in Mbits, the amount of data will be in Mb (megabits), whereas the traffic data is in GB. 1 

Gb = 1,024 Mb and 1 GB = 8 Gb, so this leads us to,  

 

𝑄 =
3600×𝑉

1024×8
 (7) 

 

Let 𝐶 be the capacity of a BBU in GB, 𝑛 the number of cells that the BBU can support, and knowing that the 

data rate is given for three cells, we have,  

𝐶 =
𝑛

3
𝑄 (8) 

 

where,  

 

𝐶 =
75×𝑛×𝑉

512
 (9) 

 

with 𝐶 en GB. 

 

3.4.  Test phase 

3.4.1. 3G data prediction result 

By comparing the actual values with the predicted values (Figure 1) for each of the different models 

applied to the two selected RRHs, we observe that the predicted values generally follow the trend of the 

actual values. Furthermore, the predictions made by the LSTM model (Figure 1(a) and Figure 1(b)), for the 

two selected RRHs appear to be lower than those of the BiLSTM model (Figure 1(c) and Figure 1(d)). 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 1. LSTM model vs BiLSTM model predictions at two RRH on 3G case; (a) LSTM prediction on 
RRH1, (b) LSTM prediction on RRH2, (c) BiLSTM prediction on RRH1, and (d) BiLSTM prediction on 

RRH2 
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Let us now focus on the prediction errors of the different models for the two selected RRHs.  

From Table 4, we can observe that for both selected RRHs, the BiLSTM model predominantly produces the 

lowest prediction errors (two out of three errors). 

 

 

Table 4. Values of different metrics for 3G data - LSTM vs BiLSTM 
 RRH1 RRH2 

Models LSTM BiLSTM LSTM BiLSTM 

RMSE 0.706 0.668 0.380 0.360 

MAE 0.487 0.443 0.273 0.255 

MAPE 27.21 27.70 27.69 28.20 

 

 

3.4.2. 4G data prediction result 

As in the case of 3G, we observe that the predicted values from the different models for the two 

selected RRHs in the 4G case generally follow the trend of the actual values (Figure 2). Additionally, it is 

noteworthy that with the LSTM model (Figure 2(a) and Figure 2(b)), the predictions appear not to exceed a 

certain maximum value for the two selected RRHs. In contrast, the BiLSTM model does not exhibit this 

limitation and seems to have its predicted values (Figure 2(c) and Figure 2(d)) closer to the actual values 

compared to the LSTM model. Predominantly, the BiLSTM model also proves to be the one that yields the 

lowest errors in this case as well (three out of three errors) in Table 5. 
 

 

  
(a) 

 

(b) 
 

  
(c) (d) 

 

Figure 2. LSTM model vs BiLSTM model predictions at two RRH on 4G case; (a) LSTM prediction on 

RRH1, (b) LSTM prediction on RRH2, (c) BiLSTM prediction on RRH1, and (d) BiLSTM prediction on 

RRH2 
 

 

Table 5. Values of different metrics for 4G data - LSTM vs BiLSTM 
 RRH1 RRH2 

Models LSTM BiLSTM LSTM BiLSTM 

RMSE 1.804 1.633 1.536 1.521 

MAE 1.375 1.209 1.200 1.143 

MAPE 13.47 11.61 13.57 12.47 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 3, December 2025: 1377-1390 

1386 

3.5.  Dynamic resource allocation algorithm 

To evaluate the performance of our algorithm on real data, we conducted simulations using 10% of 

our dataset. For the simulations, we assessed two scenarios: the current network architecture and our 

proposed algorithm. The simulation period spans 12 days.To calculate the traffic at each RRH, we summed 

the 3G and 4G data traffic at each moment for RRHs 5508 and 5502, as these two RRHs handle both 3G and 

4G data traffic. For RRH 5301, we only considered 4G data traffic since it exclusively handles that.  

By comparing the number of BBU cards used in the current RAN network (Figure 3) with those of the  
C-RAN network with our algorithm, we observe that the number of cards in the current RAN network 

remains constant regardless of the time. In contrast, the number of cards in the C-RAN network with our 

algorithm varies (Figure 3(a)). 

The number of cards used in the RAN is 64, whereas in the C-RAN network with our algorithm,  

it varies between 3 and 12 (Figure 3(a) and Figure 3(b)). We observed an average BBU utilization rate of 

11.58% and a maximum utilization rate of 18.75%. This results in a reduction of up to 81% in the number of 

BBU cards used with our algorithm compared to the current RAN network. The statistics are presented in 

Table 6.  

 

 

  
(a) (b) 

 

Figure 3. Number of BBUs used - 12 days simulation (a) C-RAN Vs RAN and (b) C-RAN 

 
 

Table 6. Values of different metrics for 4G data - LSTM vs BiLSTM 
 RAN C-RAN 

Level Average Maximum Average Maximum 

Number of BBUs Used 64 64 7 12 

Utilization Rate of BBUs 100 100 11.58 18.5 

 

 

Let us now focus on the utilization rate of active BBUs with our algorithm and the current network. 

From Figure 4, we can observe that with our algorithm, active BBUs are utilized up to 88.34% of their 
capacity. Meanwhile, active BBUs in the RAN network are, on average, utilized at only 10.6% of their 

capacity. With our algorithm, we achieve a reduction of up to 81% in the number of BBUs used. 

Additionally, the BBUs that are used operate, on average, at 88.34% of their capacity. 

The results are significantly better than many traffic prediction models available. By comparing the 

results obtained with those of by [26], which are based on theoretical resource management models in the C-

RAN without addressing traffic prediction solutions, the method proposed in this work uses the BiLSTM 

model to achieve a MAPE of 2.47% for 4G, which is much better than many existing methods that do not 

incorporate real-time traffic prediction or have higher error rates. This forecasting quality allows the 

proposed algorithm to proactively allocate resources based on demand, which is a significant advance 

compared to the static approaches encountered in the study by [26], [30], use unsupervised learning 

techniques on CDRs to classify traffic, but their approach is at most concerned with network planning 

without being able to rationalise real-time resource allocation. The research work described here goes beyond 
simple classification, since predicted traffic models are then used for dynamic allocation of BBUs, enabling 

BBU utilisation to be reduced by up to 81%, with an average BBU utilisation rate of 88.34%, much higher 

than the 10.8% of a traditional RAN system. The proposed method shows a gain in efficiency in terms of 

resource utilisation, providing an answer to one of the limitations of the study by Zhou et al. By proposing an 

xApp for allocating optimal PRBs using a ML approach which, for example, displays a good 85% accuracy 
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rate, by [27], do not integrate the dimensions of resource optimisation at the BBU level, which is conditioned 

by large-scale implementation considerations, not all of which are able to offer a complete resource 

management solution. By lightening the operation of the BBUs while achieving suitable utilisation rates for 

the active BBUs, one of the solutions we believe could, for example, generate significant savings while 

helping to ensure the efficiency of the network end-tool. The recommended method improves both latency 

and resource utilisation on the largest possible scale, based on real-time traffic forecasts and optimised BBU 
allocation. 

 

 

 
 

Figure 4. Average utilization rate of active BBUs - RAN vs C-RAN 

 

 

4. CONCLUSION 

Our study proposes a novel approach for optimizing cloud-RAN networks, using AI models to 
predict traffic and dynamically allocate BBU resources. This method significantly reduces the number of 

BBUs required (up to 81%) while maximizing their utilization, with an average utilization of 88.34% of 

active BBUs, compared to only 10.8% in a traditional network. These results confirm that data-driven traffic 

prediction combined with adaptive resource allocation can significantly enhance network efficiency, offering 

a scalable and low-cost optimization strategy. This study represents the starting point for a series of 

investigations. Future research may extend this work by leveraging the proposed traffic prediction framework 

based on LSTM and BiLSTM architectures to design more advanced resource management solutions. 

Integrating 5G, and eventually 6G, technologies, together with real-time and multi-source datasets, would 

further enhance the model’s applicability to next-generation networks. The proposed dynamic BBU 

allocation algorithm serves as a reference for intelligent resource management in shared or multi-operator 

environments. For experimental validation, future studies should focus on testing the model with real-world 
data collected from diverse scenarios, including urban and rural settings as well as peak traffic conditions. 

Additionally, evaluating the scalability and robustness of the model in large-scale simulated environments 

will be crucial for assessing its practical deployment potential. It is also essential to validate the system's 

robustness in the event of unforeseen events (sudden spikes, network failures) and to measure their impact on 

QoS. Finally, energy efficiency and economic viability studies should be conducted to strengthen the 

industrial value of the solutioneffective C-RAN adoption. In summary, by integrating AI into Cloud-RAN 

network optimization, this study paves the way for more efficient resource management, with significant 

gains in performance and reduced energy footprint. 
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